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We critically review the main approaches for standardizing and comparing selection 

differentials and gradients among traits, populations, and species and assess their differ-

ential merits. In particular, we explain why the most widespread approach to standardiz-

ing selection, which measures selection differentials in units of a trait’s phenotypic 

standard deviation, is less appropriate for characterizing strengths of natural selection in 

wild populations. In contrast, an alternative standardization approach, which uses a 

trait’s phenotypic mean in addition to its standard deviation, results in another dimen-

sionless measure – the mean-standardized selection gradient. This measure offers some 

key benefits over alternative approaches – such as ease of interpretation, independence 

of a trait’s variance, and the natural interfacing of ecological and evolutionary dynamics 

– and yet remains rarely used by evolutionary biologists. We explain how the more rou-

tine application of this measure will facilitate comparisons of selection strengths in the 

wild among traits, populations, and species. 

elasticity, natural selection, selection differential, selection gradient, standardization 



3 

Our world is filled with astonishingly diverse forms of organisms. Adaptation by natural 

selection to spatially heterogeneous and temporally changing environments is a critical 

driving force for bringing about this biodiversity (Darwin 1859). Phenotypes of organ-

isms change according to both natural and anthropogenic selection pressures. Rapid 

phenotypic evolution resulting from human-induced environmental change – such as 

global warming, and the harvesting of wild animals and plants – can be particularly 

troublesome, because such evolution may have undesirable consequences, for example, 

population declines, ecosystem instabilities, and forgone yield (Kinnison and Hendry 

2001, Palumbi 2001, Jørgensen et al. 2007, Darimont et al. 2009). Anthropogenic selec-

tion pressures are likely to be very strong (Darimont et al. 2009); yet, few studies have 

quantified and compared their strength, for example in the context of fisheries (Law 

2007, Hutchings and Fraser 2008, Hard et al. 2008). To understand how various selec-

tive forces change phenotypes of animals and plants in the wild, an important first step 

is to develop robust methods that quantify and compare the power of natural and an-

thropogenic selection pressures acting on a diverse range of adaptive traits (Hendry 

2005). 

The general methodological framework for estimating the strength of selection 

has been developed by Lande and colleagues in the late 1970s and early 1980s (e.g., 

Lande and Arnold 1983). Because of its conceptual appeal and ease of application, a 

large number of empirical studies have subsequently estimated the strength of natural 

selection on adaptive traits in a wide range of animals and plants using the regression-

based methods pioneered by Lande and colleagues (reviewed by Kingsolver et al. 2001, 

Hereford et al. 2004). Their main innovation was to show how selection strength can be 

measured through a univariate or multivariate linear regression of relative fitness, or 

components of fitness (such as survival at a particular life stage or the number of off-
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spring; Arnold and Wade 1984), on the quantitative trait(s) of interest. Using this com-

pelling approach, important insights have been generated into the mechanisms and pat-

terns governing the direction and speed of evolutionary change, including eco-

evolutionary feedback, (Hendry 2005, Kingsolver and Pfennig 2007). The accumulation 

of data on selection pressures has in turn enabled researchers to compare selection 

strengths among different traits, populations, and species (e.g., Endler 1986, Kingsolver 

et al. 2001, Hereford et al. 2004, Hendry 2005, Kingsolver and Pfennig 2007). Yet, the 

utility of such comparisons is still crucially limited by two fundamental problems. First, 

as different phenotypic traits have different units, any direct comparison of selection 

strengths among them is limited. Second, reported indicators of selection strength are 

often confounded by population- or trait-specific properties, such as a population’s gen-

eration time or a trait’s heritability, phenotypic variance, or phenotypic mean. These 

two problems hamper a complete understanding of selection responses of different traits 

in different populations experiencing different selective environments. To enable mean-

ingful comparisons, selection strengths have to be adequately standardized in a way that 

ensures all confounding factors are removed. 

The objective of this article is to review the differential merits of alternative 

ways of standardizing selection strengths. In particular, we highlight the important ad-

vantages of the mean-standardized measure, which render this approach the most useful 

approach for comparing selection strengths in wild populations of animals and plants. 

Complementing the commendable pioneering discussion by Hereford et al. (2004), our 

exposition is meant to provide an easily accessible one-stop overview of these matters 

for the benefit of all those interested in comparing strengths of selection in natural popu-

lations. We also provide a worked-out example and an overview of main steps to show 
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how to obtain and standardize measures of selection strength from theoretical and em-

pirical data, respectively. 

One of the central measures of selection in traditional quantitative genetics and artificial 

breeding is the selection differential S . It measures the mean phenotypic value of indi-

viduals selected as parents, expressed relative to the mean phenotypic value of all indi-

viduals in the parental generation before selection (Falconer and Mackay 1996). In se-

lection experiments or artificial breeding efforts, selection often operates through trun-

cation, by admitting for reproduction only individuals whose phenotypic trait values ex-

ceed a given threshold (Fig. 1a). A form of viability selection, such truncation selection 

is recognized as the most efficient implementation of artificial directional selection 

(Crow and Kimura 1979). By contrast, truncation selection rarely occurs in natural pop-

ulations, as there usually exists no threshold phenotypic value that would distinguish 

individuals that reproduce, or survive, from those that do not. For natural selection, in-

stead, the selection differential S  is obtained as the phenotypic mean of individuals 

weighted by their fitness, expressed relative to the population’s phenotypic mean in 

which all individuals are weighted alike (Fig. 1c; see also the illustrative example in 

Box 1). The empirical measurement of selection differentials thus requires estimating 

the differential fitness of individuals in dependence on the phenotypic traits characteriz-

ing those individual. This is often difficult, or even practically impossible, especially 

when a trait’s fitness consequences are distributed over an organism’s full life cycle. 

Therefore, selection differentials are frequently calculated based on a fitness component 

(Arnold and Wade 1984), for example, survival at a particular life stage or the number 

of offspring produced over a certain period (e.g., a year). Such differentials more nar-
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rowly measure the strength of selection acting on an adaptive trait at a particular stage 

of the life cycle. 

A more readily observable measure of selection strength is the selection re-

sponse R . This quantifies the amount of evolutionary (i.e., genetic) change in a pheno-

typic trait value between generations, and is thus defined as the change in a population’s 

mean phenotypic value during one generation. In traditional quantitative genetics, the 

selection response is associated with the selection differential according to the breeder’s 

equation, 

2R h S ,         (1) 

where 2 2 2
A P/h  is the narrow-sense heritability, and 2

A  and 2
P  are a population’s 

additive genetic variance and its phenotypic variance, respectively (Falconer and Mac-

kay 1996). It is thus evident that selection responses depend on population- and trait-

specific properties ( 2h , or 2
A  and 2

P ). As we will see further below in this section, an 

analogous conclusion applies to selection differentials, even though this is less com-

monly emphasized. 

