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SUMMARY

Many papers devoted to problems of group assessment of
Pareto-optimal solutions or of compromise reaching in cooper-
ative games were based on notions of utility functions or
preference ordering identification. However, there is strong
evidence that individual decision makers are apt to think in
terms of goals or desirable levels of objectives rather than
in terms of utility and preferences. Since reference objec-
tive levels can be used instead of weighting coefficients and
utility functions to derive basic conditions for Pareto~opti-
mality, they can also be applied to construct compromise-aiding
procedures for cooperative games or for group assessment of
Pareto-optimal solutions.

Several variants of such compromise-aiding procedures are

investigated in the paper, together with deadlock situations
and deadlock-resolving procedures.

-iii-






THE USE OF REFERENCE OBJECTIVE LEVELS
IN GROUP ASSESSMENT OF SOLUTIONS
OF MULTIOBJECTIVE OPTIMIZATION

A.P. Wierzbicki

1. INTRODUCTION

Basic theory of multiobjective optimization has been
developed in a strong relation to economic theory. Starting
from the work of Pareto [17] through market theory and general
equilibrium theory, multiobjective optimization has been al-
ways related to weighting coefficients, preference orderings
and utility functions -- see, for example, Debreu 1959, [3].

Most of the research on multiobjective optimization and decision

theory is, therefore, related to these basic notions.

While a utility function describes well an average behavior
of an agent in an economic process, individuals do not think in
terms of their utility preferences when they make decisions.

In fact, experimental attempts to identify utility functions

for individuals often show discrepancies between theory and
experimental results -- see, for example, the paper of Tversky

in Bell, Keeney and Raiffa 1977, [1]. Moreover, procedures and
questions related to utility function identification are lengthy
and time-consuming. Individual decision makers are seldom suf-
ficiently interested in their own utility functions to take part
in such experiments; they are rather used to think in terms of
goals and desirable levels of various objectives when making

everyday decisions.



This observation motivated several researchers on multi-
objective optimization and decision making. Dyer 1972 [4],
Kornbluth 1973 [11] used attainable levels of objective func-
tions for an approach to multiobjective optimization called
goal programming. Sakluvadze 1971 [19], 1974 [20], Yu and
Leitmann 1974 [26] used sufficiently far unattainable levels
of objective functions for utopia point programming. Wierzbicki
1975 -1979 [21,22,24,25] has shown that any reference point in
objective space -- attainable or not, utopia-point type or not —-
can be used to consistently scalarize a multiobjective problem
via socalled penalty scalarizing functions, which combine and
refine the approaches of goal programming and utopia point pro-
gramming. Moreover, reference objective levels and penalty
scalarization can be used instead of weighting coefficients and
utility functions to derive a full set of basic conditions of
Pareto-optimality. They can also be applied to construct fast
interactive procedures for multiobjective decision making, for
dynamic multiobjective optimization, etc. All these results
have been obtained earlier [21,22,24,25], and only a short
summary of them is presented here. This paper is devoted to
a study of group decision making procedures where individual
decision makers have partly conflicting goals and the bargain-

ing between them proceeds in terms of desirable objective levels.

2. REVIEW OF PROPERTIES OF PENALTY SCALARIZING FUNCTIONS

Consider a simple case of a multiobjective optimization
problem, where several objective functions (f1(x),...,fn(x)) =f (x)
are all to be minimized in the Pareto sense. Let X €Xq be called
admissible decisions and g = f(x)eEQO = f(x;) be called objec-
tives. The set QOCRn is the set of attainable objectives, and
its points q€Q, such that (&-—ﬁi)rﬁQO = ¢ are Pareto-optimal
objectives, where ii = {qeRn:c_r-r‘O,q1 _>_0,q230,...,qn_>_0}.

It is known -- see, for example, [3] --that Pareto-optimal ob-
jectives correspond to minimal points over Q0 of any strictly

order-preserving function s :Q0-+R1, that is, of-a function s

such that q2 - q1€5§2 implies s(q2) > s(q1). Order-preserving



properties are basic requirements for utility functions; the

simplest strictly order-preserving function is the linear func-
. _n On n

tion s(q) = i£1>‘iqi’ where (>\1,...,>\n) = A€ER_= {X€eR :>\1>0,---,)\n>0}

is a vector of weighting coefficients. However, the use of

weighting coefficients in multiobjective optimization has known
drawbacks.

