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PREFACE 

There is a growing need for the linkage of different models 
in applied projects at the Institute. A detailed discussion of 
the difficulties met in work on this problem might be a theme 
for independent research, but here we will restrict the discussion 
to the problem of linking two or more linear programming models. 

If in a linkage problem we merge t w ~  or more subproblems 
into a united one, then correspondingly in a decomposition 
approach we try to split an initial large-scale problem into 
a number of small subproblems gaining computational or other 
advantages. So far as we want to preserve the individuality 
of every model throughout the whole linkage process and restrict 
computations to those performed with submodels separately, 
linkage and decomposition become in fact the same problem. A 
number of methods are known for decomposition of large-scale 
linear programming problems. The most widely known are the 
Dantzig-Wolf decomposition method (Dantzig and Wolf 1961, Dantzig 
1963) and the Benders decomposition method (Benders 1962) which 
for linear programming problems are duals of each other. While 
Benders' scheme considers the case of common or binding variables, 
the Dantzig-Wolf technique is proposed for the case of common 
constraints. So far as the latter form can be easily trans- 
formed into a problem with common variables we will be concerned 
only with this problem. 

The general idea of a Benders decomposition consists of 

(a) an intrinsic representation of the feasible set of 
linking variables by means of'extreme rays of the cones defined 
by subproblems 

(b) a representation of the infinite system of inequalities 

-iii- 



which defines the solution of the whole problem by means of 
extreme points of the feasible sets of subproblems. 

Both (a) and (b) use an auxilliary problem of linear pro- 
gramming to generate ray or point when it becomes binding. 
Potentially there is an enormous number of such points or rays 
to be generated but actually only a small part of them is usually 
generated during the solution. Computer experiments (Ho 1977) 
show a good performance comparable or better than a direct 
simplex method of other advanced techniques such as basis 
factorization (Ho and Loute 1978) . 

However, it would be desirable to decrease the number of 
constraints implicitly inherited in a decomposition principle 
so far as it decreases an estimate of a number of cycles between 
master and slave problems. In this paper this is achieved in 
a manner based on ideas of nondifferential optimization. This 
idea produces a finite convergent monotonic descent algorithm 
which might be used in a number of cases. A promising direction 
would be, for instance, mixed integer-continuous linear problems. 

In a mathematical sense the proposed approach relates to 
some extent to the limiting duality theory (Blair, Duffin, and 
Jeroslaw 1979, Borwein 1979 (1980), Duffin and Jeroslaw 1979). 
Among related IIASA publications we can mention Kallio, Orchard- 
Hays, and Propoi (1 979) . 
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ABSTRACT 

A new decomposition approach is proposed for solving large 
linear programming problems. This paper contains mainly theoreti- 
cal results connected with this idea and a small numerical example 
illustrating the solution. The algorithm is based on ideas of 
nondifferential optimization and the solution is obtained in a 
finite number of steps monotonically decreasing an objective 
function with computational efforts restricted to those with 
subproblems forming original large-scale problems. 





SOME THEORETICAL CONSIDERATIONS 
ON LINKAGE PROBLEMS 

E. Nurminski 

1. IvlATHEMATICAL FORMULATION AND PRELIMINARY RESULTS 

We will consider the problem of linear,programming which 

has the following structure: 

nin 

It is clear that for a fixed x this problem splits into two 

subproblems 

rnin c L = fA(x) A A 

and 

min c z = fB(x) B B 



The variables z and z might be called internal variables A B 
of subproblems A and B correspondingly, variable(s) x is a 

linking variable which binds them together. The original prob- 

lem ( 1 )  is therefore equivalent to the problem of finding the 

minimum of function fA(x) + fB (x) : 

min {fA(x) + fB(x)I t 

X 

where x might be constrained as well. The different variations 

of this problem are customarily called master problems and we 

will also use this terminology. 

The analysis of the behavior of functions fA (x) , fB (x) in 
the neighborhood of some fixed point can be performed with the 

help of parametric programming (Walkup and Wets 1969) and the 

expected type of behavior is that for each function there is 

a set of linking variables x which provides a nonempty feasible 

set of internal variables in subproblems (PA) and (PB). Other- 

wise we should subscribe the value +m to either (PA) or (PB) 

with infinites in dual variables providing information about 

directions of possible changes in the values of the linking 

variables. 

The set of linking variables which guarantees the finite 

values of subproblems (PA) and (PB) has an implicit description 

which makes many operations connected with this set (such as 

projection, finding a feasible direction, etc.) difficult to 

perform. Another difficulty occuring with this direct consi- 

deration is that problem (2) is a problem of nondifferentiable 

optimization under implicit linear constraints and currently 

there are not many algorithms for this problem. Finally, it 

would also be desirable to make use of apiece-wise linear struc- 

ture of functions fA(x) and fB(x) to get a finite convergent 

algorithm. 