Methods for measuring natural selection on multiple traits in natural populations 

have been developed in the late 1970s and early 1980s by Lande and coworkers (e.g., 

Lande and Arnold 1983). These methods measure the selection gradient , which is the 

average slope (or gradient) of a trait’s fitness landscape experienced by a population in a 

given ecological environment. Such a fitness landscape represents how the fitness of 

individuals changes with a change in their trait value. It has been shown that  can be 

estimated as the coefficient of a linear regression of relative fitness on a phenotypic trait, 

or more generally, as a partial regression coefficient in the case of multivariate traits 

(Lande 1979, Lande and Arnold 1983). In this framework, the selection differential S  is 

the covariance between the phenotypic trait and fitness, while the selection gradient  
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is the covariance divided by the variance of the phenotypic trait. Generally, , S , and 

R  are related as follows, 

2 2
P A/ /S R .        (2) 

Since  measures the sensitivity of fitness to changes in a trait’s value (which can be 

approximated as a regression coefficient of relative fitness on the trait), it is a more di-

rect measure of selection strength in natural populations than S  or R . From equation 2 

we see that the selection differential 

2
PS ,         (3) 

confounds the selection gradient  with a population’s phenotypic variance, which 

means that, just like R , S  is not an ideal measure for comparing selection strengths 

among different traits, populations, or species. 

In multivariate cases, selection is acting on n  different traits, and equation 2 

generalizes to 

R G ,         (4) 

where T
1 2( , , , )R nR R R  and T

1 2( , , , )n  denote the vectors of multivariate 

selection responses and selection gradients, respectively. The n n  matrix G  is called 

the additive genetic variance-covariance matrix and comprises the additive genetic vari-

ances of all n  traits, as well as the covariances for all ( 1)n n  pairs of different traits 

(Lande and Arnold 1983). In this manner, the equation above captures both the direct 

evolutionary trait changes resulting from selection on a given focal trait and the indirect 

trait changes resulting from selection on other traits that are genetically correlated with 

the focal trait (for a more detailed discussion of multivariate cases, see Hansen and 

Houle 2008). In the present article, we will focus on univariate selection, since our main 
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interest is not in selection responses but in selection differentials and gradients for par-

ticular traits. 

When researchers equipped with the aforementioned concepts, methods, and equations 

strive to compare selection strengths among different traits, a fundamental problem aris-

es: neither the selection differential S , nor the selection response R , nor the selection 

gradient  are dimensionless. If the trait of interest is measured in kg, for instance, the 

selection differential, selection response, and selection gradient have units of kg, kg, and 

kg–1, respectively. We illustrate the resultant difficulties by focusing on the selection 

differential S , the most traditional measure among these three. Let us consider an ex-

ample from the literature on fisheries-induced evolution, which has attracted considera-

ble attention in recent years (e.g., Jørgensen et al. 2007, Kuparinen and Merilä 2007): 

Hard et al. (2008) reviewed empirical estimates of selection differentials imposed by 

fishing, reporting selection differentials on body length in Atlantic cod Gadus morhua 

(ranging from –1 to +2 cm), on body weight in Atlantic salmon Salmo salar (–0.08 to –

0.52 kg), and on body girth in sockeye salmon Oncorhynchus nerka (–0.6 to –3.6 mm). 

From an absolute comparison of these values, there is no way one could tell which trait 

is under the strongest selection. Therefore, it is evident that S  – and analogously R  and 

 – must be standardized before attempting any comparison of selection strengths. 

There are two obvious approaches to this standardization. First, selection differ-

entials can be measured in units of the phenotypic mean of the trait under selection, by 

considering the ratio P/S . Representing in this manner a trait’s proportional change 

relative to its mean is probably the most intuitive approach to standardization. Indeed, 

when the selection response R  is measured in units of the phenotypic mean, P/R , the 
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resultant ratio usefully describes the proportional change in the trait value from one 

generation to the next (Roff 2002). Interestingly, this type of standardization is rarely 

reported for selection differentials. Alternatively, selection differentials can be ex-

pressed in units of the phenotypic standard deviation of the trait under selection, by con-

sidering the ratio P/S . As we will explain below, this currently most popular ap-

proach to standardizing selection strengths originated in the context of controlled selec-

tion experiments typical in artificial breeding studies of animals and plants, but unfortu-

nately is not optimally suited to standardizing the strength of natural selection. 

Recognition of a third standardized measure is a relatively recent development, 

since this additional measure is not as obviously constructed as the two described so far. 

Specifically, the selection differential can be standardized by jointly using the phenotyp-

ic mean and the phenotypic variance of the trait under selection, considering the ratio 

2
P P/S . The motivation for this particular, at first sight seemingly odd, construction is 

to remove the phenotypic variance’s confounding effect on the selection differential 

(equation 3), and yet obtain a dimensionless measure. 

As already explained above, the selection gradient  measures the sensitivity of 

fitness to changes in a trait’s value and therefore is considered a more direct measure of 

selection strength than S . According to equation 2, the second and third standardized 

measures of selection strength are related to the selection gradient  as 

P P/S         (5) 

and 

2
P P P/S .        (6) 

We thus see that these measures can be interpreted as a fitness landscape’s slope meas-

ured in units of, respectively, the phenotypic standard deviation P  or the phenotypic 
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mean P . For this reason, the two measures were termed variance-standardized selec-

tion gradient ( ) and mean-standardized selection gradient ( ) by Hereford et al. 

(2004). In the present article, we call the former measure the SD-standardized selection 

gradient, because it actually is standardized by the phenotypic standard deviation (SD), 

and not by the phenotypic variance. 

The SD-standardized selection gradient P P/S  is also known as the selec-

tion intensity (or intensity of selection) i  in traditional quantitative genetics (Falconer 

1960, Bulmer 1980, Falconer and Mackay 1996, Roff 1997). In the context of trunca-

tion selection, the selection intensity i  has a particularly compelling interpretation, 

since it then directly measures the proportion of individuals that are not selected for re-

production. If this proportion increases, the selection intensity i  increases. What is im-

portant for comparative purposes, especially in artificial breeding efforts, is that the se-

lection intensity is independent of the variability of the trait considered. If the selected 

proportion is the same, the selection intensity i  will be the same, regardless of the vari-

ability of the trait (Fig. 1a,b; Falconer and Mackey 1996, Roff 1997). Because of its 

utility for describing truncation selection, i  has long been considered a good measure of 

selection strength in general (Falconer and Mackey 1996). 

This tradition of standardizing selection differentials by phenotypic standard de-

viations has continued even after measurements of selection strength were extended to 

natural populations. When Lande and Arnold (1983) applied their newly developed re-

gression method to empirical data, they acknowledged the established tradition by ex-

plaining that the “observed selection differential on a particular character is often ex-

pressed in terms of phenotypic standard deviation”. Since then, the SD-standardized se-
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lection gradient  has been widely used in comparative studies on natural selection in 

the wild. For example, Kingsolver and colleagues (Kingsolver et al. 2001, Hoekstra et al. 

2001, Kingsolver et al. 2011) reviewed an extensive body of empirical studies and con-

ducted a meta-analysis of selection strengths in natural populations of animals and 

plants using the SD-standardized selection gradient. 

Even outside the context of truncation selection, the SD-standardized selection 

gradient  has a simple interpretation: it measures the change in relative fitness that 

results from increasing the trait value by 1 phenotypic standard deviation. For example, 

for  = 0.4, shifting trait values up by 1 standard deviation from their phenotypic 

mean increases relative fitness by 40%. (One must keep in mind, however, that this in-

terpretation is only permissible when selection is frequency-independent, or when the 

fraction of individuals whose trait values are shifted is negligible relative to the consid-

ered population as a whole, as otherwise the trait shift may reshape the fitness land-

scape.) Unfortunately, this intuitive interpretation does not bring out the fact that the 

SD-standardized selection gradient remains confounded by the variance of the focal trait 

under selection, and thus by an idiosyncratic property of the selected population. We 

will explain and discuss this limitation further below. 

