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ABSTRACT 24 

Single-gene speciation is considered to be unlikely, but an excellent example is found in land 25 

snails, in which a gene for left-right reversal has given rise to new species multiple times. 26 

This reversal might be facilitated by their small population sizes and maternal effect (i.e., 27 

‘delayed inheritance’, in which an individual’s phenotype is determined by the genotype of its 28 

mother). Recent evidence suggests that a pleiotropic effect of the speciation gene on 29 

anti-predator survival may also promote speciation. Here we theoretically demonstrate that, 30 

without a pleiotropic effect, in small populations the fixation probability of a recessive mutant 31 

is higher than a dominant mutant, but they are identical for large populations and sufficiently 32 

weak selection. With a pleiotropic effect that increases mutant viability, a dominant mutant 33 

has a higher fixation probability if the strength of viability selection is sufficiently greater 34 

than that of reproductive isolation, whereas a recessive mutant has a higher fixation 35 

probability otherwise. Delayed inheritance increases the fixation probability of a mutant if 36 

viability selection is weaker than reproductive isolation. Our results clarify the conflicting 37 

effects of viability selection and positive frequency-dependent selection due to reproductive 38 

isolation and provide a new perspective to single-gene speciation theory.  39 
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INTRODUCTION 40 

Ever since Darwin, understanding the genetic and ecological conditions under which 41 

speciation occurs has been an ongoing challenge in evolutionary biology (Coyne and Orr 42 

2004). One longstanding issue of debate in speciation theory concerns the number of genes 43 

that are necessary for speciation to occur. Under the classic Bateson-Dobzhansky-Muller 44 

(BDM) model, speciation requires changes in at least two genes because if there is one new 45 

allele with strong effects on heterozygote viability or mating compatibility but without 46 

epistasis to other genes, then the fitness of variants that harbor that allele should decrease, 47 

making the fixation of this allele in the population difficult. In contrast, negative epistatic 48 

interactions between independently derived alleles (A and B) at two loci can establish 49 

reproductive isolation between descendant genotypes (AAbb and aaBB) without reproductive 50 

isolation between the ancestral genotype (aabb) and daughter lineages (Bateson 1909; 51 

Dobzhansky 1936; Muller 1942). 52 

Although the classical BDM incompatibility model has been influential in 53 

explaining the speciation process (Orr 1996; Gavrilets 2004; Bank et al. 2012), the model 54 

cannot explain the evolution of reproductive isolation via a single gene. Speciation that results 55 

from genetic substitution at a single locus is known as ‘single-gene speciation’ (Orr 1991). 56 
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Single-gene speciation has been of special interest for the following reasons: (1) “one-locus 57 

models are a natural starting point for theoretical approaches to many evolutionary 58 

phenomena” (Gavrilets 2004); (2) there are several examples of empirical evidence for the 59 

determination of mating traits by a single-locus (see Gavrilets 2004; Servedio et al. 2011 for 60 

review); and (3) a single speciation gene that pleiotropically contributes to reproductive 61 

isolation and divergent adaptation through a single trait ('automatic magic trait' according to 62 

Servedio et al. 2011) or several traits (Slatkin 1982) has been thought to promote ecological 63 

speciation (Rundle and Nosil 2005). Speciation becomes less probable if one locus is 64 

responsible for ecological adaptation and another locus is responsible for reproductive 65 

isolation because recombination breaks down the association between the two loci 66 

(Felsenstein 1981). Here, we refer to this dual function of a single gene as pleiotropic effects 67 

or simply pleiotropy (Slatkin 1982). In spite of these longstanding interests and an increasing 68 

number of studies that suggests the involvement of adaptation in speciation (Schluter 2009), 69 

the theoretical framework to explain the process of single-gene speciation is not robust 70 

because previous studies have relied heavily on numerical simulations (Kirkpatrick and 71 

Ravigné 2002; Gavrilets 2004). In this paper, we use new analytical results to investigate the 72 

effects of pleiotropy, allele dominance, population size, and maternal effect on the fixation 73 
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process of the speciation gene in single-gene speciation.  74 

An excellent example of single-gene speciation is found in land snails (see 75 

Schilthuizen and Davison 2005; Okumura et al. 2008 for review). Handedness is shown to be 76 

controlled by two alleles at a single nuclear locus in phylogenetically segregated families of 77 

pulmonate snails (Boycott et al. 1930; Degner 1952; Murray and Clarke 1976; Freeman and 78 

Lundelius 1982; Ueshima and Asami 2003), and mating between opposite coiling individuals 79 

rarely occurs (Johnson 1982; Gittenberger 1988; Asami et al. 1998). Thus, the handedness 80 

gene is responsible for pre-mating isolation. Despite the positive frequency-dependent 81 

selection against rare mutants predicted by the BDM model (Johnson 1982; Asami et al. 82 

1998), it has been shown that evolutionary transitions from an abundant dextral (clockwise 83 

coiling) species to a mutant sinistral (counter-clockwise coiling) species have occurred 84 

multiple times (Ueshima and Asami 2003; Davison et al. 2005; Hoso et al. 2010; Gittenberger 85 

et al. 2012). 86 

Why is single-gene speciation possible in snails? Following Gittenberger (1988), 87 

Orr (1991) proposed that small population sizes and maternal effect (i.e., delayed inheritance: 88 

Fig. 1) in snail populations could promote single-gene speciation. Because snails have low 89 

mobility, local populations tend to be isolated from one another, which causes repeated 90 
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extinction and colonization events. Consequently, the effective population sizes of snails are 91 

small and genetic drift is strong (Arnaud and Laval 2004; Hoso 2012). Delayed inheritance of 92 

handedness is a type of maternal effect in which an individual’s phenotype is determined by 93 

the genotype of its mother (Fig. 1: Boycott et al. 1930; Degner 1952; Murray and Clarke 94 

1976; Freeman and Lundelius 1982). Subsequent theoretical studies on the evolution of snail 95 

coiling have basically attributed the cause of single-gene speciation to these two factors (van 96 

Batenburg and Gittenberger 1996; Stone and Björklund 2002; but see Davison et al. 2005). 97 

In a recent study (Hoso et al. 2010), a ‘right-handed predator’ hypothesis was 98 

proposed to explain the effects of pleiotropy on the single-gene speciation of snails. The 99 

authors concluded that a gene controlling coiling direction of snails could pleiotropically 100 

affects interchiral mating difficulty and anti-predator adaptation because of the ‘handedness’ 101 

of the predator. Because most snails are dextral (‘right-handed’) (Vermeij 1975), predators 102 

tend to be ‘right-handed’ (have evolved to specialize in the abundant dextral type of snail). 103 

Such predators include box crabs (Shoup 1968; Ng and Tan 1985; Dietl and Hendricks 2006), 104 

water-scavenger beetle larvae (Inoda et al. 2003), and snail-eating snakes (Hoso et al. 2007; 105 

Hoso et al. 2010). Behavioral experiments revealed that right-handed predators tend to fail in 106 

attempts to eat sinistral snails because of the left-right asymmetry of their feeding apparatuses 107 
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and behaviors (Inoda et al. 2003; Dietl and Hendricks 2006; Hoso et al. 2007). Therefore, 108 

although a mating disadvantage still exists, sinistral snails will have a survival advantage 109 

under right-handed predation. This can potentially promote the fixation of a sinistral allele, 110 

and indeed Hoso et al. (2010) found a positive correlation between the distribution of a 111 

right-handed predator (snake) and proportion of sinistral lineages in Southeast Asia. Although 112 

Hoso et al. (2010) showed a correlation pattern, the fixation process of the mutant allele in 113 

the speciation gene with pleiotropic effects underlying such pattern has not been fully 114 

investigated.  115 

Here, we theoretically investigate the fixation process of a mutant allele in the 116 

speciation gene in single-gene speciation with and without pleiotropic effects. We seek to 117 

answer the following questions. (1) How do allele dominance, population size, and delayed 118 

inheritance affect single-gene speciation? What kind of mutant allele dominance (e.g., 119 

dominant, recessive, or subdominant) has the highest fixation probability? How do population 120 

size and delayed inheritance affect this tendency? (2) How does pleiotropy affect the process 121 

of single-gene speciation? On the one hand, when the mutant frequency is low, it would be 122 

better for heterozygotes to have the resident phenotype to mate with common resident 123 

genotypes because of positive frequency-dependent selection. On the other hand, the mutant 124 
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phenotype is advantageous under strong viability selection. Because of the conflicting factors 125 

acting on heterozygotes, the overall effects of allele dominance and delayed inheritance can 126 

be changed by the relative strengths of the pleiotropic effects of the speciation gene.  127 

 128 

MODEL 129 

To examine the questions of single-gene speciation described above, we consider a general 130 

allopatric speciation model. When a panmictic population splits into two geographically 131 

divided subpopulations, it is sufficient to compare fixation probabilities of a mutant allele in a 132 

single subpopulation to understand the likelihood of speciation (Orr 1991). We construct 133 

Wright-Fisher models of haploid or diploid individuals without delayed inheritance and 134 

diploid individuals with delayed inheritance to study the mutant allele frequency change 135 

through generations with reproductive isolation and viability selection. 136 

We assume that mating partners are randomly chosen from the population and that 137 

mating between different phenotypes fails with probability r (Table 1) because of either pre- 138 

or post-zygotic factors (Slatkin 1982). A common phenotype enjoys an advantage over a rare 139 

one because a randomly chosen mate is more likely to be compatible (i.e., the same 140 

phenotype). This leads to positive frequency-dependent selection (favoring the more common 141 



 9

phenotype) in the mating character.  142 

 143 

Haploid model 144 

We first consider the simplest case of haploid inheritance. We denote the frequency 145 

of the mutant allele (A) by p and that of the wild type allele (a) by 1 – p. The frequency after 146 

mating, p , is 147 

 148 

p 
p2  (1 r) p(1 p)