~aving these aims in mind, we develop an approach based on 

particular approximations of objective functions of the master 

problem. This approximation preserves the minimum of the ori- 

tinal problem while simplifying it. 



For further development we will use the notation 

The general idea is to construct another function $(x) which 

would have as simple a structure as possible and on the other 

hand preserve the essential feature of the initial function 

Q(x). We define the function $(x) as follows: 

8(x) = sup p = sup in£ {@(y)-~(y-x) , 
ITEII y 

IT (y-x) + p 2 @(y) 

= sup {inf{@(y)-~y) + 1~x1 = 
ITEII y 

* 
= sup hx-@ (n) 1 , 
TTE n 

where 

is a conjugate function (Rockafellar 1970). 
A 

If Il is a compact set then function @(x) is finite every- 
A 

where. On the other hand, between @(x) and @(x) there are a few 

similarities which are formulated in the following theorems. 

Theorem 1. If @(x) is bounded from below and zero belongs to 

I1 then 

inf @(x) = inf $(x) . 
X X 

Proof. For any x 



On t h e  o t h e r  hand f o r  any x  

which p roves  t h e  s t a t e m e n t .  

Theorem 2 .  I f  i n  a d d i t i o n  t o  t h e  assumpt ions  o f  Theorem 1 @ ( x )  

is a  convex f u n c t i o n  which a t t a i n s  i n f i n i u m  a t  l e a s t  a t  o n e  

p o i n t  and z e r o  b e l o n g s  t o  t h e  i n t e r i o r  o f  set  II ,  t h e n  e v e r y  
h 

minimum of t h e  f u n c t i o n  @ ( x )  is  a  minimum of  P ( x )  . 
h 

Proof .  Due t o  Theorem 1 ,  @ ( x )  h a s  a  nonempty set  o f  minimas a s  

w e l l .  W e  d e n o t e  t h i s  se t  a s  ?* and l e t  X* b e  a  set of  minimas 

o f  t h e  f u n c t i o n  @ ( x )  . Theorem 1 s t a t e s  t h a t  

However, i f  w e  assume t h a t  t h e r e  i s  a  p o i n t  IL* which b e l o n g s  * 
t o  ?* b u t  t h a t  IL* $ X , t h e n  i n  a n  ex tended  s p a c e  p o i n t  * 
( 2  , i n f  @ (x )  ) and e p i  @ ( x )  o f  t h e  f u n c t i o n  @ ( x )  a r e  s e p a r a b l e  

X 
w i t n  t h e  h e l p  o f  some hyperp lane .  T h i s  means t h a t  t h e r e  e x i s t s  

v e c t o r  p and s c a l a r  w s u c h  t h a t  

(i) w > i n f  @ ( x )  
X 

* 
(ii) p ( x - 2  ) + w < @ ( x )  , f o r  a l l  x  . - 

C l e a r  p  # 0. Also  t r i v i a l l y  

i n f  @ ( x )  - < @ ( x )  , 
X 

and c o n s e q u e n t l y  f o r  any 0 < a  < 1 .- . - 

* 
( j )  a p  (x-8 ) + aw + (1-a)  i n f  ( x )  > @ ( X I  - 

( j j )  aw + ( 1 - a ) i n f @ ( x )  > i n f @ ( x )  . - 
X X 



~f 0  E  i n t n t h e n  t h e r e  i s  a  > 0 such  t h a t  p  = a p  E n. 
Theref  o r e  

A ,* 
@ ( x  ) = sup  p - > SUP P 2 

A 

> aw + (1-a)  i n £  @ (x )  > i n £  @ ( x j  = i n £  @ ( X I  - 
X X X 

"* 
which c o n t r a d i c t s  t h e  d e f i n i t i o n  of  X and comple tes  t h e  p r o o f .  

Theorem 3 .  I f  @ ( X I  i s  a  convex f u n c t i o n  which a t t a i n s  i t s  * 
minimum a t  a  p o i n t  x  such t h a t  

~ ~ i n t i a @ ( x * ) )  

* * 
where a @ ( x  ) is  a  se t  o f  s u b g r a d i e n t s  a t  p o i n t  x  and II i s  

such t h a t  

( i) 0  E  i n t  I1 

(ii) II c a @ ( x )  , 

t h e n  

A * * 
@ ( x )  = @ ( x  ) + s u p  ~ ( x - x  ) . 