Increased attention to the mean-standardized selection gradient 2
P P P/S  is 

a relatively recent development. Mean-standardized selection responses were already 

reported by Johnson et al. (1955). To our knowledge, Morgan and Schoen (1997) might 

have been the first to give systematic consideration to the specific advantages of using 

the mean-standardized selection gradient in quantitative genetics. Further discussion 

about the prospects of mean-standardized selection gradients can be found in van 
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Tienderen (2000) and Hereford et al. (2004). The latter study reanalyzed the database of 

Kingsolver et al. (2001) using the mean-standardized measure, and concluded that it 

was considered superior to the SD-standardized measure when selection strength on dif-

ferent traits was to be compared in natural populations. To understand this claim, it is 

helpful to look at mean-standardized measures in the context of the breeder’s equation. 

Using equation 2 and applying mean-standardization not only to the selection differen-

tial, but also to all other variables, the breeder’s equation 1 can be rewritten as 

2
P A P P/ ( / ) ( )R  or 2r a ,     (7) 

where the proportional selection response P/r R  is predicted by the mean-

standardized selection gradient P  and the coefficient of genetic variation 

A P/a . The latter has been suggested as a suitable measure of evolvability (Houle 

1992, Hansen et al. 2003), because it characterizes a population’s ability to respond to 

selection. This can easily be understood since a larger genetic variation (SD, A ) rela-

tive to a small phenotypic mean ( P ) implies a higher potential for evolution, hence 

evolvability. In equation 3, all variables are dimensionless, and are measured in units of 

the trait’s phenotypic mean. As a result, selection strength ( ) and evolvability ( a ) are 

cleanly separated. On this basis, selection strengths, evolvabilities, and proportional se-

lection responses can consistently be compared among different traits, populations, and 

species (Hansen et al. 2003, Hereford et al. 2004). 

Analogous to the SD-standardized selection gradient , the mean-standardized 

selection gradient  has a simple interpretation: it measures the change in relative fit-

ness that results from doubling the trait value. For example, for  = 0.4, shifting trait 

values up by 100% increases relative fitness by 40% (the aforementioned caveat about 
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potential changes in the fitness landscape resulting from such a shift of course applies 

here, too). 

The meta-analyses of selection strengths in natural populations by Kingsolver et al. 

(2001) and Hereford et al. (2004) investigated similar data sets, but used different 

standardizations of selection strength and thereby came to qualitatively different conclu-

sions. The former study concluded that natural selection was generally not strong, 

whereas the latter study suggested the opposite. With such fundamental conclusions at 

stake, the choice of standardization certainly is no trifling matter. The question thus nat-

urally arises which of the two standardized measures,  or , can provide the more 

relevant assessment of selection strength in comparative studies of natural selection. 

Addressing this question, below we appraise three limitations and three advantages of 

using the mean-standardized selection gradient . 

Three limitations of the mean-standardized selection gradient were pointed out 

in recent reviews and meta-analyses on selection strength (Kingsolver and Pfennig 2007, 

Kingsolver et al. 2011), leading the authors of those studies to express their preference 

for using the SD-standardized selection gradient. First, mean-standardized selection 

gradients should not be applied to traits whose scale lacks a natural origin. If the origin 

of a trait’s scale is arbitrary, independent studies will make different choices, and the 

effect of these arbitrary choices on the phenotypic mean will thus contaminate the re-

sultant mean-standardized selection gradients. A related point was raised by Stinch-

combe (2005), who highlighted that mean-standardized selection gradients are problem-

atic when applied to fractions, which vary between 0 and 1. While such a trait f  and its 

complement 1 f  necessarily experience selection of equal strength (but opposite di-
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rection), the two corresponding mean-standardized selection gradients differ not only in 

sign, but also in magnitude (as f  and 1 f  in general have different means), so it is not 

self-evident which of these two magnitudes to report for the mean-standardized selec-

tion gradient. We further discuss, and try to resolve, this point in Box 2. Second, the in-

formation needed to compute mean-standardized selection gradients is not always re-

ported in publications. After Lande and Arnold’s (1983) influential work, SD-

standardized values were reported in many studies, but phenotypic means were often 

not documented in the corresponding publications. Because of this historical bias, the 

scope for meta-analyses of earlier studies of selection strengths in natural populations is 

narrower for the mean-standardized than for the SD-standardized selection gradient. 

While the last statement seems incontrovertible, we suggest that this historical and prac-

tical limitation must not be taken to trump the more conceptual arguments we discuss 

elsewhere in this article. Third, larger mean-standardized selection gradients appear to 

occur in populations with smaller phenotypic coefficients of variation. Further investi-

gations will need to test this correlation, and if corroborated as robust, determine the 

underlying reasons. 

We now turn to describing three key advantages of using mean-standardized se-

lection gradients for comparing selection strengths in natural populations. First, these 

measures are easy to interpret in terms of fitness elasticities. Second, they are not con-

founded by a population’s phenotypic variability. Third, they facilitate the liaison of 

ecological and evolutionary studies. Although both Kingsolver and Pfennig (2007) and 

Stinchcombe (2005) acknowledged the first advantage, both studies did not mention the 

second and third. After describing the first of these advantages briefly, we discuss the 

second in greater detail, before explaining the third toward the end of this section. 
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First advantage: Interpretation as elasticities 

As we described above, the mean-standardized selection gradient  has a simple in-

terpretation: it measures the change in relative fitness that results from doubling the trait 

value. More generally, increasing the trait value by a fraction f  of the mean trait value 

causes relative fitness to increase by f . Thus,  measures fitness elasticities, which 

is why this measure has also been called the elasticity of selection (Morgan and Schoen 

1997). 

Hereford et al. (2004) pointed out that one of the advantages of using mean-

standardized selection gradients, directly associated with their interpretation as elastici-

ties, is the existence of a useful benchmark for relatively strong selection: when the se-

lected trait is fitness, then  = 1. Thus, a mean-standardized selection gradient of  

> 1 describes a fitness landscape with a relatively steep slope around the population’s 

phenotypic mean (Hereford et al. 2004), as a change in trait value then results in a sub-

stantial change in fitness, which in turn implies relatively strong selection. It is some-

times considered surprising that the elasticity of a trait or fitness component can exceed 

the elasticity of fitness itself. To escape this pitfall in understanding, it is worth recalling 

that there is no biological reason that would generally limit the steepness of a fitness 

landscape’s slope , and in particular, would prevent this slope from exceeding the in-

verse P1/  of a population’s phenotypic mean. For example,  = 1.2 means that shift-

ing trait values up by 100% increases relative fitness by 120%, which just shows that 

fitness is very sensitive to a change in that particular trait. Such high sensitivities are 

expected, for instance, in traits that rather abruptly enable survival or reproduction when 

exceeding a certain threshold. 
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Second advantage: Independence of a population’s phenotypic variability 

To examine the second advantage, we carried out an illustrative model-based analysis 

testing the three standardized measures of selection strength (for a description of the 

underlying mode, see Box 1). We varied the variability of a phenotypic trait that was 

subject to selection of fixed strength (Fig. 1d). The results demonstrate that the mean-

standardized selection gradient  remains almost constant under such variation, as 

long as the phenotypic standard deviation P  is not too large (Fig. 2c). In contrast, the 

SD-standardized selection gradient  and the proportional selection differential PS  

are not invariant, instead appearing to increase linearly and quadratically with P , re-

spectively (Fig. 2b and Fig. 2a). 