1 2rp(1 p)
,
 
      (1) 149 

 150 

where r measures the intensity of reproductive isolation between the mutant and wild type (0 151 

≤ r ≤ 1, Table 1). Reproductive isolation is complete if r = 1, the mating is random if r = 0, 152 

and reproductive isolation is partial if 0 < r < 1. The mutant frequency after one generation, 153 

p , is given by 154 

 155 

p 
(1 s) p

(1 s) p 1(1 p)
,      (2) 156 

 157 

where s is a positive viability selection coefficient for a mutant (i.e., a mutant has higher 158 
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survivorship than a wild type). For example, if a mutant snail is sinistral, s represents the 159 

relative survival advantage of sinistral snails because of the right-handed predation by snakes 160 

(Hoso et al. 2010). 161 

 162 

Diploid model without delayed inheritance 163 

 For the diploid model without delayed inheritance, a mutant arises as a single 164 

heterozygote (Aa) in a population of the wild type homozygotes (aa). We denote the degree of 165 

dominance of allele A by h such that h = 0 and h = 1 correspond to completely recessive and 166 

dominant mutant alleles, respectively. Under partial dominance (0 < h < 1), we consider two 167 

models. First, a three-phenotype model in which heterozygotes have an intermediate 168 

phenotype of the homozygous phenotypes, and the intensities of reproductive isolation and 169 

viability selection are determined by the degree of dominance (h), although this does not 170 

apply to snails (Table 1). Second, a two-phenotype (A and a) model in which a heterozygote 171 

has phenotypes A and a with probabilities h and 1 – h, respectively (Appendix S8). We adopt 172 

the former model in the main text, but both models give qualitatively similar results (see 173 

Discussion). The frequencies of genotypes AA (= x) and Aa (= y) after mating, x  and y , are 174 

given by 175 
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 176 

 
Tx = x2  1 (1 h)r  xy 

y2

4
,

Ty = 1 (1 h)r  xy  2(1 r)xz 
y2

2
 (1 hr)yz,

   (3) 177 

 178 

where T  1 2r (1 h)xy  xz  hyz   and z (= 1 – x – y) represents the frequency of the 179 

resident allele homozygote, aa (Table 1). The frequencies in the next generation, x  and y , 180 

are 181 

 182 

 

x 
(1 s) x

(1 s) x  (1 hs) y 1 z
,

y 
(1 hs) y

(1 s) x  (1 hs) y 1 z
,

      (4) 183 

 184 

where s is the selective advantage of the mutant phenotype in terms of viability. By definition, 185 

z  1 x  y . 186 

 The condition for the invasion of the mutant allele in a population of infinite size is 187 

analyzed by examining the local stability of equilibrium without the mutant (x = y = 0) in 188 

equation (4). The fixation probability of a mutant for the case with random genetic drift 189 

because of a finite population size is examined in three ways. First, assuming r and s values 190 
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are small, a two-dimensional representation of genotype dynamics (4) can be approximated 191 

with one-dimensional dynamics along Hardy-Weinberg equilibrium (Fig. 2). Then applying 192 

the diffusion approximation (Crow and Kimura 1970) leads to an analytical formula for the 193 

fixation probability with an arbitrary degree of dominance for the mutant allele. Second, for a 194 

very small population, because the diffusion approximation is not applicable, the exact 195 

fixation probability is numerically calculated with a Markov chain approach (first-step 196 

analysis, Pinsky and Karlin 2010). Third, the fixation probability is estimated from extensive 197 

Monte Carlo simulations of full dynamics (4) under random genetic drift. We assume 198 

symmetric mutation rates for the dominant and recessive alleles and compare their fixation 199 

probabilities to predict the allele dominance of sinistral alleles in snails. 200 

 201 

Diploid model with delayed inheritance 202 

 With delayed inheritance, the phenotype of an individual is determined by its 203 

mother’s genotype. In this model, 6 pairs of genotype-phenotype combination are possible; 204 

however, with complete recessiveness or dominance, only 5 pairs can be realized. Here, we 205 

assume that the mutant allele A is completely dominant. The counterpart case for a completely 206 

recessive mutant can be analyzed in a parallel manner (see Appendix S2). With three 207 
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genotypes (AA, Aa, and aa) and two phenotypes (A and a), the six genotype-phenotype 208 

combinations are denoted as AAA, AAa, AaA, Aaa, aaA, and aaa. For example, AaA represents 209 

an individual with genotype Aa and phenotype A. Because allele A is dominant, AAa is simply 210 

impossible in the genetic system of delayed inheritance (Table S1).  211 

We assume that the mutation in the speciation gene occurs in the embryo. In the 212 

genetic system of delayed inheritance, the first mutant’s phenotype is the same as its wild type 213 

mother. We denote the frequencies of each combination of genotypes and phenotypes, AAA, 214 

AaA, Aaa, aaA, and aaa by xA, yA, ya, zA, and za (= 1 – xA – ya – zA – za), respectively. Let p (= xA 215 

+ (yA + ya)/2) and q (= 1 – p = (yA + ya)/2 + zA + za) be the frequencies of dominant (A) and 216 

recessive (a) alleles. The frequencies after mating are 217 

 218 

 

TxA  p2  rya xA 
yA

2






,

TyA  p(1 xA ) r za xA 
yA

2





 ya xA  yA 

zA

2












,

Tya  p(1 xA  2 p) r za xA 
yA

2







yazA

2






,

TzA  (p  xA )(1 p)
r

2
yA(ya  za ) yazA ,

   (5) 219 

 220 

where T  1 2r(xA  yA  zA )(ya  za ) . Because phenotype A is favored under viability 221 

selection, the frequencies after viability selection are given by 222 
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 223 

 
  
x

A
 

(1 s) x
A

W
, y

A
 

(1 s) y
A

W
, y

a
 

y
a

W
, z

A
 

(1 s) z
A

W
,z

a
 

z
a

W
,  (6) 224 

 225 

where W 1 s( x
A
 y

A
 z

A
)  is the mean fitness of the population. See Appendix S2 for the 226 

case of a recessive mutant allele. 227 

 Similar to the without-delayed-inheritance model, the condition in which the mutant 228 

invades a population of infinite size is analyzed by examining the local stability of 229 

mutant-free equilibrium, xA  yA  ya  zA  0 , with 4-dimensional genotype dynamics 230 

(5)-(6). For the fixation probability of the mutant in a finite population, genotype dynamics 231 

are reduced to a single dimension by assuming small r and s, through Hardy-Weinberg and 232 

quasi-equilibrium of genotype-phenotype combination frequencies with the maternal 233 

inheritance dynamics, which also leads to an analytical formulation. The first-step analysis for 234 

a very small population and the Monte Carlo simulations are performed in the same manner 235 

as in the case without delayed inheritance. 236 

First-step analysis can also be applied to large populations, but the calculation is 237 

formidable when N is large (especially for the diploid model with delayed inheritance that has 238 

four variables). Therefore, we present results for the N = 3 condition and compare these 239 
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results to the N = 10, N = 1,000 (Monte Carlo simulations), and N → ∞ (diffusion 240 

approximation) conditions. 241 

 242 

RESULTS 243 

Through a deterministic analysis of infinite populations, we confirm that if the 244 

degree of reproductive isolation between mating phenotypes is larger than the coefficient of 245 

viability selection (r > s), the system shows bistability: the monomorphism of either allele (A 246 

or a) is stably maintained under positive frequency-dependent selection due to reproductive 247 

isolation for haploid and diploid conditions as well as delayed and non-delayed inheritance 248 

conditions. A rare mutant allele cannot invade infinite populations as predicted by the classic 249 

theory (Bateson 1909; Dobzhansky 1936; Muller 1942). Thus, genetic drift in finite 250 

populations is a prerequisite for single-gene speciation with weak viability selection (r > s) 251 

(Gavrilets 2004).  252 

 253 

Invasion conditions in deterministic models 254 

We demonstrate that pleiotropic effects can promote single-gene speciation, as 255 

proposed by Hoso et al. (2010). Because a single speciation gene causes positive 256 
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frequency-dependent selection, viability selection must be strong enough for the mutant allele 257 

to successfully invade a population (Fig. 3). The required selection coefficient for a mutant 258 

allele to invade is s  r (1 r) in haploid and diploid models with complete dominance (i.e., 259 

the mutant is either completely dominant or recessive) and s  r (1 hr)  for the diploid 260 

model with partial dominance (Appendix S1, S2, and S8). In the haploid model, equations (1) 261 

and (2) are approximated as p  (1 s)(1 r) p  if the mutant frequency is small (p ≈ 0). 262 

When (1 + s)(1 – r) < 1, the system is bistable and positive frequency-dependent selection 263 

excludes rare alleles. There are two locally stable equilibria at p = 0 and p = 1, and a locally 264 

unstable equilibrium, pc  r(1 s) s  / r(2  s)  , that divides two basins of attraction. As 265 

the mutant allele becomes more selectively favored (s (> 0) is increased), the unstable 266 

equilibrium moves closer to zero and eventually disappears once s is large enough to satisfy 267 

(1 + s)(1 – r) = 1. When (1 + s)(1 – r) > 1 or s > r/(1 – r), there is a globally stable equilibrium 268 

at p = 1 and the mutant allele increases and eventually fixes irrespective of its initial 269 

frequency (Fig. 3). Note that invasion is impossible when reproductive isolation is complete 270 

(r = 1), and this again suggests the importance of genetic drift in small populations. 271 

For the diploid model, partial dominance makes single-gene speciation more 272 

feasible because heterozygotes can simultaneously maintain their mating probability and 273 
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survival advantage. We derive the condition for the mutant allele to be able to invade the wild 274 

type population as s > r/(1 – hr) when h ≠ 0 by analyzing recursion equations (3) and (4) 275 

(Appendix S1). Interestingly, the invasion condition of the complete recessive (h = 0) allele (s 276 