If any reference objective point EEERn is given, then a

typical penalty scalarizing function has the form:
s(q-@ = -lg-ql® + pl(qg- 17 (1)

where (q-—§)+ denotes the vector with components max(O,qi-ai),
and p is a scalar penalty coefficient. Many other forms of
similar penalty scalarizing functions, with analogous properties,

have been specified in [22,24].

The penalty scalarizing function (1) has the following

basic properties:

A. For any geRrR" and any p > 1, the function (1) is strictly
order-preserving in q, if an Euclidean norm or a sum of absolute
values norm is used, and order-preserving in g, if the maximum
norm is used. Thus, for the Pareto-optimality of some ﬁezxo
and g = £(X) it is sufficient that & = arg min s(f(x) - q),

d = arg min s(g-q). X€X

q<Q
B. If § = arg(giy s(g-q) and g ¥ g, then the (normalized)
weighting coefficients X corresponding to the point § can be

a posteriori determined by

+0(@-q),
+ p(@‘a)_l__"

q
- (2)
g

C. 1If g is an e-Pareto-optimal objective (that is, all

normalized weighting coefficients Ai correspond to § are greater
than € and P > max (1,6—2), then

min s(q-&) =0

a€Q,, (3)
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In other words, the following property holds for any EEERn

and p > max(1,€-2):

fto]]

n _ n _= - _ n 4
- R, CS, = {geR :s(g-qg) <0} Cqg R . (4)
where R2+ = {ger" :dist(q,Ri)_ieuq"}. The property (4) of the
level set Sy of s(g-q) is called an order-approximation property;
its importance is explained in Figure 1 in terms of supporting

the set Q0 at g as necessary condition of Pareto-optimality.

a) b)
A
q2

4
:

' >

q!

Figure 1. Supporting the set Q. as necessary condition of Pareto-

optimality: a)general case, by the level set S5 of the
penalty scalarizing function; b)convex case, but the level
set Sg of the linear combination with weighting
coefficients A.

Another useful property of penalty scalarizing functions of
the type (1) is the following:

D. If E}ZQO + Rf_and the Pareto-set @0 is compact, then

g = arg min s(g-q) is also the closest point in 0, to g,
RSO
g = arg min lq -gl.

a€d,

The following condition of the existence of Pareto-optimal

objectives is also related to the penalty scalarizing function (1):

E. If there exists a EXEQO such that the set Qorﬁ(a-Ri) is
nonempty and compact, then there exist Pareto-optimal objectives

4 in this set.



It should be stressed that the Pareto-optimal point g,
corresponding to a given reference objective point g obtained
via minimization of s(g-gq), depends not only on g but also on
the choice of the norm, the scales or ranges for separate ob-
jectives, and on the penalty coefficient op. However, the scaling
of separate objectives, the choice of the norm and penalty co-
efficient play a rather technical role: the Pareto-optimal point
q depends primarily on g. By changing g, the corresponding g
can be moved to any point of the Pareto-set 60, whatever choice

of scaling, norm, and penalty coefficient has been made.

Therefore, it is the reference objective point g that takes
and, in a sense, generalizes the role of weighting coefficients
A in fundamental theory of multiobjective optimization. The
penalty scalarizing function; in a sense, takes and generalizes
the role of a utility function. It satisfies less axiomatic
requirements than a utility function, but has nevertheless some
stronger properties: besides being order-preserving, it is also
order-approximating, which provides for the general and easily
applicable form of the necessary condition of Pareto-optimality
(3). However, the scalarizing function (1) is not a utility
function, and is not used to find "the optimal"” q out of the
Pareto-set. Its only purpose is to generate Pareto-optimal &
which is in some sense close to the given g if E@ZQO, or in some
sense satisfying the reference levels expressed by q if qEQ,y/
see e.g. [21]. Therefore, the penalty scalarizing function ex-
presses rather a pragmatical behavior of a decision maker than
his utility function. If the decision maker is not satisfied
with the obtained results a = f(ﬁ), he can change E and, by
doing it, very fast learns to obtain any desirable point aeséo,
see [25].