These features are readily understood by examining the relationship between the 

selection gradient  and the fitness landscape ( )x  of a phenotypic trait x . Assuming 

a normal distribution of trait values around the phenotypic mean P  with variance 2
P , 

and expanding ( )x  around P , Phillip and Arnold (1989) showed that 

PP

3 5
2 2 4
P P P3 5

1 1
/

2 8 xx

d d d d
S

dx dx dx dx
.  (8) 

Since the higher-order terms are expected to be negligible when P  is sufficiently small, 

the selection gradient  approximately equals the slope /d dx  of the fitness land-

scape ( )x  at the phenotypic mean P . From this, we immediately see that the mean-

standardized selection gradient 
PP P ( / )xd dx  is not only dimensionless, 

but also almost constant under variation of P  (as long as P  is small), approximating 

the fitness landscape’s slope around the trait’s mean in units of the latter. By contrast, 

the SD-standardized selection gradient 
PP P ( / )xd dx  and the selection 
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intensity, or proportional selection differential, 
P

1 2 1 2
P P P P P/ / ( / )xS d dx  

are shown to increase approximately linearly and quadratically with P , respectively. 

These results highlight a major disadvantage of the SD-standardized selection 

gradient  as a measure of selection strength. Even when selection pressures and phe-

notypic means are identical, populations with different degrees of phenotypic variability 

will exhibit different values of  on the same trait of interest. In other words, the SD-

standardized selection gradient varies with a population’s ecological state, since a popu-

lation’s phenotypic variance is readily affected, for example, by whether it experiences 

a wide or narrow range of environmental conditions. Consequently,  is not a pure 

measure of selection strength, but instead confounds this with a population’s phenotypic 

variability in the considered trait. The benefit of standardization by the phenotypic 

standard deviation in the context of truncation selection, i.e., its independence of the 

phenotypic variability of the trait, is thus lost in the context of natural selection. This is 

because artificial truncation selection often restricts breeding to a specific fraction of 

individuals, whereas this is almost never the case under natural conditions. By contrast, 

the mean-standardized selection gradient  is largely independent of a trait’s pheno-

typic variability. Hence, mean-standardized selection gradients are fundamentally supe-

rior for comparing strengths of natural selection among traits, populations, and species 

across different ecological environments. 

Some may dismiss the utility of the mean-standardized selection gradient be-

cause it varies with the phenotypic mean of a trait instead of with its standard deviation 

even when the slope of a fitness landscape is kept constant. In our assessment, however, 

this feature just further underscores the utility of the mean-standardized selection gradi-

ent, because it reflects a real biological difference. To see this, imagine a population of 
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zebrafish (Danio rerio; with a mean length of 5 cm) and a population of white sturgeon 

(Acipenser transmontanus; with a mean length of 500 cm). When selection on length is 

described in these two populations by fitness landscapes that have the same slopes of  

= 0.01 cm-1 around the corresponding phenotypic means, the relative fitness of a 6 cm 

long zebrafish (which is 20% larger than their population’s phenotypic mean) is 1.01 

( 1 (6 5) 0.01), whereas that of 600 cm sturgeon (which is 20% larger than their 

population’s phenotypic mean) is 2 ( 1 (600 500) 0.01). It would presumably not 

occur to a field biologist to claim that length selection in these two populations were of 

equal strength. This intuitive understanding is well reflected when comparing  

(which yields 5 × 0.01 = 0.05 for zebrafish and 500 × 0.01 = 5 for white sturgeon), but 

not when comparing  directly (which is identical for zebrafish and sturgeon). In other 

words, the same slope of the fitness landscape will commonly be interpreted as repre-

senting different selection strengths depending on the considered trait’s phenotypic 

mean. Thus, the mean-standardized selection gradient, i.e., the slope of a fitness land-

scape at a population’s phenotypic mean measured in units of the latter, often serves as 

a biologically more appropriate measure of selection strength than the slope itself. In 

conjunction with the coefficient of genetic variation divided by the phenotypic mean, i.e. 

evolvability A P/ , it is also a good predictor of the proportional selection response 

(Equation 3). 

 

Third advantage: Interfacing ecology and evolution 

We conclude this section by highlighting a third fundamental advantage associated with 

the use of the mean-standardized selection gradient: it naturally interfaces ecological 

and evolutionary dynamics through its decomposition into constituent components. Fig-



19 

ure 3a is a simplified elasticity path diagram (Van Tienderen 2000) based on our illus-

trative example (Box 1). In this diagram, arrows indicate how a proportional change of 

one variable results in a proportional change of another variable. These elasticity values 

can be obtained either as coefficients of the corresponding linear regressions (in data-

based empirical analyses) or as derivatives (in model-based theoretical analyses). The 

left-hand side of the diagram represents a classical selection analysis in the spirit of 

Lande and colleagues (e.g., Lande 1979, Lande and Arnold 1983; Box 4), as described 

above. The right-hand side represents a demographic analysis in which elasticities char-

acterize the effect of a proportional change in fitness components or vital rates (e.g., 

survival and reproduction) on a population’s growth rate. The latter analyses have, for 

example, been found useful in conservation biology, to identify critical aspects for in-

creasing the growth rate of endangered populations (e.g., Benton and Grant 1999, 

Caswell 2001). By marrying these normally disparate analyses – the former being typi-

cally more oriented towards evolution, the latter more towards ecology – mean-

standardized selection gradients assume an important integrative function. 

This integrative function extends to a comparative dimension. In subpopulation 

A of our illustrative example (Box 1, Fig. 3), the elasticity with respect to the annual 

survival probability of juvenile fish (0.75) is greater than those with respect to the other 

fitness components (0.25), indicating that the former is the most influential determinant 

of this subpopulation’s growth. This is in contrast to the analogous situation in subpopu-

lation B. Likewise, we see that the effect of the annual juvenile growth increment on 

newborn and juvenile survival is slightly weaker in subpopulation A (–0.71) than in 

subpopulation B (–0.83). Joining both sides of the diagram, we can calculate the elastic-

ities of the population growth rate with respect to the annual juvenile growth increment 

(0.01) and the date of river entry (0.23) for subpopulation A, which tells us how an in-
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crease in these phenotypic trait values results in an increase in the population growth 

rate. The corresponding values for subpopulation B (0.61 and 0.46, respectively) are 

very different, and considerably larger. Importantly, these elasticities of fitness with re-

spect to the phenotypic traits are nothing else but mean-standardized selection gradients, 

because the population growth rate can be interpreted as fitness. In other words, if a 

small change in a trait could enhance population growth rate greatly, it also implies that 

selection acting on that trait is strong. Thus, elasticities, i.e., mean-standardized values, 

work as versatile common “currencies” interfacing ecological and evolutionary dynam-

ics, in a way that is difficult to achieve through other techniques. In fact, the elasticity 

path diagram has played an important role as a gateway for researchers to become fa-

miliar with the mean-standardized selection gradient (Box 3). This perspective has great 

potential to facilitate comparisons across traits, populations, and species (Box 1, Fig. 3) 

and to integrate analyses of ecological and evolutionary dynamics (Lande 1982, van 

Tienderen 2000) in natural populations. 