> r/(1 – r)) differs from s > r, that is the limit of h → 0 for the invasion condition of the 277 

partially dominant mutant (Appendix S1) because with small h in the partial dominance 278 

model, there is a stable internal (coexisting) equilibrium, which does not exist for complete 279 

recessiveness (Fig. S4). Heterozygotes with a completely recessive mutant allele are neutral 280 

for viability selection, but the invasion condition is equivalent to the completely dominant (h 281 

= 1) allele (Fig. 3). In addition, because of a locally stable equilibrium in which the mutant 282 

allele coexists with the resident allele if r is large and h is small (Fig. S4), the invasibility of a 283 

mutant (Fig. 3) does not necessarily imply its fixation in the population. For the diploid model 284 

with delayed inheritance, the invasion condition in infinite populations is (1 + s)(1 – r) > 1 285 

(Appendix S2), which is identical to the haploid and diploid models without delayed 286 

inheritance (Fig. 3). However, the largest eigenvalue of the Jacobian matrix in the linearized 287 

system is smaller than the dominant allele in the diploid model without delayed inheritance 288 

(Appendix S2), which corresponds to the fact that delayed inheritance makes the invasion of a 289 

mutant more feasible in a finite population, which we discuss later. Note that under positive 290 
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frequency-dependent selection, viability selection does not need to be constantly strong. Once 291 

the mutant allele frequency exceeds the unstable equilibrium, the mutant phenotype becomes 292 

advantageous in mating and strong viability selection is no longer necessary. 293 

 294 

Fixation in a finite population with haploid inheritance 295 

The change in allele frequency after one generation, p  p  p, in the haploid 296 

model is 297 

 298 

 p 
p(1 p) r(2 p 1) s  sr(1 p) 

(1 sp) 1 2rp(1 p) 
,     (7) 299 

 300 

which is derived from equations (1) and (2). Assuming r and s are small, we can consider a 301 

continuous time model for the change in allele frequency. Neglecting higher order terms for r 302 

and s, we have the deterministic dynamics,  303 

 304 

 p  p(1 p) r(2 p 1) s .      (8) 305 

 306 

Equation (8) has two stable equilibria at p = 0 and p = 1, and an internal unstable equilibrium 307 
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at  when r > s. However, if s ≥ r, only p 1 is locally stable. When s 308 

= 0, the unstable equilibrium is at p = 1/2 and the derivative of allele frequency dynamics is 309 

negative when p is smaller than 1/2 and positive when p is larger than 1/2 (solid gray line in 310 

Fig. 4A). This result for the haploid model serves as the baseline when we discuss the effects 311 

of dominance and delayed inheritance. 312 

If the population is finite, a single mutant can go to fixation and replace the wild 313 

type even when r > s. Assuming r and s are small and the population size (N) is large, we 314 

obtain the fixation probability of a single mutant by applying the diffusion approximation as 315 

 316 

   u(1 / N ) 
1/ N

exp
R
2

p  p2   S
2

p




dp

0

1


,     (9) 317 

 318 

where R = 4Nr and S = 4Ns. If and only if the locally unstable equilibrium is less than 1/3,  319 

 pc = (1- S R) 2 < 1 3 , there exists some N with which the fixation probability  is higher 320 

than that of a neutral mutant (1/N) (one-third law, Nowak et al. 2004). 321 

 322 
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Fixation in a finite population with diploid inheritance 323 

The one-dimensional diffusion process along the curve of Hardy-Weinberg equilibrium 324 

The dynamics of dominant and recessive alleles in the diploid models are also 325 

subject to positive frequency-dependent selection, but variation in the position of the internal 326 

equilibrium and selection gradient along the mutant allele frequency depends heavily on 327 

which allele is dominant, which has a large effect on the process of fixation. Namely, a 328 

dominant allele is favored over a recessive allele at intermediate frequencies; whereas, a 329 

recessive allele is favored when it is at either low or high frequencies (compare red and blue 330 

dashed curves in Fig. 4D). To show this and to evaluate the fixation probability of a mutant 331 

later, we approximate the two-dimensional genotype frequency dynamics of the diploid model 332 

to one-dimensional allele frequency dynamics. Genotype frequency dynamics are not strictly 333 

at Hardy-Weinberg (HW) equilibrium, and this deviation is caused by reproductive isolation 334 

and viability selection (Fig. 2). However, we show that if both r and s are small, frequency 335 

dynamics first approach HW equilibrium and slowly converge to a locally stable equilibrium 336 

at p = 0 or 1 (Crow and Kimura 1970 demonstrated this without viability selection). 337 

Assuming that r and s are in the order of , which is a small positive constant, we expand the 338 

dynamics of equations (3) and (4) in Taylor series with respect to . The leading order 339 

dynamics for the zygote frequencies becomes 340 
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 341 

 
x  p2 O( ),

y  2 p(1 p)O( ).
      (10) 342 

 343 

Thus, up to the leading order, genotype frequencies are in HW equilibrium. From this, it 344 

follows that the allele frequencies do not change with time ( p  p) up to the leading order. 345 

By assuming a large population size, small values of r and s, and HW equilibrium (10), we 346 

can approximate the deterministic allele frequency dynamics by 347 

 348 

 

p  p(1 p) r p(2 p2 1) h(6 p2  6 p 1)   s p  h(1 2 p)  .  (11) 349 

 350 

The scaled derivatives of the frequency dynamics when h = 0, 1/2, and 1 without viability 351 

selection (s = 0) are shown by dotted lines (Figs. 4 and S1).  352 

 353 

Effect of dominance on the fixation probability of a mutant in a large finite population 354 

Despite the large difference in the frequency-dependent fitness profiles between 355 

dominant and recessive alleles (Fig 4D), both alleles have the same fixation probability if 356 

there is no viability selection in large populations (Fig. 5H). From the allele frequency 357 
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dynamics (11) under Hardy-Weinberg equilibrium that is approximately followed throughout 358 

the process for small r and s, we obtain the fixation probability of a single mutant allele, 359 

h  u(1 / (2N )), with the diffusion approximation (Appendix S3) where u(p) is the fixation 360 

probability of a mutant with the initial frequency p. The fixation probability of a single mutant 361 

h  for a given degree h of dominance is given by 362 

 363 

 h 
1 (2N )

exp Ry(1 y)
y
2

(1 y) h(2y 1)




 Sy

y
2
 h(1 y)













dy
0

1


,   (12) 364 

 365 

where R = 4Nr and S = 4Ns, as defined before. Thus, the recessive (h = 0) and dominant (h = 366 

1) mutants have exactly the same fixation probability if there is no viability selection (s = 0), 367 

 368 

 0 
1 (2N )

exp
R
2

(1 y)y2 (1 y)




dy

0

1


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1 (2N )

exp
R
2

y(1 y)2 (2  y)
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

dy

0

1


 1,   (13) 369 

 370 

which can be shown by changing the variables in the integral (Appendix S3).  371 

 372 
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Very small populations 373 

 When population size is very small and viability selection is absent, the recessive 374 

mutant allele has a higher fixation probability than the dominant allele. We show this result 375 

with Monte Carlo simulations (Fig. 5E) and numerical calculations of exact fixation 376 

probabilities using first-step analysis (Fig. 5B, Appendix S5, S6). The discrepancy between 377 

the cases of large (diffusion approximation results) and small population sizes could be 378 

because of the different contributions of absolute numbers of individuals to the frequency 379 

dynamics. Although we assume that a mutant first arises as a single heterozygous individual 380 

in the diploid model, the initial mutant frequency is higher in a small population. Thus, the 381 

first heterozygous individual with a dominant mutant allele is more strongly selected against 382 

than a recessive mutant allele in small populations (Fig. 4D). 383 

 384 

Effect of delayed inheritance 385 

As shown in equations (14) and (15) below, delayed inheritance halves the strength 386 

of positive frequency-dependent selection (Fig. 4), which increases the fixation probability of 387 

a mutant in large populations (Fig. 5I). Assuming HW equilibrium when r and s are small 388 

(Appendix S4), the approximated frequency dynamics of the dominant mutant allele in the 389 

diploid model with delayed inheritance is given by 390 
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 391 

 p 
1

2
p(1 p)2 r(2 p2  4 p 1) s .     (14) 392 

 393 

Furthermore, the frequency dynamics of the recessive mutant allele is 394 

 395 

 p 
1

2
p2 (1 p) r(2 p2 1) s .     (15) 396 

 397 

Comparing these equations to equation (11) with h = 1 and h = 0, we find that the right-hand 398 

side of equations (14) and (15) are exactly one-half of the right-hand side of equation (11) 399 

with h = 1 and h = 0, respectively (solid lines in Fig. 4). Therefore, regardless of whether the 400 

mutant allele is dominant or recessive, the fixation probabilities for a mutant are higher when 401 

delayed inheritance is present than when delayed inheritance is absent (Fig. 5I, Appendix S4). 402 

The fact that the magnitudes of r and s relative to the strength of genetic drift 1/N are halved 403 

may be reinterpreted to mean that delayed inheritance effectively halves the effective 404 

population size. This is probably because the phenotype is determined only by the mother’s 405 

genotype with no contribution from the father. The tendency for the model with delayed 406 

inheritance to have higher fixation probabilities remains the same in small populations where 407 
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diffusion approximation cannot apply (Figs. 5C, 5F, Appendix S7). With delayed inheritance, 408 

fixation probabilities can be increasing functions of reproductive isolation (r) when viability 409 

selection is strong (s >> 1) and the population size is very small (N = 3), which contrasts the 410 

general tendency (i.e., for fixation probabilities to be decreasing functions of reproductive 411 

isolation) (Fig. S6).  412 

 413 

Effect of reproductive isolation and viability selection 414 

Positive frequency-dependent selection and viability selection work on the mutant 415 

phenotype; therefore, individuals with the mutant phenotype get conflicting effects from the 416 

two selection pressures when the mutant allele frequency is low. When reproductive isolation 417 

is relatively weak, the survival advantage of the mutant phenotype exceeds its mating 418 

disadvantage; on the other hand, with relatively strong reproductive isolation, the survival 419 

advantage of the mutant phenotype cannot compensate for its mating disadvantage when the 420 

mutant is rare. In large populations, the dominant and recessive mutant alleles have the same 421 

fixation probability without pleiotropy (when s = 0: Fig. 5), whereas the dominant mutant 422 

allele has higher fixation probability when r = 0 (Haldane’s sieve: see Discussion). Thus 423 

fixation probabilities of the dominant mutant allele are always higher than those of the 424 
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recessive allele. Delayed inheritance halves selection pressures (equations 14 and 15); this is 425 

advantageous when positive frequency-dependent selection due to reproductive isolation is 426 

strong (Fig. 4), but is not advantageous when viability selection is strong. Therefore, the 427 

dominant mutant allele without delayed inheritance has the highest fixation probability when 428 

reproductive isolation (Nr) is weak and viability selection (Ns) is strong, whereas the 429 

dominant mutant allele with delayed inheritance has the highest fixation probability when 430 

reproductive isolation is strong and viability selection is weak in large populations (Fig. 6C). 431 