C l e a r l y  



Proof .  

h 

@ ( x )  = s u p  i n £ { @  ( z )  - IT ( Z  - X) 1 < - 
ITErI z  

* * < s u p  { @ ( x  - n ( x  - X I )  = - 
ITErI 

* 
= Q ( x * )  + s u p  IT(x - X ) 

ITETI 

On t h e  o t h e r  hand by d e f i n i t i o n  

& ( x )  = s u p  p = sup  s u p  p > - 

> s u p  sup*p ' = SUPI@(X*)  + IT(x-x*) . 
- p ( x  - x )  + p '  - < @ ( x * )  ITErI 

The i n e q u a l i t i e s  above f o l l o w  from t h e  f a c t  t h a t  i f  p '  

s a t i s f i e s  c o n s t r a i n t  

t h e n  p '  s a t i s f i e s  c o n s t r a i n t s  

~ ( z - x )  + p '  < @ ( z )  f o r  a l l  z  - n E ao(x*)  

* 
a s w e l l .  F o r r E r I C a O ( x )  

due t o  c o n v e x i t y  o f  t h e  f u n c t i o n  @ ( z ) .  



Theorem 3 together with others tells us that if the initial 

problem of finding 

* 
min @(x) = min{fA(x) + fB(x)) = @(x ) , 
X X 

has certain properties of nondegeneracy; that is, if the minimum 

@(x) is unique then this problem can be reformulated as a problem 

of finding the minimum of the function with a very simple struc- 

ture: 

h * * 
@(x) = @ (X ) + sup v(x-x ) . 

If set rI has a simple structure like polyhedra with a finite 

number of extreme points then $(x) might be optimized in a finite 

number of steps by steepest-descent method. The problem now is 

to find a means for computing differential characteristics of 
A 

@(x) in an efficient way maximally using the structure of initial 

problem. 

2. COMPUTATION OF A SUBGRADIENT SET 

The central problem in running the steepest descent method 

for minimizing function (3) is the problem of finding the steepest 

descent direction. So far as this function is a nondifferentiable 

one, it is necessary to compute the shortest subgradient in a 

convex hull of some extreme points of the polyhedra ll. This 

computation might be a relatively easy problem providing this 

subset of extreme points is known, but the major computational 

difficulty consists in determining it. 

Without any loss of generality we consider the calculation 

of the subgradient set of function (3) at point x = 0. 

By definition 

$(o) = sup inf{~(x)-vx) = 
IT rI xEX 



= inf sup {jnx +lnxB-fA(xA)-f (X = 
TIErI x =x A B B 

A B 

=-inf sup in£ Utn+X)xA-fA(xA) + (in-h)xB-fB(xB) = 
TIErl XAIXB X 

where we use the traditional notations for conjugate functions 

and substituted variables 

We also use a saddle point equality which is valid for convex 

functions fA and fB. 

In fact, we are more interested in the subgradient set of 

function (3) than in its numerical value. It is remarkable, 

however, that if the function value is given by a solution of the 

extremum problem 

C. 

then the subgradient set a@ (0) is given by 

* * 
where nA, n are the solutions of problem (4). B 



For further consideration we transform problem ( 4 )  even more. 

Let us assume that set ll is a sum of two sets IIA and IIB: 

Then the original problem (4) can be rewritten as 

and subgradient set (5) has the same representation: 

* * 
where nA E IIA, nB E IIB--are solutions of problem (6). 

It is worth noting that set II has to satisfy certain assump- 

tions to justify this transformation. The conditions of theorems 

1 - 3 demonstrate that it would be desirable to hkve set ll first, 

small enough, and secondly, still containing some neighborhood 

at the origin. For computational convenience it has to have the 

least number of extreme points as possible. If it is chosen in 

an appropriate way, then according to (3) solutions of (6) are 

extreme points of set II, and hence, the external - in£ can be 

replaced by finite min: - 

A 

where we denote the set of nA extreme points of the polyhedra 
- - 

nA(AB and flB correspondingly) . 
To find such fii, fi * which provides the minimim generally B 

speaking, we have to solve a finite number of linear programming 

problems originating from (7). The number of these problems 

is the order of number of linking variables and it is reasonable 

to consider this number a relatively small one. 



Let us, however, examine the corresponding LP problems in a 

more detailed way: 

(LP) For fixed aA , TiB E fiB find 

* * 
inf f (ii +p) + fB(.fiB-p) = A A 
P 

A 

= inf sup { (ptilA) XA-~AZA- (p-nB) XB -c B z B 1 

where VA and VB are sets given by inequalities: 

As these sets are independent of each other, it is natural to 

assume their nonemptiness, otherwise, some of the subsystems are 

not feasible for - any input values of linking variables. For 

convenience we assume the boundness of VA and VB. 