As the selection differential S  and the selection gradient  are not dimensionless, they 

must be standardized before executing any kind of comparison of selection strengths 

across traits, populations, or species. We believe that applied and basic evolutionary bi-

ologists will benefit from routinely using the mean-standardized selection gradient in 

future studies. The reason for recommending this particular standardization is funda-

mental: it is the most direct measure of the selective implications of particular ecologi-

cal settings in nature, and as such is not confounded by a selected trait’s phenotypic var-

iability in the population under consideration. 
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Figure 4 summarizes the systematic standardization process that translates what 

can be measured in natural populations to the dimensionless measure most suitable for 

comparing selection strengths among traits, populations, and species. We start our over-

view from what is probably the most directly observable quantity informing us about 

the strength of selection in natural populations: this is a trait’s evolutionary rate, i.e., the 

change in a phenotypic trait value divided by the time it took for the change to occur, in 

light of constant ecological conditions. Such evolutionary rates have been used to com-

pare the pace of evolutionary changes in response to particular (often anthropogenic) 

selection pressures affecting specific populations and specific traits (e.g., Jørgensen et al. 

2007, Darimont et al. 2009). Despite their accessibility to measurement, these rates as 

such, however, cannot serve as suitable measures of selection strength. While this con-

clusion is formally evident from the fact that such rates are not dimensionless, we can 

also understand it by appreciating that evolutionary rates confound the strength of selec-

tion with properties such as generation time, heritability, phenotypic variance, and phe-

notypic mean (Fig. 4), which all idiosyncratically depend on the populations and traits 

under consideration. It is thus easy to see that the effects of these population- and trait-

specific confounding factors must be removed before comparisons of selection strengths 

between traits, populations, and species can become meaningful. As shown in Fig. 4, it 

is the mean-standardized selection gradient  that remains once the aforementioned 

confounding factors have been removed. In the figure, we show the steps from the evo-

lutionary rate, the most directly observable quantity, to the dimensionless quantity of the 

mean-standardized selection gradient , in what to us seems the most easily under-

standable order. We emphasize that the order of standardization is arbitrary, which im-

plies that quantities other than those shown in the figure can be used as stepping stones 

along the way. Figure 4 also reminds us of the importance of standardizing selection 
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strengths by generation time: if a selection gradient is calculated based on a popula-

tion’s intrinsic growth rate (Lande 1982, van Tienderen 2000), the result must still be 

standardized by the population’s generation time before using it for comparing selection 

strengths across populations in a manner that is independent of their generation times. 

Box 4 outlines the most important issues to consider in regression-based analyses of 

empirical data for determining mean-standardized selection gradients. 

Unfortunately, for historical reasons, the number of studies reporting the mean-

standardized selection gradient is still relatively small (Box 3). Based on this observa-

tion, we would like to repeat Hereford et al.’s (2004) appeal: authors, reviewers, and 

journal editors should insist on the publication of basic, yet fundamental values in stud-

ies on selection strengths, including phenotypic means and variances. If phenotypic 

means and variances are available, any measure of selection strength, reported as a se-

lection differential S  or a selection gradient , can easily be converted into the mean-

standardized selection gradient (Fig. 4, equation 6). It is only under this condition that 

reported selection strengths become comparable across traits, populations, and species, 

and hence are amenable to future meta-analyses. 

To conclude, we agree with Hereford et al.’s (2004) caveat that no standardized 

measure of selection strength will be satisfactory for all research purposes. The reason 

for this is conceptually profound, and is intimately related to the notion of a trait’s natu-

ral scale and measurement theory (Houle et al. 2011; Box 2). At any rate, jointly report-

ing unstandardized, SD-standardized, and mean-standardized selection gradients in all 

salient scientific publications will allow readers to conduct their own analyses and draw 

their own conclusions (Stinchcombe 2005), and thus is the recommended way forward. 
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Fig. 1.  Schematic illustration of how a selection differential S  is defined as the shift in 

a trait’s phenotypic mean before and after selection. The two columns show this for 

truncation selection (left) and natural selection (right). The two rows show how S  is 

altered by different degrees of phenotypic variability, here illustrated by two normal dis-

tributions, one of which has twice the standard deviation (doubled SD, P2 , bottom) of 

the other (baseline SD, P , top). (a,b) Under truncation selection, S  is the difference 

between the phenotypic mean P  of all individuals in a population (thin line) and the 

phenotypic mean of those individuals that are selected as parents for reproduction (thick 

line). When the same proportion of individuals is selected in the baseline population (a) 

and in the population with double SD (b), the selection differential b a2S S  is twice as 

large as aS . This makes it natural to consider the SD-standardized selection gradient 

P/S , which conveniently measures the proportion of individuals of the whole 

population that are selected as parents for reproduction. This gives ,b  = b P/ (2 )S  = 

a P(2 ) / (2 )S  = a P/S  = ,a , reflecting that truncation selection was applied in the 

same way (described by same truncation proportion) in both populations. (c,d) Under 

natural selection, S  is the difference between the mean of a population’s phenotypic 

distribution (thin continuous line) and of this distribution weighted with the differential 

fitness of phenotypes (thin dashed line, resulting in the product shown by the thick line). 

When the same fitness function acts on the baseline population (c) and the population 

with double SD (d), the selection differential d c4S S  is (approximately) four times as 

large as cS . This makes it natural to consider the mean-standardized selection gradient 

2
P P/S , which conveniently measures the elasticity of fitness. This gives ,d  = 



31 

2
P d P/ (2 )S  = 2

P c P(4 ) / (4 )S  = 2
P c P/S  = ,c , reflecting that natural selection ap-

plied in the same way (described by the same fitness function) in both populations. 

Fig. 2. Dependence of three alternative standardized measures of selection strength on a 

population’s phenotypic variability. The panels (a), (b), and (c) show absolute values of 

P/S , P P/S , and 2
P P P/S , respectively. Three different lev-

els of river temperature are considered (low, middle, and high), resulting in selection of 

increasing strength (see Box 1 for model details). Parameters: ma  = 2 yr, optd = 50 d, g  

= 0.5, h  = 25 cm/yr, maxh  = 55 cm/yr, T  = 1°C, uT  = 1°C, uL  = 1 cm, 1b  = 0.1°C/d, 2b  

= 0.9, 3b  = 0.1, 4b  = 0.05, 5b  = 3, 6b  = 0.00032, and 7b  = 0.8. 

Fig. 3. Elasticity path diagram and its comparative application. (a) Elasticity path dia-

gram for the pairwise relationships between two phenotypic traits, four fitness compo-

nents, and the population growth rate in subpopulations A and B of the illustrative ex-

ample described in Box 1. Arrows indicate how a proportional change of one variable 

results in the proportional change of another variable. Elasticities are shown in boldface 

and italics for subpopulations A and B, respectively. For example, a 100% increase in 

the annual juvenile growth increment h  results in a 287% increase in fecundity (2.87). 

The fitness elasticity of a phenotypic trait is then calculated by following all left-to-right 

paths from the trait to the population growth rate, multiplying elasticities along the ar-

rows and summing over all paths: in subpopulation A, h  has a fitness elasticity of (–

0.71)  0.25 + (–0.71)  0.75 + 2.87  0.25 = 0.01, whereas the date d  of river entry 

has a fitness elasticity of 0.91  0.25 = 0.23. For further details on elasticity path dia-

grams, see van Tienderen (2000). (b) Comparison of mean-standardized selection gradi-
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ents between subpopulations A and B. Parameters: ma  = 4 yr (subpopulation A) or 2 yr 

(B), maxh  = 60 cm/yr (A) or 55 cm/yr (B), all other parameters as in Fig. 2. 