In small populations, the recessive mutant allele with delayed inheritance has the highest 432 

fixation probability when reproductive isolation is strong and viability selection is weak (Figs. 433 

6A, 6B). Therefore, the more frequently fixed allele can be dominant when viability selection 434 

is relatively strong (Fig. 6), which is in contrast to speciation without pleiotropy. 435 

 436 

DISCUSSION 437 

In finite populations without pleiotropy, dominant and recessive alleles have the 438 

same fixation probability in large populations; however, a recessive allele has a higher 439 

fixation probability in very small populations. The effects of population size are contrasting, 440 

but most left-right reversals are likely to have occurred in small isolated populations (Orr 441 
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1991; Hoso 2012). Therefore, the recessive mutant allele will fix more frequently than the 442 

dominant allele in the absence of right-handed predation, if the dominant and recessive 443 

mutations arise in the same probability.  444 

There are conflicting arguments about allele dominance; Orr (1991) wrote “the 445 

probability of fixation of a maternal mutation is roughly independent of its dominance” in 446 

dioecious populations, whereas hermaphroditic populations with selfing “…decrease the 447 

chance that a dominant mutation will be fixed.” In contrast, van Batenburg and Gittenberger 448 

(1996) showed that the dominant mutant allele has a higher fixation probability. We point out 449 

that this discrepancy is mainly because of different assumptions of the initial numbers of the 450 

mutant allele. Both Orr (1991) and we computed the fixation probability of a single mutant, 451 

whereas van Batenburg and Gittenberger (1996) even considered 16 invaders with the total 452 

population size 32, assuming mass invasion from neighboring sinistral populations. By 453 

accounting for the assumptions of each argument, the conflicting results can be explained 454 

because the recessive mutant allele has a higher fitness when it is rare, whereas the dominant 455 

mutant allele has a higher derivative when the frequency is intermediate (Fig. 4D). We 456 

changed the initial numbers of mutants in Monte Carlo simulations and obtained results to 457 

support this claim (data not shown). The fixation probability is usually calculated for a single 458 
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de novo mutation. Thus, as long as the initial mutant is a single heterozygote, we analytically 459 

and numerically showed that the recessive mutant allele has a higher fixation probability in 460 

small populations and both alleles have the same probability in large populations (Fig. 5). 461 

The effect of reproductive isolation and viability selection (Fig. 6) is consistent with 462 

“Haldane’s sieve”, where there is a bias against the establishment of recessive adaptive alleles 463 

(Haldane 1924, 1927; Turner 1981). Previous studies revealed that certain factors, including 464 

self-fertilization (Charlesworth 1992), adaptation from standing genetic variation (Orr and 465 

Betancourt 2001), and spatial structure (Whitlock 2003), can change the fixation bias of allele 466 

dominance. Our results showed that the adaptive mutation that pleiotropically contributes to 467 

reproductive isolation can also change this bias. 468 

We consider two cases of partial dominance (h = 0.5) in the diploid model without 469 

delayed inheritance. Although these do not apply to snails, the results would be important for 470 

understanding general single-gene speciation processes. Because of different fitness gradients 471 

along allele frequencies (Fig. S1), the three-phenotype model has a higher fixation probability 472 

than the two-phenotype model, which has similar results as the haploid model (Figs. 5B, 5E, 473 

5H, S2, and S3). With pleiotropy, the fixation probability in the three-phenotype model is the 474 

highest when reproductive isolation is strong and viability selection is weak in large 475 
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populations (Fig. S5C), while it is the highest in intermediate intensity of reproductive 476 

isolation and viability selection in small populations (Figs. S5A and S5B).  477 

In single-gene speciation in snails, the intensity of interchiral mating difficulty, r, 478 

should be an important parameter; interchiral mating is almost impossible in flat-shelled 479 

snails that perform two-way face-to-face copulation (large r), whereas it is relatively easy for 480 

tall-shelled snails that can copulate by shell mounting (small r) (Asami et al. 1998). Therefore, 481 

even with the same population size and right-handed predation pressure, the frequently fixed 482 

allele dominance can be changed (Fig. 6A). When right-handed predation is weak or absent 483 

and interchiral mating is difficult (flat-shelled snails), the frequently fixed allele should be 484 

recessive. On the other hand, the frequently fixed allele can be dominant when right-handed 485 

predation is strong and interchiral mating is easy (tall-shelled snails).  486 

We have calculated fixation probabilities for various values of N, r, s, and the 487 

dominance of the mutant allele. Phylogenetic information (Ueshima and Asami 2003; Hoso et 488 

al. 2010) can be used to infer these parameters because the number of left-right reversals in 489 

the phylogeny is influenced by fixation probabilities. Let PS be the duration that the snail 490 

phenotype remains sinistral, and PD be the duration for dextrality. The expected sojourn time 491 

in the sinistral phenotype is PS = 1/(ND), where  is the mutation rate of the speciation gene 492 
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changing to the dextral allele and D is the fixation probability of the mutant dextral allele. 493 

Assuming that the mutation is symmetrical and population size is constant, the ratio of these 494 

values is given by PS PD  ND  NS   D S . If left-right reversals have occurred 495 

frequently, the ratio estimated from the phylogeny data should approach the theoretical 496 

prediction. The extent of assortative mating, r, (Asami et al. 1998) and biased predation 497 

pressure by right-handed predators, s, (Hoso et al. 2007; Hoso et al. 2010) are known from 498 

experiments. Thus, it would be possible to estimate the population size and allele dominance 499 

by statistical inference. However, in addition to the somewhat arbitrary assumptions of 500 

constant population size, symmetrical mutation, and equilibrium states, reconstruction of 501 

ancestral states is generally challenging when the trait evolves adaptively (Cunningham 1999). 502 

Furthermore, we did not consider gene flow between spatially neighboring dextral and 503 

sinistral populations (Davison et al. 2005) or internal selection against left-right reversal 504 

(Utsuno et al. 2011). Thus, we propose these estimations as a future research subject. 505 

In conclusion, although the conventional theory by Bateson, Dobzhansky and 506 

Muller is still valid, our study has shown that single-gene speciation is likely to be more 507 

realizable than previous studies have assumed by combining various factors including 508 

recessiveness, delayed inheritance, small population size, and pleiotropic effects that increase 509 
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mutant viability. Specifically, delayed inheritance and pleiotropic effects of the speciation 510 

gene (e.g., right-handed predation on snails) can promote single-gene speciation, which 511 

supports the hypothesis that right-handed predation by specialist snakes is responsible for 512 

frequent left-right reversals of land snails in Southeast Asia (Hoso et al. 2010). Sinistral 513 

species have frequently evolved outside the snake range without right-handed predation, and 514 

in this case, our study suggests that allele dominance is important as well as small population 515 

size and delayed inheritance (Orr 1991). Interestingly, population size and pleiotropy can 516 

change the effects of allele dominance and delayed inheritance on speciation. Ueshima and 517 

Asami (2003) constructed a molecular phylogeny and speculated that the dextral allele 518 

appears to be dominant for Euhadra snails based on the breeding experiments with a 519 

Bradybaena species, citing van Batenburg and Gittenberger (1996); however, caution is 520 

needed because reversal could occur by a de novo mutation and viability selection by 521 

right-handed predators might be involved in speciation (Hoso et al. 2010). Recent 522 

technological developments in molecular biology make it possible to investigate the 523 

dominance of alleles in ecologically important traits as well as their ecological and 524 

evolutionary effects (e.g., Rosenblum et al. 2010). Although the search for a coiling gene (the 525 

speciation gene) in snails is still underway (e.g., Grande and Patel 2009; Kuroda et al. 2009), 526 



 32

our prediction—that the recessive allele has a higher fixation probability in the absence of 527 

specialist predators (s = 0) for flat-shelled snails (large r), whereas the dominant allele can 528 

have a higher fixation probability in the presence of specialist predators (s > 0) for tall-shelled 529 

snails (small r) —will be testable. This hypothesis could be tested, for example, by analyzing 530 

the correlations between the presence of right-handed predators and sinistral allele 531 

dominance. 532 

 533 
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TABLES 656 

Table 1. The diploid model without delayed inheritance (h = 0: a is a dominant allele, h = 1: A 657 

is a dominant allele) 658 

 659 

Mating comb. Mating prob. AA Aa aa 

AA × AA x2 1 0 0 

AA × Aa 2[1 – (1 – h)r]xy 1/2 1/2 0 

AA × aa 2(1 – r)xz 0 1 0 

Aa × Aa y2 1/4 1/2 1/4 

Aa × aa 2(1 – hr)yz 0 1/2 1/2 

aa × aa z2 0 0 1 

 660 

 661 

  662 
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FIGURE LEGENDS 663 

Figure 1. Chirality inheritance determined by maternal effects of dominant dextral (D) and 664 

recessive sinistral (s) alleles at a single nuclear locus (delayed inheritance). Black and gray 665 

spirals indicate dextral and sinistral phenotypes, respectively. In the second generation, 666 

individuals of the same genotype (Ds) develop into the opposite enantiomorph depending on 667 

the maternal genotype (DD or ss). Note that snails are androgynous. 668 

 669 

Figure 2. Representative example for the trajectory of the fixation process of a mutant allele 670 

that starts as a single heterozygote (black line) in the diploid model without delayed 671 

inheritance. X-axis: frequency of the resident allele homozygotes, aa (z). Y-axis: frequency of 672 

the mutant allele homozygotes, AA (x). Note that x + z ≤ 1 (dashed line). The initial condition 673 

is at (z, x) = (1 – 1/N, 0) (black point). The gray curve ( x 1 z  2 z ) indicates HW 674 

equilibrium. Parameter values are N = 30, r = 0.1, s = 0.1, and h = 1. 675 

 676 

Figure 3. Deterministic invasion conditions for a mutant allele. Invasion is possible above 677 

each line. X-axis: reproductive isolation parameter (r). Y-axis: viability selection coefficient 678 