3. COMPROMISE-AIDING PROCEDURES; THE CASE OF SINGLE OBJECTIVES
FOR INDIVIDUAL DECISION MAKERS

Consider a partly conflicting situation in a pure strategy
game, where several agents or decision makers have separate ob-

jectives Qqre--09y which they would like to minimize. Here we
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avoid consciously the description "players" since the stress is
rather put on compromise reaching than on playing a game. The

decision makers can make independent decisions x1exo1,”u,xnex0n,

but the decisions influence not only their own objectives:

q; = f1(x1,...,xn),...,q = f (x1,...,x ) . (5)
Assume that the decision makers form a committee to agree upon
a joint decision x = (x1,...,xn) which would resuilt in an outcome
g = £(x) in a sense satisfactory to all of them. How can one
devise pragmatical procedures to help them attaining a compromise

in their decisions?

One way of constructing such compromise-aiding procedures
is to refer to basic economic theory and to aggregate the utility
functions of the decision makers. Several difficult methodolo-
gical problems are encountered when proceeding along this way.
In this paper, however, it is assumed that the decision makers
express their goals in terms of objective levels Ei, and the
bargaining takes place in the objective space. It is also as-
sumed that the committee is aided by an optimization procedure,
which defines the decision X needed to obtain a Pareto-optimal

outcome q, in a sense close to the desired objectives.

The simplest form of the compromise-—-aiding procedure was
proposed by Kallio and Lewandowski in 1979 [12]. It was assumed
that each decision maker specifies only his own desirable level
Ei and is not necessarily fully informed about other objectives.
The iterative procedure is as follows (iteration number j):

Step 1. Given g’ = (E{,...,ag), a penalty scalarizing
function of the type (1) is minimized to obtain a Pareto-optimal
@j. The decision makers are informed about this feasible outcome

and the decisions needed to obtain it.

Step 2. Each decision maker is required to move his ref-
erence objective level towards ai, at least f-times the entire
distance:

=j+1 _ 3 Jgd - 353 3]
qi = qi + Bi(qi l) H g8 i Bl f_ 1 (6)



where 8 € (0;1] is a prespecified number. If they all agree to
do so, Step 1 is repeated with j« j+1. If at least one of them
does not agree, the situation is called a deadlock and calls

for special deadlock-breaking procedures.

The convergence of this procedure, if no Qeadlocks occur,
is self-evident: the distance between aj and aj must converge
to zero, and practically the decision makers would soon agree
on aj+1 = aj. This is shown in Figure 2 for the case of two

decision makers.

a2
— 4
IR e e Sngte
1 +—————— ——=
3
42 |
—4
W
Figure 2. 1Illustration of the simplest compromise-aiding
procedure.

Another question is whether this procedure is sufficiently
flexible, that is, whether arbitrary points of the Pareto-set 60
are attainable by this procedure, provided the decision makers
are willing to cooperate in achieving this point. Since the
starting objective levels ao = (E?,...,Eg) are arbitrary, there
is no doubt about the possibility of reaching an arbitrary Pareto-

optimal point. But once the starting point aO is specified, the



final Pareto-optimal points are limited. 1In the case of n = 2
and convex Qg+ it is possible to show by simple geometrical con-
sideration that a point &ézéo can be obtained as the limit of

the compromise-éiding procedure, if

~ ~ —0 " ~ -0

! q A 97 - 4 7
= > A2 =5 B and = > ’,\—1——:117 B 7)
Moo 9 T 9 b2 92 T 9

~

where AZ and Az are the weighting coefficients corresponding to

>

g. Therefore, as long as both &1 - &? > 0, ﬁz - &g > 0, .the

choice of q?, qg and B limits possible trade-off ratios =+ and

X R 2
T? at q.