Fig. 4. Successively stripping away four population- and trait-specific properties (gen-

eration time T , heritability 2h , phenotypic variance 2
P , and phenotypic mean P ) 

translates evolutionary rates r  into mean-standardized selection gradients . This 

standardization process can be likened to the peeling of an onion, with the directly ob-

servable quantity as the outer skin and the dimensionless quantity most useful for com-

parisons across traits, populations, and species, at the core. 
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To illustrate the usefulness of the mean-standardized selection gradient, here we show 

how to model selection differentials in a hypothetical semelparous anadromous fish 

species, such as a salmonid. We hope this example will help theoretical ecologists wish-

ing to apply the mean-standardized selection gradient to their own models. 

 

Model description 

We consider a simple fish life history with individuals that are born in a river, migrate 

to the ocean at age 1, grow in the ocean, return to the river at age ma , reproduce, and die 

after reproduction. We examine the date of river entry ( d ) and the annual juvenile 

growth increment ( h ) as evolving traits. 

The success of spawning migration in salmonids has been reported to depend on 

river temperature, with the optimal temperature differing between populations (e.g. Far-

rell et al. 2008). Any increase in river temperature – for example, due to global warming 

– is thus expected to cause selection pressures on the date of river entry. Here we simply 

assume that river temperature decreases linearly from late summer to autumn. For fish 

entering the river at day d , the deviation from the optimal temperature is given by 

dev 1 opt( ) ( )T d b d d T , where optd  is the optimal date of river entry without climate 

change, 1 0b  is the rate of seasonal temperature change, and T  measures the increase 

of river temperature due to climate change. The survival probability during the spawn-

ing migration from the river mouth to the spawning site is 

2
mig 2 3 dev uexp( ( ( ) / ) )s b b T d T , where 2b  is the survival probability at the optimal tem-



34 

perature, 3 0b  determines the temperature sensitivity of migration survival, and uT  is a 

unit-standardizing constant. 

The growth trajectory of individuals is described using the biphasic somatic 

growth model by Lester et al. (2004): the length at age ma  is represented as 

m
1

33
( )

3 3m ma a

a h
L L h

g g
, where h  is the annual juvenile growth increment and g  

is the annual reproductive investment. The fecundity 
maf  of fish at age ma  that have 

successfully arrived at spawning sites is allometrically given by 5

m m4 u( / )b
a af b g L L , 

where 4b  and 5b  are the allometric parameters, and uL  is a unit-standardizing constant. 

The basic annual natural mortality is given by max/m h h , where maxh  is the maximum 

growth capacity beyond which survival is zero (Matsumura et al. 2011). The annual 

survival probability of hatched larvae (newborn survival, 0s ) and fish in the ocean (ju-

venile survival, js ) is then represented as 0 6 (1 )s b m  and j 7 (1 )s b m , respectively, 

where 6b  and 7b  are parameters. 

We assume a polymorphic resident population with trait values x  being normal-

ly distributed around the population mean P  with phenotypic variance 2
P . The dy-

namics of fish with trait values x  in this population is described by a population projec-

tion matrix 

 

m0 mig

j

j

j

0 0 0 ( ) ( ) ( )

0( ) 0 0

( )( ) 0 0 0

0 0 ( ) 0

as x f x s x

s x

s xx

s x

A . 

Changes in the age structure and density of fish with trait values x  are thus described 

by ( ) ( ) ( )x x xN A N , where the vectors 
m

T
1 2( ) ( ( ), ( ),..., ( ))ax N x N x N xN  and 
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m

T
1 2( ) ( ( ), ( ),..., ( ))ax N x N x N xN  contain the densities of fish across all age classes in 

years t  and 1t , respectively. 

 

Calculating selection differentials 

The dominant eigenvalue ( )x  of the population projection matrix of trait values x  is 

known to represents the annual population growth rate, which is commonly used to 

measure trait-specific lifetime fitness (e.g., Metz et al. 1992, Arlinghaus et al. 2009). 

The selection differential per year is then calculated as 

P( ) ( ) / ( ) ( )S x x p x dx x p x dx  (Fig. 1), where ( )x  and ( )p x  are the fitness 

and probability density of trait values x , respectively. The first term in this difference 

corresponds to the average phenotypic value of the population after selection, i.e., the 

average phenotypic value of parents of the next generation (Arlinghaus et al. 2009). 

In the present example, we consider the effects of an increase T  in river temper-

ature (e.g., due to global warming), so that the fitness of fish that enter the river later 

than at their traditional optimal date is expected to be raised. In other words, the propor-

tion of late-comers will be larger in the spawning population than in the original popula-

tion, making the first term in the above difference larger than the second, which results 

in a positive selection differential. 

 

Influence of trait variance on the three standardized measures of selection strength 

Using this example, we first examine how three standardized measures of selection 

strength change for different levels of the population’s phenotypic variability. We focus 

on the date d  of river entry and calculate the selection differential S  for d  caused by 

the considered increase in river temperature. We vary the phenotypic standard deviation 
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P  and examine the resultant changes of the three standardized measures under fixed 

strengths of selection (Fig. 2). It is easily seen that only the mean-standardized selection 

gradient is approximately independent of phenotypic variability. 

 

Interfacing evolution and ecology through elasticity path diagrams 

Next, we illustrate the potential of the elasticity path diagram (van Tienderen 2000; Fig. 

3) to interface evolution and ecology and to facilitate comparison across traits and sub-

populations. We consider two hypothetical endangered fish subpopulations A and B that 

live in different habitats and differ in their life-history patterns. Considerable heritable 

variation in the age of maturation has been reported in salmonids (e.g., Friars and Smith 

2010), so we assume that the ages of returning to the river and reproducing in subpopu-

lation A and B are ma  = 4 yr and ma  = 2 yr, respectively. We also assume that the basic 

annual natural mortality increases less rapidly with the growth increment in subpopula-

tion A ( maxh = 60 cm) than in subpopulation B ( maxh = 55 cm). 

In subpopulation A, the fitness elasticity of juvenile survival (0.75) is larger than 

those of any of the other vital rates (0.25). This has an implication for population man-

agers: improving juvenile survival would be a good strategy to increase the population 

growth rate of subpopulation A. At the same time, it is predicted that natural selection 

would favor traits improving juvenile survival. Although smaller growth increments 

lead to higher juvenile survival in our model, it also reduces fecundity. Consequently, 

selection on growth in subpopulation A is weaker than that on the date of river entry. By 

contrast, in subpopulation B, the fitness elasticity of juvenile survival is not larger than 

those of the other vital rates, and the selection acting on growth is stronger than that on 

the date of river entry. Thus, by providing ecological and evolutionary measures as 

mean-standardized values and considering them together, the elasticity path diagram 
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facilitates comparison across traits, subpopulations, and species in natural populations. 