(s). Completely recessive and dominant mutant alleles (h = 0 and 1) require a large selection 679 
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coefficient for invasion, whereas partially dominant alleles (e.g., h = 0.5) require a smaller 680 

selection coefficient. Note that the invasion condition of the completely recessive mutant 681 

allele differs from the limit of h → 0 (dotted line). 682 

 683 

Figure 4. Allele frequency dynamics affected by positive frequency-dependent selection due 684 

to reproductive isolation (indicated by white arrows). Here is no viability selection (s = 0). 685 

X-axis: mutant allele frequency (p). Y-axis: scaled derivatives of the mutant allele ( p r ). A: 686 

The haploid model (solid gray line, eq. 8). An unstable equilibrium at p = 1/2 (white point) 687 

divides two basins of attraction. Stable equilibria are at p = 0 and 1 (black points). B: The 688 

diploid models with the dominant mutant allele without delayed inheritance (dotted red line, 689 

eq. 11 when h = 1) and with delayed inheritance (solid red line, eq. 14). An unstable 690 

equilibrium is at p = 11 2 . C: The diploid models with the recessive mutant allele 691 

without delayed inheritance (dotted blue line, eq. 11 when h = 0) and with delayed inheritance 692 

(solid blue line, eq. 15). An unstable equilibrium is at p = 1 2 . D: Comparison of the 693 

diploid models with the dominant (red) and recessive (blue) alleles. Intersection points are at 694 

p = 1 2  3 6  and 1 2  3 6  (gray lines). 695 

 696 
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Figure 5. Relative fixation probabilities of a single mutant with reproductive isolation to that 697 

of a neutral mutant. Here is no viability selection (s = 0). A-F: X-axis is reproductive isolation 698 

parameter (r). G-I: X-axis is four times the product of reproductive isolation parameter and 699 

effective population size (4Nr). Y-axis is the product of fixation probability and effective 700 

population size (N in the haploid model and 2N in the diploid models). A-C: N = 3 701 

(first-step analyses and Monte Carlo simulations), D-F: N = 10 (Monte Carlo simulations), 702 

G-I: N → ∞ (diffusion approximation) and N = 1000 (Monte Carlo simulations). A, D, G: 703 

Solid gray lines: the haploid model. B, C, E, F, H, I: Blue lines: the recessive mutant allele, 704 

red lines: the dominant mutant allele, green lines: the partial dominance model with two 705 

phenotypes (h = 0.5), solid lines: with delayed inheritance, dotted lines: without delayed 706 

inheritance. Points represent the results of Monte Carlo simulations. The solid gray line in Fig. 707 

5G and the dotted green line in Fig. 5H are identical. The dotted blue and red lines (the 708 

diploid model without delayed inheritance) are overlapping in Fig. 5H. The solid blue and red 709 

lines (the diploid model with delayed inheritance) are overlapping in Fig. 5I. 710 

 711 

Figure 6. The alleles with the highest fixation probabilities given certain strength of 712 

reproductive isolation and viability selection. Note that black lines do not represent invasion 713 



 41

conditions unlike Fig. 3. A: N = 3 (first-step analyses), B: N = 10 (Monte Carlo simulations), 714 

C: N → ∞ (diffusion approximation). A, B: X-axis is reproductive isolation parameter (r) 715 

and Y-axis is viability selection coefficient (s). C: X-axis is four times the product of 716 

reproductive isolation parameter and effective population size (4Nr) and Y-axis is four times 717 

the product of viability selection coefficient and effective population size (4Ns). When 4Ns = 718 

0, both dominant and recessive mutant alleles with delayed inheritance have the same fixation 719 

probability (dashed line). DI: delayed inheritance. 720 
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Online Supporting Information 1 

Appendix S1: Invasion condition in the diploid model without delayed inheritance 2 

We denote the frequencies of the genotypes, AA, Aa, and aa by x, y, and z (= 1 – x – y). The 3 

frequencies after mating are 4 

 

  

T%x = x2  1 (1 h)r  xy 
y2

4
,

T%y = 1 (1 h)r  xy  2(1 r)xz 
y2

2
 (1 hr)yz,

T%z =
y2

4
 (1 hr)yz  z2 ,

 (A1) 5 

where 
  
T  1 2r (1 h)xy  xz  hyz   is the sum of the frequencies of three genotypes after 6 

mating (see Table 1 for the derivation). The frequencies in the next generation after viability 7 

selection favoring a mutant phenotype is 8 

 

  

x 
(1 s) %x

(1 s) %x  (1 hs) %y  %z
,

y 
(1 hs) %y

(1 s) %x  (1 hs) %y  %z
,

z 
%z

(1 s) %x  (1 hs) %y  %z
.

 (A2) 9 

Here we assume that A is the mutant allele and a is the wild-type allele. When h = 1, the 10 

mutant allele is dominant; whereas, it is recessive when h = 0. We first consider the condition 11 

for the invasion of the completely or partially dominant mutant (0  h 1). We then examine 12 

the invasibility condition for the completely recessive mutant ( h  0 ), in which we need to 13 

consult the center manifold theorem (Guckenheimer and Holmes 1983). 14 

 15 

(i) Invasibility of the completely and partially dominant mutant ( 0  h 1) 16 

We linearize the dynamics (A2) for small x  and y : 17 

 
x
y







 0 0

2(1 r)(1 hs) (1 hs)(1 hr)











x
y







 (A3) 18 

The largest eigenvalue of the linearized system is (1 hs)(1 hr) . Thus the mutant can 19 

invade if and only if (1 hs)(1 hr) 1. This condition can be rewritten as s  r / (1 hr) . 20 

 21 

(ii) Invasibility of the completely recessive mutant ( h  0 ) 22 
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If the mutant allele is completely recessive ( h  0 ), the linearized system is also 23 

given by with h  0 : 24 

 
x
y









  A

x
y









 

0 0
2(1 r) 1











x
y









 .  (A4) 25 

As the largest eigenvalue is 1, we need to have higher order terms of x  and y  to examine 26 

the local stability of   x  y  0 . The Taylor expansion of (A2) up to the quadratic terms of x  27 

and y  yields 28 

 

  

x
y









 

0 0
2(1 r) 1











x
y









 

f (x, y)

g(x, y)











,  (A5) 29 

with 30 

 
f (x, y)  (1 s) x2  (1 r)xy 

y2

4









 ,

g(x, y)  2(1 r)(1 2r)x2  (2 3r)xy 
y2

2
.

 (A6) 31 

The linear part of (A5) can be diagonalized by the transformation 32 

 x
y





  P u

v , with P 
0 

1

2(1 r)

1 1

















, (A7) 33 

where the column vectors of P  are the eigenvectors corresponding to the eigenvalues 1 and 34 

0 of matrix  A . This yields 35 

 

u
v






 1 0

0 0







u
v






 P1 f (x, y)

g(x, y)











 1 0
0 0







u
v








F(u,v)

G(u,v)









 ,

 (A8) 36 

with 37 

 

  

F(u,v)  
1

2
(r  s rs)u2 

r

2(1 r)
uv 

(2 r)r(1 s)

2(1 r)
v2 ,

G(u,v)  
1

2
(1 r)(1 s)u2 

(2 r)r(1 s)

2(1 r)
v2.

 (A9) 38 

Define the center manifold W c  (u,v) | v  k(u), k (0)  k (0)  0   on which the trajectory 39 
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near u  v  0 stays throughout the process. The simplest form would be k(u)  au2. In 40 

order that the point ( u , v )  is also on the center manifold, we should have v  k( u ) . 41 

Substituting u '  u  F(u,k(u))  and v  G(u,k(u))  into this yields 42 

 
  
G(u,au2 ) a u  F(u,au2 ) 

2
 0. (A10) 43 

Equating the coefficient of the leading term to zero, a  is determined as 44 

 
  
a  

1

2
(1 r)(1 s) . (A11) 45 

The slow dynamic of u  restricted on the center manifold is then 46 

 
  
u  u  F(u,k(u))  u 

1

2
(r  s  rs)u2, (A12) 47 

and hence  u  converges to zero if r  s rs  0, or the mutant can invade if r  s rs  0 48 

(or (1 r)(1 s) 1). This invasibility condition for the completely recessive mutant is 49 

equivalent to that for the completely dominant mutant, but, interestingly, differs from the 50 

condition s  r  in the limit of h 0 for the invasibility condition of the partially dominant 51 

mutant. 52 

 53 

 54 

Appendix S2: Invasion condition in the diploid model with delayed inheritance 55 

In the presence of delayed inheritance, a phenotype of an individual is determined by a 56 

maternal genotype. We therefore need to keep track the frequencies of 2 3 combination of 57 

phenotype   genotype to describe the genetic dynamics. Here we denote the two alleles as 58 

A (dominant allele) and a (recessive allele). An individual has either phenotype A or a 59 