Since the main goal of constructing compromise-aiding pro-
cedures is to help decision makers and not to replace them in
actual decision making, it is useful to construct procedures
based on the assumption that more information is possessed by
and presented to the decision makers. Suppose that each decision
maker knows the entire problem sufficiently well to judge upon
reference objective levels for other decision makers. Thus, he
can specify an entire vector Ek’j = (Ef’j,...,ag’j) of reference
objective levels at jth iteration of the procedure, including

his own objective level Ei’] and the other objective levels

51']' i# k. Since we do not assume anything but the equity of
decision makers at this point, the corresponding iterative pro-
cedure can be constructed as follows:

Step 1. Given n reference objective vectors Ek’j, the cor-

responding Pareto-optimal points Qk’j are obtained by the mini-
mization of a penalty scalarizigg function. An average reference
objective vector Ej = % kg1 Ek'] and the corresponding Pareto-
optimal point &j is also determined. All information about the
outcomes and the decisions needed to obtain them is presented to

the decision makers.

Step 2. Each decision maker is asked to move his reference

objective vector towards &3, at least B-times the entire distance:

_kl'+‘ =k, ] r"" —I. - kl‘
LR AL B L s B e T I (8)



where B€ (0;1] is prespecified. Again, the decision makers can
either all agree to do so, and then the iterations proceed, or

disagree, which results in a deadlock.

If no deadlocks occur, it is natural to expect that the
procedure is convergent. However, the convergence is not self-
evident and has not been proved yet. A convergence proof for a
slightly modified variant of this procedure is given in the

Appendix.

4. COMPROMISE-AIDING PROCEDURES: THE CASE OF MULTIPLE OBJECTIVES
FOR INDIVIDUAL DECISION MAKERS AND OTHER EXTENSIONS

The procedures described in the previous paragraph can be
easily extended to the case when each decision maker has more
than one objective. The simplest procedure, however, can be used
only if the decision makers have strictly disjoint objectives.

If some of the objectives are common for several decision makers,
the space of all objectives must be considered as common for all,

and the second, more complicated procedure can be applied.

There are also cases of hierarchical decision making, when
one or more decision makers have certain prerogatives over others.
There are many possible models and procedures to represent such

a situation. One of them is the following.

Suppose a higher-level decision maker can influence by his
decisions, denoted y, not only the outcomes, 9 = fk(x1,...,xn,y),
but also the constraints of other decision makers, XOk = XOk(y).
The higher-level decision maker has also his own objective,

g = fO(x1,...,xn,y). Since the model-decisions are made by an
optimization procedure, he can be represented by his desirable
level of objective, EO’ only. However, to express his priorities,
two changes in the general procedures can be made. First, the
penalty scalarizing function can be modified to s(g-q) +
pO(EO-qO)+, where Pgp >> ¢ represents the priority in attaining
the higher-level objective (this function is also order-preserving

and order-approximating, see [24]).
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0
qreeer
supposed to attain a compromise on the EO together with other

Secondly, he can specify both Eg and EO = (q

._0. s
qn), he is
decision makers, but not on EO, his own objective, which is

depending on him alone.

Several other possibilities of compromise~aiding procedures
in the hierarchical and multiobjective cases are investigated
'by Kallio and Lewandowski, 1979 [12]. An interesting application
to the planning of possible developments of the Finnish forestry

industrial sector is also described there.

5. SPECIAL FORMS OF PENALTY SCALARIZING FUNCTIONS FOR COMPROMISE-
AIDING PROCEDURES

It is a known fact in mathematical psychology--see, for
example, Tversky in [1]--that decision-makers do not take similar
attitudes to the possibility of not attaining their goals as
compared to the possibility of exceeding them. In other words,
if § - g € RE and the postulated levels q of (minimized) objectives
§ are not attained, a reasonable procedure should get § as close
to ¢ as possible. On the other hand, if § -~ g € -Rﬁ, the postu-
lated levels are exceeded, the additional gains should be allo-

~cated between various procedures reasonably fair. The precise
meaning of this fairness is not of basic importance in the con-
text of reference objectives q being modified and thus influencing
3. However, a certain reasonability and fairness of the allocation
of gains does help the compromise~aiding procedures in preventing
unnecessary deadlocks. ‘

The penalty scalarizing function (1), although it has the
required property of & being close to g if § - g € Rﬂ, does not
result in a reasonable allocation of gains if § - g € -Rﬁ. This
is because (see Figure 3a) the function corresponds to the nornm
mazimization of gain under the soft constraint g - @ € =R,
expressed by the penalty term.