Due to linearity of the objective function with respect to 

x x z  z we may replace internal sup with finite min over A' B' At B - 
the sets of extreme points VA and VB: 

The value of this program has an equivalent representation: 



This problem has a small number of variables and a large number 

of rows and consequently can be efficiently solved by different 

modification of the row generation technique. These methods 

require the solution of the linear programming problems of the 

kind: 

- - 
For given p, v find 

which is obviously decomposed into two separate subproblems: 

- 
If VA + v > v, then a new row will be generated and a new B - - 

intermediate solution p, v will be obtained. After a finite 

number of steps we obtain the solution of problem (2). 

To demonstrate the method described in the previous chapters 

let us consider the following LP problem 



By introducing linking variable x = X5 and denoting variables 

X1 I X2t x3, x4 as internal variables zi i = 1,4 of problem A 
A' i 

and x6, x,, xd, x9 as internal variables zB, i = 1, ..., 4 of 
problem B we can transform the initial problem into the appro- 

priate form: 

where 



The separate solutions of problems A and B with x - > 0 

as independent variables provide a solution: 

* 
min fA(x) = f (x ) = -4.8276 
x>o A A 

and 

min fB(x) = f (x') = -101.818 
x>o B B 

The following table shows the values of functions fA and 

f at these points. 
B 

Table 1. Results of separate solutions of subproblems A and B. 

0 The solution of problem (2) started from point x = 0. 

Set Il was taken as the difference of the two simplexes 

The simplex tableau for the master problem of finding 6(0) and 

its subgradient has the following form. 



- 1 4 -  

Table 2. Simplex table'au for the master problem. 

cost row 

where we deleted separate constraints for T T ;  and introduced 
Ll + - + -  

artificial variables p , p , v , v to take care of the nonposi- + - + - 
tivity of vectors p = P - P and v = v - v I 

In this tableau GA, 2 are the solutions of the auxiliary 
B 

problems and vA, v are the optimal casts of these solutions. 
B 

The tableau for problems for generating new x and vA has the A 
following structure. 

Table 3. Simplex tableau for subproblem A. 

cost row 



The corresponding tableau for 2 has a similar form but with B 
different numbers. 

Table 4. Simplex tableau for subproblem B. 

cost row 

In different runslthese tableaux differ only in cost rows 

which makes it possible to obtain new solutions from those 

generated on previous iterations by simplified methods of para- 

metric programming. However, in a rather amateurish code written 

by the author to solve the problem under consideration, these 

possibilities have been omitted. 

The results of sequential solving in master and slave 

problems are presented in the following table. 

Table 5. Successive solutions of the master problem and sub- 
problems A and B at initial point x = 0. 



The l a s t  run of t h e  master  problem r e s u l t e d  i n  

and a t  t h i s  p o i n t  execut ion  has  been suspended because no new 

c o n s t r a i n t  was genera ted .  

The r e s u l t  of t h e s e  computations means t h a t  6 ( x )  has  a  

nega t ive  s l o p e  a t  p o i n t  x  = O f  t h e r e f o r e  t h e  nex t  c a l c i l a t i o n s  

were made a t  p o i n t  x" = 2 .  The fo l lowing  t a b l e  p r e s e n t s  t h e  

r e s u l t s  of t h e s e  c a l c u l a t i o n s .  

Table  6 .  Success ive  s o l u t i o n s  of t h e  master problem and sub- 
problems A and B a t  i n i t i a l  p o i n t  x  = 2 .  

The l a s t  run o f  t h e  master  problem r e s u l t e d  i n  

and execut ion  has  been stopped because no new c o n s t r a k t  was 

genera ted .  

This  means t h a t  $ ( x )  has a  p o s i t i v e  s l o p e  a t  x  = 2 and hence 

t h e  op t imal  va lue  of t h e  l i n k i n g  v a r i a b l e  has t o  s a t i s f y  t h e  

equa t ion  



A * A * 
@(O) - 0 . 1 ~  = @(2) + O.l(x -2) 

So far as 

A 

@(O) = -106.448 , 

A 

@(2) = -106.455 , 

we obtain 

* 
x = 1.035 , 

which coincides with good accuracy with an optimal value of 

a linking variable for problem A. Here are some computational 

results for several values of linking variables. 

Table 7. Values of objectives for different values of the linking 
variable. 

optimum 

It is clear that the value of problem A is influenced by 

a linking variable to a much greater extent, therefore it is 

no surprise that the optimal value of the linking variable is 

determined by this subproblem. 

However, it is a matter of some specific properties of data 

and, generally speaking, we may obtain some intermediate point 

which lies somewhere within interval [0,2]. 
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