(right-handed or left-handed, depending on which is dominant) that is determined by the 60 

genotype of its mother. We denote for example an individual with the genotype AA and the 61 

phenotype A by AAA.  62 

 As we assume that A is a dominant allele and a is a recessive allele in the diploid 63 

model with delayed inheritance, the genotype-phenotype combination AAa will never be 64 

produced (indeed, for an individual to have phenotype a, its mother should be homozygote of 65 

the recessive allele, aa). We denote the frequencies of AAA, AaA, Aaa, aaA, and aaa as x
A

, y
A

, 66 

y
a
, z

A
, and z

a
. x

a
 0 as noted above. The frequency of phenotype A is x

A
 y

A
 z

A
 and 67 

that of phenotype a is y
a
 z

a
. Let p

i
 ( x

i
 y

i
/ 2 ) be the frequency of allele A with 68 

phenotype i (A or a), and q
i
 ( z

i
 y

i
/ 2) be the frequency of allele a with phenotype i 69 

(A or a). The frequencies after mating are calculated from Table S1 as 70 
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Tx
A
 ( p

A
 p

a
)2  2rp

A
p

a
,

Ty
A
 ( p

A
 p

a
)(q

A
 q

a
) ( p

A
 p

a
)

y
A
 y

a

2
 r( p

A
q

a
 p

a
q

A
)

r

2
( p

a
y

A
 p

A
y

a
),

Ty
a
 ( p

A
 p

a
)(z

A
 z

a
) r( p

a
z

A
 p

A
z

a
),

Tz
A
 (q

A
 q

a
)

y
A
 y

a

2


r

2
(q

a
y

A
 q

A
y

a
),

Tza  (qA  qa )(zA  za ) r(qa zA  qAza ),

(B1) 71 

where T  1 2r(x
A
 y

A
 z

A
)( y

a
 z

a
) . When there is no reproductive isolation (r = 0) or 72 

viability selection (s = 0), the ratio of two phenotypes for the heterozygous genotype, AaA : 73 

Aaa, is (1 + p) : (1 – p) and that for the homozygous genotype, aaA : aaa, is p : (1 – p) under 74 

delayed inheritance assuming the HW equilibrium. 75 

 76 

(i) Invasibility of a dominant mutant 77 

The frequencies in the next generation are then given by those after the viability 78 

selection favoring a dominant handedness mutant (A) with the selection coefficient  s: 79 

 
  
x

A
 

(1 s) %x
A

W
, y

A
 

(1 s) %y
A

W
, y

a
 

%y
a

W
, z

A
 

(1 s)%z
A

W
,z

a
 

%z
a

W
,  (B1) 80 

where W  1 s( x
A
 y

A
 z

A
)  is the mean fitness of the population.  81 

 We now examine the invasibility of the dominant allele A in the resident population 82 

consisting only of the recessive allele a (i.e., z
a
1  and x

A
 y

A
 y

a
 z

A
 0).  The 83 

system Error! Reference source not found.-(B1) is linearized with respect to   zA , y
A

, y
a
, 84 

and   xA  as 85 

 

  

z
A


y
a


y
A


x
A


























0 (1 s) / 2 (1 r)(1 s) / 2 0

0 1/ 2 (1 r) / 2 1 r

0 (1 s) / 2 (1 r)(1 s) / 2 (1 r)(1 s)

0 0 0 0



















z
A

y
a

y
A

x
A





















,  (B2) 86 

where z
a
 is eliminated by using z

a
 1 x

A
 y

A
 y

a
 z

A
. The Jacobian matrix in the right 87 

hand side of (B2) has three zero eigenvalues and a non-trivial eigenvalue, 88 

 
  
 

1

2
(2 s r  rs). (B3) 89 

The population allows the invasion of the dominant mutant if  1, which gives exactly the 90 

same condition (1 r)(1 s) 1 as that for the invasibility of dominant mutant if there was 91 

no delayed inheritance. Though the condition for the invasibility is the same, the value (B3) 92 
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itself is smaller than the dominant eigenvalue,   (1 r)(1 s) , when there was no delayed 93 

inheritance, which corresponds to the fact that the delayed inheritance makes the invasion of a 94 

handedness mutant easier in a finite population. 95 

 96 

(ii) Invasibility of a recessive mutant 97 

 Let us now consider the invasibility of a recessive handedness mutant that enjoys an 98 

ecological advantage in viability with the selection coefficient s . The frequencies after 99 

reproduction are given by Error! Reference source not found., and the frequencies in the 100 

next generation are 101 

 
  
x

A
 

xA

W
, y

A
 

yA

W
, y

a
 

(1 s) y
a

W
, z

A
 

zA

W
, z

a
 

(1 s) z
a

W
,  (B4) 102 

where W  1 s( y
a
 z

a
) is the mean fitness. As before x

a
 0 . The resident population 103 

consists only of dominant allele A (i.e., x
A
 1 and y

A
 y

a
 z

A
 z

a
 0 ). The system 104 

Error! Reference source not found., (B4) is linearized with respect to   za ,   zA ,   ya , and 105 

  yA  as 106 

 

  

za


zA


ya


yA
























 A

z
a

zA

y
a

yA























f
1
(z

a
,z

A
, y

a
, y

A
)

f2(za ,zA , ya , yA )

f
3
(z

a
, z

A
, y

a
, y

A
)

f4(za ,zA , ya , yA )























0 0 0 0
0 0 0 0

(1 r)(1 s) 1 s 0 0

1 r 1 1 r 1



















z
a

z
A

ya

y
A























f1(za , zA , ya , yA )

f
2
(z

a
, z

A
, y

a
, y

A
)

f3(za ,zA , ya , yA )

f
4
(z

a
, z

A
, y

a
, y

A
)





















,

(B5) 107 

where f
i
’s are quadratic or higher order terms of z

a , z
A , y

a , and y
A . The matrix A has 108 

eigenvalues   1 and   0 (with multiplicity 3). Because the dominant eigenvalue is 1, 109 

we need to construct a center manifold to examine the local stability of the equilibrium 110 

  (z
a
, z

A
, y

a
, y

A
)T  (0,0,0,0)T , where superscript T  denotes the vector transform. 111 

 The eigenvector corresponding to the eigenvalue 1 is found, by solving 112 

( A1I )b  0 , to be b
1
 (1,0,0,0)T , where I  is a 4 4 identity matrix. There are two 113 

eigenvectors satisfying ( A 0I )b  Ab  0  corresponding to the eigenvalue 0: 114 
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b
2


1
(1 r)

0
0



















, and b
3


0
0
1

(1 r)



















. (B6) 115 

We now find a nonzero vector b
4
that, together with b

2
 and b

3
, spans the 3-dimensional 116 

generalized eigenspace corresponding to the eigenvalue 0. Such vector b
4
 must satisfy 117 

( A 0I )2b
4
 A2b

4
 0  and be linearly independent of b

2
 or b

3
, which is obtained as 118 

 

   

b
4


1
0
0

(1 r)(2 s r  rs)



















. (B7) 119 

Now we define the transformation matrix P  whose columns consist of b
1
, b

2
, b

3
, and 120 

b
4
: 121 

 

  

P 

0 1 0 1
0 (1 r) 0 0

0 0 1 0
1 0 (1 r) (1 r)(2 s r  rs)



















. (B8) 122 

We then transform the variables as 123 

 

  

z
a

z
A

y
a

yA





















 P

u
1

u
2

u
3

u4





















. (B9) 124 

The dynamics for the transformed variables become 125 
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u
1


u
2


u
3


u
4
























 P1AP

u
1

u
2

u3

u4





















 P1

f
1

f
2

f3

f4























1 0 0 0
0 0 0 0
0 0 0 (1 r)(1 s)

0 0 0 0



















u
1

u2

u3

u
4























F
1
(u

1
,u

2
,u

3
,u

4
)

F2(u1,u2 ,u3,u4 )

F3(u1,u2 ,u3,u4 )

F
4
(u

1
,u

2
,u

3
,u

4
)





















.

 (B10) 126 

Here, F
i
(u

1
,u

2
,u

3
,u

4
)  is the i th row of P1f (x)  P1f (Pu)  where f  ( f

1
, f

2
, f

3
, f

4
)T , 127 

   x  (z
a
, z

A
, y

a
, y

A
)T , and u  (u

1
,u

2
,u

3
,u

4
)T .  We now define the center manifold 128 

 W c  (u
1
,u

2
,u

3
,u

4
) | u

2
 f (u

1
),u

3
 g(u

1
),u

4
 h(u

1
)  , (B11) 129 

where f , g , and h  are functions with the following properties: f (0)  g(0)  h(0)  0 130 

and f (0)  g (0)  h (0)  0 . The simplest forms for such functions are f (u)  au2 , 131 

  g(u)  bu2 , and   h(u)  cu2  where a , b, and c  are constants.  Substituting these into 132 

(B10), and requiring that the variables u
2
 , u

3
 , and u

4
  in the next generation must lie on the 133 

center manifold (  u2
  f (u

1
 ),   u3

  g(u
1
 ) , and u

4
  h(u

1
 ) ), we now have 134 

 

u1
  u1  F1(u1,au1

2 ,bu1
2 ,cu1

2 ),

a u
1
 F

1
(u

1
,au

1
2 ,bu

1
2 ,cu

1
2 ) 

2
 F

2
(u

1
,au

1
2 ,bu

1
2 ,cu

1
2 ),

b u
1
 F

1
(u

1
,au

1
2 ,bu

1
2 ,cu

1
2 ) 

2
 (1 r)(1 s)cu

1
2  F

3
(u

1
,au

1
2 ,bu

1
2 ,cu

1
2 ),

c u
1
 F

1
(u

1
,au

1
2 ,bu

1
2 ,cu

1
2 ) 

2
 F

4
(u

1
,au

1
2 ,bu

1
2 ,cu

1
2 ).