Also the extrapolation of estimates from a well-known subpopulation or species to oth-

ers is enabled by using such mean-standardized values, although this must always be 

done with care, because all empirically estimated elasticities are dependent on the con-

sidered ecological environments. 
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In many contexts, a trait’s natural scale would be given by its phenotypic standard devi-

ation. In the context of natural selection, however, this standard deviation is disqualified 

from serving in this role, since a trait’s phenotypic variance is of such central dynamical 

importance for scaling a trait’s selection differential and response (Fig. 2). Since the 

phenotypic variance is needed for removing this confounding effect of phenotypic vari-

ability from selection differentials, it is unsuitable for rendering selection gradients di-

mensionless. In most circumstances, the most natural scale that remains is given by a 

trait’s phenotypic mean. This is ultimately because the majority of traits have a natural 

minimum, typically designated by a trait value of 0. The difference between this mini-

mum and a trait’s current phenotypic mean establishes a natural scale suitable for stand-

ardization. 

Against this background, we can now systematically appreciate two exceptions 

mentioned in the main text. First, when a quantitative trait possesses both a natural min-

imum and a natural maximum, the two natural scales given by the difference between 

the trait’s current phenotypic mean and its minimum or maximum, respectively, can al-

ternatively be employed for standardization. For such traits, however, it will often be 

more natural simply to use the difference between the trait’s minimum and maximum as 

the natural scale for standardization, which overcomes the ambiguity that would arise 

otherwise. For example, Stinchcombe (2005) considered two phenotypic traits of a plant 

species, resistance and susceptibility to herbivore damage (which both vary between 0 

and 1 and are direct complements to each other, by always adding up to 1), and pointed 

out the problem of obtaining different values for the mean-standardized selection gradi-

ent of these traits. Here we argue that this problem can be avoided altogether by using 

the difference between the traits’ minimum (0) and maximum (1) as the natural scale for 
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standardization (in this example the difference is 1). Second, when a quantitative trait 

has no natural minimum or maximum, or when the values of these quantities are highly 

uncertain, the implied natural scales do not exist or are empirically unreliable, and as 

such should not be used for standardization. 

More fundamentally, whether a variable can be standardized or not is related to 

measurement theory: Houle et al. (2011) highlight that permissible transformations dif-

fer depending on a variable’s scale types such as nominal, ordinal, interval, or ratio. 

Another important issue pointed out by Houle et al. (2011) is the importance of con-

cepts and hypotheses for measurement: different contexts assign different meanings 

(and sometimes different scale types) to the same measurement. 
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As described in the main text, the mean-standardized selection gradient has some fun-

damental advantages as a measure of the strength of natural selection, relative to the 

SD-standardized selection gradient: in particular, it does not confound selection strength 

with phenotypic variability. It is therefore interesting to evaluate the uptake and current 

prevalence of this measure in the relevant scientific literature. To this end, we carried 

out a literature survey based on the ISI Web of Science by Thomson Reuters, as follows. 

First, we chose five primary journal articles that discussed the definition of mean-

standardized selection gradients and their calculation (Morgan and Schoen 1997, van 

Tienderen 2000, Hansen et al. 2003, Hereford et al. 2004, and Stinchcombe 2005). Se-

cond, we assembled a list of secondary journal articles included in the ISI Web of Sci-

ence by the end of March 2011 that cited the primary articles. Thereby, we identified 

179 papers (excluding the five primary articles), which in a third step we finally as-

sessed for their usage of different methods for standardizing selection strength. 

Surprisingly, among these 179 studies there were only eleven that reported em-

pirical estimates of the mean-standardized selection gradient (Table B1). Three out of 

these papers calculated the mean-standardized selection gradient in the context of elas-

ticity path diagrams (van Tienderen 2000). This suggests that the elasticity analysis of 

Leslie-matrix models has played an important role as a gateway for a wider range of 

biologists to become familiar with the mean-standardized selection gradient. We also 

found that, except for Arlinghaus et al. (2009), not a single model-based analysis pub-

lished before the end of March 2011 for estimating selection strengths across a range of 

scenarios has used the mean-standardized selection gradient. Most importantly, the re-

sults of our survey show that the standardization of selection gradients by a population’s 

phenotypic mean is as yet far away from becoming common practice, despite this meth-
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od’s superior suitability for comparing selection strengths in natural populations. How-

ever, our results also indicate that there is a small core group of authors increasingly us-

ing the mean-standardized selection gradient during the last few years (Table B1) 

Moreover, some researchers (e.g., Mojica and Kelly 2010) have started to report both 

the SD-standardized and the mean-standardized selection gradients, as recommended by 

Hereford et al. (2004) to enable various types of comparisons in future meta-analyses. 

Why is the use of the mean-standardized selection gradient still infrequent in the 

contemporary literature? A reason might be gleaned from a particular study by Seamons 

et al. (2007) in which the mean-standardized selection gradient was calculated, but not 

reported, because the authors thought the values they had obtained were unrealistic. In 

their own words: “[Mean-standardized selection gradients] calculated for [spawner 

body] length were unrealistic (much larger than unity), so the results of this analysis are 

not shown”. This finding might be related to the third point mentioned by Kingsolver 

and Pfennig’s (2007), that large mean-standardized selection gradients are observed in 

association with small phenotypic coefficients of variation. While a statistical explana-

tion has been suggested for explaining this pattern (Kingsolver and Pfennig 2007), fur-

ther investigation is certainly required. It is also possible, however, that scientists are 

liable to misinterpret the comparison between mean-standardized selection gradients for 

fitness (which equals 1 by definition) and other traits, as nothing at all is a priori wrong 

if the latter exceed 1. 

Through our literature survey, we also encountered an almost “Babylonian con-

fusion” of terminology. The fact that the two common measures of standardized selec-

tion strength have been used by different authors in different contexts has increased the 

number of terms in circulation to a level that we consider problematic (Table B2). The 

term intensity of selection (or simply selection intensity) has long been established in 
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quantitative genetics for referring to the SD-standardized selection gradient, in particu-

lar in the context of truncation selection. Since this measure was also simply called 

standardized selection differential in a popular textbook (Falconer and Mackey 1996), 

several authors have used this rather unspecific term in their articles. In studies of selec-

tion on multivariate traits, following Lande and Arnold (1983), the term standardized 

selection gradient has been widely employed. The same measure, however, is some-

times also simply called selection gradient (e.g., Kingsolver et al. 2001), because stand-

ardization by the phenotypic standard deviation has been, and still is, so common. Given 

such defaults, the terminological situation evidently was bound to become messy when 

an alternative approach to standardization, by using units of the phenotypic mean in-

stead of the phenotypic standard deviation, was introduced to the field. 

In the future, the two standardized measures of selection strength need to be 

clearly distinguished by appropriate terminology. Recently, the pairing variance-

standardized selection gradient and mean-standardized selection gradient seems to be 

becoming popular in review papers and meta-analyses (e.g., Hereford et al. 2004, 

Stinchcombe 2005, Kingsolver and Pfennig 2007). Strictly speaking, however, the se-

lection gradient in the former case is standardized by the phenotypic standard deviation, 

and not by the phenotypic variance. Terms adequately reflecting this could be selection 

gradient in units of the phenotypic standard deviation and selection gradient in units of 

the phenotypic mean. The corresponding abbreviated terms could be SD-standardized 

selection gradient and mean-standardized selection gradient, which is the convention 

we have adopted throughout the present article. 