By adapting the ideas of Nash 1950 [16] and Ho 1970 (8],
the following penalty scalarizing function has been proposed by

Majchrzak 1978 [15]:

n
s(q-q) = =1 (q, - a;) +4g|| (@ -3, , (9)
i=1 1l .l + + En
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based on product of gains, if q - q € —Rn, and on the penalty
term with Euclidean norm in the opposite case. It is easy to
show that this function is order-preserving for any p > O,
since both product and norm preserve order for positive components.
This function is also strictly order-approximating, since Sy

= {g € RrR": s(q - Q) <0} =q - Ri. The function is also quasi-
convex, while the function (1) is quasi-convex only if the sum
of absolute values norm is used (and convex if, additionally,

p > 2). The product of gains, as proposed by Ho, expresses some

degree of fairness of gain allocation (see Figure 3b).

A differentiable version of the function (9)

n
s(g - Q) = = T @ - api*oell @-,l% 00
= E

nas, however, inflection points along the entire boundary of

- n
q - R+.

A more sophisticated concept of the fairness of gain allo-

cation can be expressed by the following function:

s(q - @ = el (@a-@, - o (11)

n
- min(p min (q - qy), \[_w (q; =@y -
1= .

1<i<n

The level sets of this function are given in Figure 3c. The
function, while being differentiable at the boundary of q - Ri

except at the point g = g, is not differentiable and switches

n
from -p min (Ei - q;), to - m (q. - q;), along the set
1<i<n i=1 *
pp = {g € - R 02 min (g, - g )2 = 1m (9, - q;),}, represen-
+° : i i’+ . i i’+7!
1<1i<n i=1
ting the boundary of a cone in q - Ri. It has a simple inter-

pretation in two-dimensional case: while the gain allocation

. . 2 .
is guided by the product of gains, at least p ~times the larger
gain is guaranteed for the smaller one. The function is quasi-

convex, order-preserving (since not only the Euclidean norm and
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the product but also the minimum norm preserve order for positive

components) and strictly order-approximating (since S0 q - Ri).

q=q
M
a2 a2
A Qo Q
Q() 6 0
-~ —_ ) = =
s(q — q) = const q=3 0 §(q - §) = const
=4
Q1~ a
-~ Y So -~ -
/ -~ /
//’ -~
Py /
/
- q
"1 1
Figure 3. Level sets and minimal points in Q, of various penalty
scalarizing functions (with the origin shifted to q):
a)tne function (1); b)the functions (9), (10); c) the

function (11); d) the function (12).
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Another useful piecewise linear penalty scalarizing function

is the following:

1 1

n
s(q - 9@ = max(p max (g. - g.), } (g. - g.)) . (12)
1iiin i=

It is not quite easy to see that this function is order-preserving.

n
However, observe that the set where Z (qi - ai) > p max (qi - qi),
i=1 1<i<n
if p > n, is a cone in q - Ri and does not have any points in
q + Ri. Outside of this cone the function is just p max (q. - ai),
1<i<n
which is clearly order-preserving. Inside of the cone--see Figure

3d, where the boundary of the cone is denoted by PO—-the function
corresponds to minus sums of absolute values, which is also
order~preserving for all negative components. The combination

of those functions preserves order, too, which is easy though
tedious to check. |

The function (12) is also strictly order-approximating,

since S0 = a - R?. It is also a convex function. Therefore,

the minimization of this function can be represented by a linear

programming problem--provided the set Q0 is represented by linear

inequalities:
minimize y _
q=(a---ra) €05 i yYEYqa-q (13)
where
Yo(g - q) =
0 (14)
1 = - v 3
= {y €ER':y > plas-q;) , all i=1,...,n; y > 121(qi_qi)}

The function (12) represents another concept of a fair allo-

cation of gains q - §: just the sum of the gains is important,
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provided that each individual gain is not smaller than 1/p times
the sum of the gains, see Figure 3c¢. The minimal part of the
gain guaranteed for each decision maker must be clearly smaller
the 1/n.