 (B12) 135 

The coefficients  a , b, and  c  are determined from the leading order terms of the second to 136 

the forth equations of (B12) as 137 

 a  
1

4(1 r)
, b 

1 s

4
, c 

1

4(1 r)
. (B13) 138 

Substituting this into the first equation of (B12), we have a slow dynamics on the center 139 

manifold: 140 
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u

1
  u

1


1

4
(s r  rs)u

1
2 O u

1
3  . (B14) 141 

Thus, u
1
 converges to zero if and only if s(1 r) r  0 or s  r / (1 r). Conversely, the 142 

recessive mutant can invade the population if s  r / (1 r). This condition is the same as the 143 

condition (2 s r  rs) / 2 1  or (1 r)(1 s) 1  for the invasibility of the dominant 144 

mutant.  145 

 The center manifold u
2
 u

1
2 / 4(1 r) , u

3
 (1 s)u

1
2 / 4, and u

4
 u

1
2 / 4(1 r)  146 

in the original coordinate is defined in a parametric form with a parameter   u
1
 as 147 

 

  

z
a
 O  3 ,

z
A


1

4
 2 O  3 ,

y
a


1 s

4
 2 O  3 ,

y
A
   3 2s  2r  2rs

4
 2 O  3 .

 (B15) 148 

 149 

 150 

Appendix S3: Diffusion approximation analysis of the diploid model without delayed 151 

inheritance 152 

We here derive the approximate one-dimensional diffusion process describing the allele 153 

frequency dynamics in a finite population of effective population size N without delayed 154 

inheritance. The discrete-generation genotype dynamics in infinite population are derived as 155 

(A1)-(A2) of Appendix S1. As is usual in diffusion approximation, we take the limit of weak 156 

fecundity and viability selections, r  0 , s 0 , and large population N   with the 157 

products Nr and Ns being kept finite. 158 

 Assuming that both s and r are of the order of , a small positive constant, we 159 

expand the dynamics (A1)-(A2) in Taylor series with respect to . The leading order dynamics 160 

for the zygote frequencies x, y, and z of genotypes AA, Aa, and aa are then 161 

 

x  p2 O  ,
y  2 pq O  ,
z  q2 O  ,

 (C1) 162 

where   p  x  y / 2  and   q  z  y / 2  respectively is the frequency of allele A and a. Thus, 163 

in the leading order, genotype frequencies are in the Hardy-Weinberg equilibrium. From this it 164 
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also follows that the allele frequencies do not change with time, p  p  and q  q , up to 165 

the leading order. 166 

 Now we derive the slow allele frequency dynamics as the first order expansion of 167 

the equations (A1) and (A2). The change in the allele frequency p of the mutant allele A is 168 

then 169 

 p  p(1 p) r p(2 p2 1) h(6 p2  6 p 1)   s p  h(1 2 p)  O( 2 ). (C2) 170 

Note that s in (C2) is the selection coefficient favoring the phenotype A. From (C2) we have 171 

the frequency dynamics: 172 

 

p  p(1 p) r p(2 p2 1) h(6 p2  6 p 1)   s p  h(1 2 p)  .  (C3) 173 

The dynamics has two stable equilibria at p = 0 and p = 1, and an internal unstable 174 

equilibrium when r > s.  175 

With random genetic drift, the diffusion process for the change in the allele 176 

frequency is characterized by infinitesimal mean and variance of the frequency change: 177 

 
M (p)  E p p   p(1 p) r p(2 p2 1) h(6 p2  6 p 1)   s p  h(1 2 p)  ,
V (p)  E p 2 p



 

p(1 p)

2N
.

(C4) 178 

The fixation probability of the allele A with the initial frequency p then satisfies the 179 

backward equation (12) with the boundary condition u(0) = 0 and u(1) = 1. This yields 180 

equation (13). The fixation probability of a single mutant  is then 181 

   1 (2N )

exp 4Nry(1 y)
y
2

(1 y) h(2y 1)




 4Nsy

y
2
 h(1 y)













dy
0

1


,  (C5) 182 

The relative fixation rate of a single mutant relative to that of a neutral mutant is given by 183 

  2N : 184 

   1

exp Ry(1 y)
y
2

(1 y) h(2y 1)




 Sy

y
2
 h(1 y)













dy
0

1


,  (C6) 185 

where R  4Nr  and S  4Ns . Here we consider three cases: (i) h = 0 (the recessive mutant), 186 

(ii) h = 1 (the dominant mutant), (iii) h = 0.5 (the partially dominant mutant). 187 

 188 

(i) h = 0 (the recessive mutant) 189 

After factorization, the deterministic dynamics is 190 
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
p  p2 (1 p) r(2 p2 1) s ,  (C7) 191 

when h = 0. This can be written as 192 

 p  2rp2 (1 p) p 
r  s

2r







p 

r  s

2r







,   193 

when r > 0 and r > s. Thus the dynamics has an internal unstable equilibrium at 194 

pc  (r  s) 2r  when r > s. When s = 0, therefore, the dynamics has two stable equilibria at 195 

p = 0 and p = 1, and an internal unstable equilibrium at pc  1 2  (the dotted blue line in 196 

Fig. 3). 197 

The relative fixation rate is 198 

 0 
1

exp
y2

2
R(1 y2 ) S 









dy
0

1


.  (C8) 199 

When s = 0, for the relative fixation rate, 0  1 / exp
Ry2

2
(1 y2 )









dy

0

1

 ,  we can show the 200 

following properties. Firstly, at the limit of  the fixation probability is equal to that of 201 

a neutral allele: 202 

 0 R0  1. (C9) 203 

Secondly we see that 1 0  is convex with respect to R because 204 

 
2

R2

1

0








1

4
y2  y4 2

exp
R

2
y2  y4 




dy

0

1

  0. (C10) 205 

Thirdly we see that the sign of the initial slope of 1/
0
 from  206 

 

R

1

0







R0


1

15
. (C11) 207 

Because the right-hand side of equation (C11) is positive, 0  is smaller than 1 for any R > 0. 208 

The fixation probability of a dominant mutant allele is always smaller than that, 1/(2N), of a 209 

neutral allele (i.e. the native recessive allele is the finite population size ESS, ESSN, in the 210 

sense of Nowak et al. (2004)). In addition, this value is smaller than the haploid model (1/12), 211 

implying that the reduction rate of fixation probability is more moderate in the diploid model. 212 

 213 

(ii) h = 1 (the dominant mutant) 214 

 The frequency dynamics of dominant mutant is obtained from equation (C3): 215 
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
p  p 1 p 2 r 2 p2  4 p 1  s .  (C12) 216 

This can be written as 217 

 



p  2rp 1 p 2 p  1
r  s

2r



















1
r  s

2r







 p












.  218 

If r > s, this has an internal unstable equilibrium at pc  1 r  s / 2r . When s = 0, the 219 

dynamics has an internal unstable equilibrium at pc  11 2  (the dotted red line in Fig. 3). 220 

Therefore the relative fixation rate of a recessive mutant to that of a neutral allele 221 

1  2N1  then satisfies 222 

 1 
1

exp
y
2

2  y  R 1 y 2  S



 dy

0

1


.  (C13) 223 

If s  0, we can show that the function (1/
1
)  is convex with respect to R, 1 R0  1, and 224 

(1 /1) / R 
R0

  1/15. Actually, 1 and 0  are equivalent (0 1) when s = 0, though 225 

it is different when s > 0. This is obvious from equations (C8) and (C13); if we represent the 226 

frequency of the recessive allele as p and that of the dominant allele as q, then  227 

 
p2 1 p2   1 q 2

1 1 q 2 

 q 2  q  1 q 2
.

    (C14) 228 

 229 

(iii) h = 0.5 (the partially dominant mutant) 230 

 The frequency dynamics of mutant with partial dominance is obtained from 231 

equation (C3): 232 

 p 
1

2
p 1 p  r 2 p 1  2 p2  2 p 1  s .  (C15) 233 

This has an internal unstable equilibrium at 234 

 pc 
1

2


1

2

1

27


s

r






2


s

r











1

3


1

6

1

27


s

r






2


s

r












1

3

,  235 
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when r > s. Equation (C15) has an internal unstable equilibrium at pc = 1/2 when s = 0 (the 236 

dotted lime-green line in Fig. S1). The relative fixation rate is 237 

 2 
1

exp
y
2

R(1 2y  2y2  y3) S  dy
0

1


. (C16) 238 

If s  0, we can show that the function (1 2 ) is convex with respect to R, 2 R0  1, and 239 

(1 /2 ) / R 
R0

 1/15. 240 

These analytical expressions for the relative fixation rates 0 , 1  and 2  241 

obtained from one-dimensional diffusion approximation showed good agreements with the 242 

simulation results when N = 1,000 (Fig. 4H). When s = 0, we found that 0  and 1 are 243 

equivalent as shown in equation (C14) (Fig. 4H) and that 2  is higher than 0  and 1 244 

when R is not small, implying that partial dominance can promote fixation of the mutant 245 

allele in the diploid model with three phenotypes (Figs. 4H, S2C).  246 

 247 

 248 

Appendix S4:  Diffusion approximation analysis of the diploid model with delayed 249 

inheritance 250 

We here derive the approximate one-dimensional diffusion process describing the allele 251 

frequency dynamics of snail handedness alleles in a finite population of effective population 252 

size N  with delayed inheritance. The discrete-generation genotype-phenotype dynamics in 253 

infinite population are derived as (B1) and (B2) or (B1) and (B5) of Appendix S2. As is usual 254 

in diffusion approximation, we take the limit of weak fecundity and viability selections, 255 

r  0, s 0 , and large population N   with the products Nr  and Ns being kept 256 

finite.  257 

 Assuming that both  s  and r  are of the order of  , a small positive constant, we 258 

expand the dynamics (B1) and (B2)/(B5) in Taylor series with respect to  . The leading 259 

order dynamics for the zygote frequencies x  x
A
 x

a
, y  y

A
 y

a
, z  z

A
 z

a
 of 260 

genotypes AA, Aa, and aa are then 261 

 

x  p2 O( ),

y  2 pq O( ),

z  q2 O( ),

 (D1) 262 

where p  x  y / 2 and q  z  y / 2 respectively is the frequency of allele A and a. Thus, 263 

in the leading order, genotype frequencies are in the Hardy-Weinberg equilibrium. From this it 264 
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also follows that the allele frequencies do not change with time, p  p  and q  q , up to 265 

the leading order. The frequencies of phenotype-genotype combinations are thus kept constant 266 

for a given allele frequency p  (or q ) up to the leading order: 267 

 

x
A
 p2 O( ),

x
a
 0,

y
A
 pq(1 p)O( ),

y
a
 pq2 O( ),

z
A
 pq2 O( ),

z
a
 q3 O( ).