Finally, we need to emphasize the importance of better distinguishing the (un-

standardized) selection differential and selection gradient. In the common regression-

based approach to estimating selection from empirical data, the selection differential is 
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the covariance between relative fitness and the trait of interest (its unit is [trait]), while 

the selection gradient is a regression coefficient of relative fitness on the trait, i.e., the 

covariance/variance ratio of that trait (its unit is [trait-1]) (Lande and Arnold 1983). Yet, 

we noticed that the term selection differential was used for regression coefficients when 

univariate regressions of relative fitness on one trait have been applied, while the term 

selection gradient was used in multivariate regressions jointly including several adaptive 

traits (e.g., Kingsolver et al. 2001, Carlson et al. 2007). This confusion might have aris-

en because both the selection differential and a regression coefficient in a univariate re-

gression reflect changes resulting from a direct link between fitness and the trait (direct 

selection), as well as from correlations with other traits affecting fitness (indirect selec-

tion). However, a regression coefficient is not identical to the selection differential de-

fined in traditional quantitative genetics. To avoid further confusion, we propose always 

to stick to the term selection gradient when referring to coefficients of regressions of 

relative fitness on phenotypic traits. 
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In studies of selection in natural populations, the mean-standardized selection gradient 

will most commonly be obtained from the unstandardized selection gradient  estimat-

ed from a regression-based model of relative fitness in dependence on a phenotypic trait. 

Here, we briefly describe the procedure for estimating the mean-standardized selection 

gradient from phenotypic data from natural populations. We focus on the standardiza-

tion processes; the general principles of regression-based selection estimation can be 

found elsewhere (e.g., Brodie et al. 1995). We hope this outline will help empirical 

ecologists wishing to apply the mean-standardized selection gradient to their own data. 

Generally, investigators will have to account for four related steps when attempt-

ing to arrive at mean-standardized selection gradients through regression models: 

1. Collection of empirical data. Estimation of the selection gradient from empirical 

observations using regression models requires individual-level data on phenotypic 

traits and corresponding fitness. Although lifetime measures of fitness are ideal, in 

most empirical studies only parts of an individual’s fitness, i.e., fitness components, 

can be empirically assessed (e.g., in a marine fish with external broadcast reproduc-

tion, it would be impossible to estimate reproductive output by screening all poten-

tial offspring using genetic methods). Typical measures of fitness components in-

clude fertility and/or fecundity (e.g., number or biomass of offspring), survival at a 

given stage, and mating success (Brodie et al. 1995). 

2. Regression. The type of regression analysis depends on the structure of the chosen 

fitness measure. In most cases, univariate or multivariate linear regression models 

will be used when the fitness measure is quantitative. By contrast, logistic regres-

sion models will be suitable for binary fitness measures (such as survival; Carlson 
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et al. 2007). Note that in the latter case the parameter estimate for the logistic re-

gression coefficient will need to be transformed to its linear equivalent before 

standardization of selection strength (Janzen and Stern 1998). 

3. Removal of non-genetic environmental effects. If phenotypic data are available in 

time series, any salient environmental variables (e.g., biomasses or densities of the 

focal species and its potential prey, predators, or competitors; or relevant abiotic 

variables) can be included in the regression model to control for their effects on rel-

ative fitness experienced by an individual in dependence on its the phenotypic trait 

and varying environmental conditions. 

4. Standardization. The unstandardized selection gradient is obtained as a coefficient 

of the regression of relative fitness on the phenotypic trait (or as a partial regression 

coefficient in the case of multivariate analyses). To obtain the mean-standardized 

selection gradient, the unstandardized selection gradient needs to be multiplied by 

the mean of the phenotypic trait in the population (equation 6). In some applications, 

the trait values are standardized to a mean of 0 and a standard deviation of 1 (e.g., 

through z-transformation) prior to the regression analysis (e.g., Carlson et al. 2007). 

In this case, the regression coefficient obtained represents the SD-standardized se-

lection gradient. Therefore, it must be multiplied by the original mean and divided 

by the original SD of the phenotypic trait to obtain the mean-standardized selection 

gradient (equations 5 and 6). Fitness measures are often generation-based, in which 

case the selection gradient obtained from a regression analyses need not be stand-

ardized by generation time. Exceptions occur when fitness is measured in a time 

unit other than generation length (for example, annual population growth rates; 

Arlinghaus et al. 2009, in which case multiplication with generation length is re-

quired. 
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Table B1. A sample of studies reporting estimates of selection strengths using the 

mean-standardized selection gradient. 

Reference Type of study Subjects 

Morgan & Schoen 1997 Empirical Plants (floral characters in 

Asclepias syriaca) 

van Tienderen 2000 Illustrative Hypothetical plants 

Coulson et al. 2003 Empirical Animals (neonatal traits in 

Cervus elaphus) 

Hereford et al. 2004 Review of empirical stud-

ies 

Estimates from 38 studies 

Stinchcombe 2005 Empirical Plants (a resistance trait and 

a size trait in Ipomoea hede-

racea) 

Kelley et al. 2005 Empirical  Plants (defense traits in Ar-

abidopsis thaliana) 

Dibattista et al. 2007 Empirical Animals (life-history traits 

including size and growth in 

Negaprion brevirostris) 

Ehrlen & Munzbergova 

2009 

Empirical Plants (floral characters in 

Lathyrus vernus) 

Arlinghaus et al. 2009 Modeling Animals (life-history traits 

in Esox lucius) 

Mojica & Kelly 2010 Empirical Plants (flower size in Mimu-

lus guttatus) 

Stinchcombe et al. 2010 Empirical Plants (growth rate in Impa-
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tiens capensis) 

Bolstad et al. 2010 Empirical Plants (floral traits in 

Dalechampia schottii) 

Simonsen & Stinchcombe 

2010 

Empirical Plants (flowering time and 

size in Ipomoea hederacea) 

Horvitz et al. 2010 Reanalysis of empirical 

data 

Plants (Calathea ovanden-

sis) and animals (Cervus el-

aphus) 

Blomquist et al. 2011 Empirical Animals (dominance rank in 

Macaca mulatta) 

Reinhold 2011 Reanalysis of empirical 

data 

Animals (acoustic signaling 

traits in insects and amphib-

ians) 
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Table B2. Alternative terms used for the two major standardized measures of selection 

strength across a sample of scientific publications. 

Measure Term Reference 

P

P

/S
 

Selection intensity (intensity of selection) Falconer 1960 and many 

others 

 Standardized selection gradient Lande & Arnold 1983 and 

many others 

 Variance-standardized selection gradient Hereford et al. 2004 

 Standard-deviation-standardized selection 

differential 

Arlinghaus et al. 2009 

 Selection gradient in units of the pheno-

typic standard deviation 

This study (recommended 

long form) 

 SD-standardized selection gradient This study (recommended 

short form) 

2
P P

P

/S

 

Proportional sensitivity* Caswell et al. 1978 

 Elasticity* de Kroon et al. 1986 

 Elasticity of selection Morgan & Schoen 1997 

 Mean-standardized selection gradient Hansen et al. 2003 

 Fitness elasticity Stinchcombe 2005 

 Mean-standardized selection coefficient Dibattista et al. 2007 

 Mean-and-variance-standardized selec-

tion differential 

Arlinghaus et al. 2009 
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 Selection gradient in units of the pheno-

typic mean 

This study (recommended 

long form) 

 Mean-standardized selection gradient This study (recommended 

short form) 

* Defined for elements of a population’s projection matrix in the context of matrix 

models of population dynamics 
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