6. DEADLOCKS AND DEADLOCK-RESOLVING PROCEDURES

Deadlocks in compromise-reaching can occur for various

reasons. Two classes of deadlocks are of primary interest here.

One type of reason for a deadlock might occur if a decision
maker, while accepting the agreement-aiding procedure as fair,
feels that his initial demands in terms of reference objective
levels were modest when compared to other demands,'which has
put him into a disadvantageous situation. This type of deadlock
is relatively easy to resolve. If all other decision makers
agree, they can restart the procedure with new reference objec-
tive levels. If they disagree, they can use a mediator or referee,
for example, a higher level decision maker in the hierarchical

case.

Another, much more difficult type of deadlock might occur
if a decision maker preceives that the agreement-aiding proce-
dure is not fair because it gives equal weight to all decision
makers, and he could influence .the results much more when deciding
on his own. For simplicity, such a decision maker will be called
a dissident. The dissident can take two different attitudes:
either he wants to cooperate further, but he would like more
weight attached to his demands, he is a cooperative dissident,
or he refuses to cooperate and wants to make his own decision,
he is an adversary dissident. Naturally, if a dissident walks
out of negotiations, no deadlock-resolving procedure can be of
any use; but we shall consider here the situation where he stays
in negotiations demanding simply that his decisions X must be

made by him, not by the optimization procedure.

To devise a deadlock-resolving procedure, a gaming model
of the problem must be constructed: the sequence of decision
making must be specified, fairly representing the real-world

situation simulated by the model. For example, depending on
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the real problem, a part of the decisions for the dissident
decision-maker can be made by him first, then a part of other
decisions can be specified, etc.; or the dissident must wait
until other decisions are taken; or decisions can be made simul-
taneously, but a probable violation of constraints in the model
must be expressed by a specified payment, a change of objective
function. All these extentions of the model needed to transform
it to a gaming model should be specified, presented to the deci-
sion-makers and agreed upon before the negotiations start; other-

wise, no deadlock-resolving procedure can be usefully constructed.

- If a gaming model of the problem is available and consistent
with the optimization model, various types of dissident-deadlocks
can be resolved. If the dissident is cooperative, he might be
allowed to make his own decisions and introduce into the gaming
model, while the optimization procedure represents the other
decision-makers by not playing against the dissident but trying
to keep the other objectives close to the last agreed average
reference levels. The dissident decisions are then either taken
as fixed, if he moves first, or predicted by an optimization
procedure, if he moves last. The obtained level of the dissi-
dent's objective is then considered as a fixed reference level,
similarly as in the case of a higher level decision maker, and
used in a repetition of the optimization procedure in order to
bring the results to the Pareto set. Thus, a cooperative .dissident
must agree that nhis decisions will be modified, while his attained

objective level is guaranteed; if he does not agree, he puts
himself in the adversary category.

If the dissident is adversary, another optimization proce-
dure can be devised to play against him, just to show how much
he can loose by putting himself into an adversary situation.
Clearly, results of such a gaming exercise have only psychological
value, since other objectives have to be sacrificed during this
gaming. But the reason of this gaming is to convince the dissi-
dent that he should rather agree on cooperation--or to reveal

that the problem is essentially of adversary nature.
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7. -POSSIBLE EXTENSIONS AND CONCLUSIONS

The aim of the paper was rather to show the possibilities
of constructing pragmatical compromise~aiding procedures based
on reference objective levels than to develop fully the related
theory. Much can be done in this direction. Various compromise-
aiding procedures must be checked against practical applications,
convergence of these procedures analyzed, special deadlock-

resolving procedures developed.

The only point stressed here is that penalty scalarizing
functions based on reference objective levels are, on one hand,
deeply related to the basic theory of multiobjective optimization
and result, on the other had, in a pragmatical approach to group
multiobjective decision making. Many forms of the objectives,
even in terms of desired dynamic trajectories or desired proba-

bility distributions can be also considered by this approach [25].



APPENDIX: CONVERGENCE OF A MODIFIED COMPROMISE-AIDING
PROCEDURE

Consider the following modified compromise-aiding procedure:

Step 1. Given n reference objective vectors ak’J, corre-
sponding Pareto-optimal points qk'J are obtained by the minimi-
zation of a penalty scalarizing function s(g-q). An average

S|

. n .
objective vector gJ = N ak’J and the corresponding Pareto-
k=1

J is also determined. All information about the

optimal point §
outcomes and the decisions needed to obtain them is presented

to the decision makers.

Step 2. If s(@j - aj) < 0, then new reference points are

automatically determined by

-k, j+1 -k, 3 ~J —3
q IJ —_ q J + (2 — B) (qj - qj) , (A1)
where B € (0;1) 1is a given parameter. Set j <« j+1 and repeat
Step 1.
Step 3. If j > 1, then condition ||éjj_1 - 3| <

(1—8)][@3_1 - EJ-1|| is checked. 1If this condition does not hold,
then g- is modified by:

_17_.
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AJ1_J1 «
-2 RS b ayl8 I z3 - g3t
Tnew = 4 qu1_3 ! @4 -&7H . @2
old

and a modified corresponding Pareto-optimal point qgew is also
determined. The additional information is presented to the

decision makers.

Step 4. Each dec151on—maker is asked to move his reference
objective vector towards qJ <qgew if the modification is Step 3

was performed), at least R-times the entire distance:

gt - gk )+ <8< Ll

. K, G _
I+ gt gl - g
If all decision makers agree to do so, then j « j+1 is set and

Step 1 is repeated. If _some of them disagree, a deadlock occurs.

If all agree to use B = 7, then the procedure stops.

The additional Step 2 changes automatically reference levels
and the average objective vector to obtain §j+1 & QO + Ri (see
Figure A1). Since all objective levels are improved by this
change, the decision makers are only informed and not asked to
agree; they can, however, disagree in nest iteration. It is easy
to check that Step 3 can be omitted if Step 2 has been performed
just before, since the condition required by Step 3 is then

automatically satisfied.

A
%2

v

o

Figure Al1. Interpretation of the reference level change performed
in Step 2.
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It is also possible to show that if Qo is convex and QO
compact, whatever the initial qk 0, then Step 2 can be performed
only a finite number of times to obtain Ej ¢ Qq + RZ for all
subsequent iterations. Therefore, the convergence analysis of

the procedure can be limited to the case g2 ¢ Qq + R"

Lemma Al1. If the set Qo is convex and 60 is compact, and if
no deadlocks occur, then the procedure described above is conver-

gent in the sense that there exists §» = lim @3 and also

—x - j+oo
lim g 3 - lim g’ = §e.
j+oo j-+oo
Proof. Since q mlnlmlzes s(q - q ) and thus also the

distance for q] to QO’ if q & Q0 + R , hence
sl - 3 -1 _ =3 43-1 _ z3-1
e’ -a’ll < lle " - < a-8ifag  =-qa ' ,

where the last inequality results from Step 2 (this inequality

could also be proven, not forced algorithmically, but the necessary

assumptions are much stronger in this case). Hence, lim || §J —qJH—
NTRUC PR (e £ -1 RIS
Lin|| 877" - @ = 0. mowever, |47 - a7 < |Ig - @
j+oo
+ |\q3“1 - g7|| ; hence also lim|| §7 - QJ_1|| = 0. Since {qj}J -0
j+oo
C QO is compact, it has accumulatlon points; they cannot be
distinct, since then llm||“j - |] would not exist. Therefore,
j—‘m
there is a unique accumulation point e = lim qj. Clearly,
j—)-oo

lim q’ = §e.

j+oo

Equations (A3) imply also || g gt qjlj < (1 - |}qk '] A]'
which can be rewritten as || g T J+1 q || < (1_8)]‘§k.j - g |
+ (2 - B)||q - 4§ . 1f ||q ked §”|| were not convergent to
zero, then for arbitrarily small ¢ > 0 € < B, there would be
arbitrarily ldarge j such that (1—é)llq 3 Call (|qk P31 call

would hold; but this would imply
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(8 - E)HE{_k'J - § | < (2 - B)[IQJ - §"|| converging to zero, a
contradiction. Hence lim||§k’J -4 || =o.
j—»co
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