 (D2) 268 

 Now we derive the slow allele frequency dynamics as the first order expansion of 269 

the equations (B1) and (B2)/(B5). The change in the allele frequency p  of the dominant 270 

allele A is then 271 

 
  
p 

1

2
p(1 p)2 r(2 p2  4 p1) s  O( 2 ) . (D3) 272 

For the frequency q  of the recessive allele, we have 273 

 
  
q 

1

2
q2(1 q) r(2q2 1) s  O( 2 ) . (D4) 274 

Note that  s  in (D3) and (D4) is the selection coefficient favoring phenotype a. If phenotype 275 

A is selected for, the sign must be changed before s  in the right hand side of (D3) and (D4).  276 

 277 

(i) The dominant mutant alleles 278 

If the dominant mutant is selected for in the viability selection, we change the sign 279 

before  s  in the right hand side of (D3) to have the deterministic dynamics, 280 

 

p 

1

2
p(1 p)2 r(2 p2  4 p1) s .  (D5) 281 

This rate of change in the allele frequency of dominant allele is exactly a half of that for the 282 

diploid model without delayed inheritance with h = 1 (eq. C12). In other words, the delayed 283 

inheritance does not change allele frequency dynamics at all except for its halved rate. 284 

Therefore, the position of internal unstable equilibrium, pc  11/ 2 , is the same as in the 285 

model without delayed inheritance (the solid red line in Fig. 3). 286 

The relative fixation rate of a dominant mutant to that of a neutral allele 287 

A  2NA  then satisfies 288 
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 A 
1

exp
y
4

(2  y) R(1 y)2  S  dy
0

1


. (D6) 289 

 290 

(ii) The recessive mutant allele 291 

If the recessive allele is selected for in the viability selection, we have from (D4) the 292 

deterministic dynamics, 293 

 

q 

1

2
q2(1 q) r(2q2 1) s .  (D7) 294 

Again, the right hand side is exactly a half of that for the diploid model without delayed 295 

inheritance with h = 0 (eq. C7). Thus, two stable equilibria at q = 0 and q = 1, and an internal 296 

unstable equilibrium at   qc
 1/ 2  are exactly the same as in the model without delayed 297 

inheritance (the solid blue line in Fig. 3). The relative fixation rate of a recessive mutant to 298 

that of a neutral allele a  2Na  then satisfies 299 

 a 
1

exp
z2

4
R(1 z2 ) S 









dz
0

1


.  (D8) 300 

Note that A  and a  are equivalent when s = 0, which can be shown by changing the 301 

variables in the integral in (D8) from z  to y 1 z . When s = 0, the initial slope of 1 /A  302 

and 1 /a  is (1 /A ) / R 
R0

 1/ 30. This value is smaller than the haploid model (1/12) 303 

and the diploid model without delayed inheritance (1/15), implying that the reduction rate of 304 

fixation probability is more moderate in the diploid model with delayed inheritance. 305 

The analytical formula for the relative fixation probabilities, (D6) and (D8), by one 306 

dimensional diffusion approximation showed good agreements with the Monte Carlo 307 

simulation results for the original 4 dimensional genotype-phenotype dynamics for 308 

sufficiently large N  (N = 1,000, Fig. 4I). 309 

 310 

 311 

Appendix S5: Exact fixation probabilities in the haploid model 312 

We calculated exact fixation probabilities in the Markov process without any approximation 313 

by the first step analysis. Consider a finite population with N haploid individuals. Recursion 314 

equations of fixation probabilities can be written as 315 
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 u(i)  Pi, ju( j)
j0

N

 ,  (E1) 316 

where u(i) is the probability that a mutant allele starting with i individuals in the initial 317 

population eventually goes to fixation, and Pi,j is the transition probability that the number of 318 

mutant allele change from i to j in one generation (0 ≤ i, j ≤ N). Note that u here is a function 319 

of number of individuals, but u in Appendix S3 and S4 is a function of frequencies. With the 320 

boundary conditions u(0) = 0 and u(N) = 1, the fixation probability can be obtained by solving 321 

linear equations with N – 1 unknown variables. This can be written in a matrix form: 322 

 Au  b,  (E2) 323 

where 324 

 

A 

P1,1 1 P1,2 L P1, N1 

P2,1 P2,2 1 L P2, N1 

M M O M
PN1 ,1 PN1 ,2 L PN1 , N1  1





















,

u 

u(1)

u(2)

M
u(N 1)



















,

b 

P1,N

P2,N

M
P(N1),N





















.

 325 

The solution can be obtained by multiplying the inverse of matrix A in the both sides of 326 

(E1): u  A1b . The transition probability Pi,j is given by the binomial distribution when 327 

there is no selection (r = s = 0): 328 

 Pi, j 
N
j









 p j (1 p)N j ,  (E3) 329 

where p = i/N. When there is positive frequency-dependent selection due to reproductive 330 

isolation (r > 0 and s = 0), the expected frequency in the next generation in equation (E3), p, 331 

is replaced by equation (1): 332 

 Pi, j 
N
j











p 1 r(1 p) 
1 2rp(1 p)







j

1
p 1 r(1 p) 
1 2rp(1 p)







N j

. (E4) 333 
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When there is viability selection for the mutant (r > 0 and s > 0), equation (E3) is replaced by 334 

 



Pi, j 
N
j











(1 s) %p

1 s%p







j

1
(1 s) %p

1 s%p







N j

,  (E5) 335 

where p  is from equation (1). The graphs of u(1) are in good agreement with the simulation 336 

results when N = 3 (Fig. 4A). 337 

One drawback of this method is that calculating the inverse matrix of the transition 338 

probability matrix, A, is time-consuming or almost impossible when N is large. In the 339 

diploid models, the dimension is two without delayed inheritance and four with delayed 340 

inheritance. Due to the ‘curse of dimensionality,’ therefore, calculation is especially difficult 341 

in the diploid models. For sufficiently small population size, however, this method is practical 342 

and gives accurate results for very small N  when diffusion approximation fails. 343 

 344 

 345 

Appendix S6: Exact fixation probabilities in the diploid model without delayed 346 

inheritance 347 

Consider a finite population with diploid N individuals. The fixation probability can be 348 

calculated as 349 

 u(i, j)  Pij ,klu(k,l)
l0

N


k0

N

 ,  (F1) 350 

where u(i, j) is the fixation probability when there are i individuals of AA homozygote and j 351 

individuals of aa homozygote (we call this as state (i, j) hereafter) and Pij,kl is the transition 352 

probability from state (i, j) to state (k, l) in one generation (0 ≤ i, j, k, l ≤ N). Note that the 353 

number of heterozygous individuals Aa is (N – i – j) or (N – k – l). With the boundary 354 

conditions u(0, N) = 0 and u(N, 0) = 1 where the mutant allele is A and the wild-type allele is 355 

a, the fixation probability of a mutant allele, u(0, N – 1), can be obtained by solving linear 356 

equations for (N 1)(N  2) / 2 2  unknowns u(i, j)  for i  0,1,, N 1, 357 

  j  0,1,, N 1, with i  j  N . This can be rewritten in a matrix form Au  b : 358 

 



P00,00 1 P00,01 L P00, N1 1

P01,00 P01,01 1 L P01, N1 1

M M O M
PN1 1,00 PN1 1,01 L PN1 1, N1 1 1





















u(0,0)

u(0,1)

M
u(N 1,1)





















P00,N 0

P01,N 0

M
PN1 1,N 0





















.  359 

The solution is obtained by multiplying the inverse of matrix A in the both sides: u  A1b . 360 

The transition probability is given by the multinomial distribution, 361 
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 Pij ,kl 
N !

k!(N  k  l)!l!
x 

y

2






2









k

2 x 
y

2






y

2
 z














Nkl
y

2
 z







2









l

,  (F2) 362 

where x = i/N, y = 1 – (i + j)/N, and z = j/N. When there is positive frequency-dependent 363 

selection due to reproductive isolation or viability selection for the mutant in addition to 364 

reproductive isolation, the expected frequencies of genotypes in the next generation in 365 

equation (F2) is replaced by equation (A1) or (A2). 366 

 367 

 368 

Appendix S7: Exact fixation probabilities in the diploid model with delayed inheritance 369 

Consider a finite population with diploid N individuals. The fixation probability can be 370 

calculated as 371 

 u(a,b,c,d)  Pabcd ,ijklu(i, j,k,l)
l0

N


k0

N


j0

N


i0

N

 ,  (G1) 372 

where u(a, b, c, d) is the fixation probability when there are a individuals of AAA, b 373 

individuals of AaA, c individuals of Aaa, and d individuals of aaA (we call this as state (a, b, c, 374 

d) hereafter) and Pabcd,ijkl is the transition probability from state (a, b, c, d) to state (i, j, k, l) in 375 

one generation (0 ≤ a, b, c, d, i, j, k, l ≤ N). Note that the number of aaa individuals is (N – a – 376 

b – c – d) or (N – i – j – k – l). The frequencies of AAA, AaA, Aaa, and aaA are xA (= a/N), yA 377 

(= b/N), ya (= c/N), zA (= d/N). With the boundary conditions u(0, 0, 0, 0) = u(0, 0, 0, 1) = … = 378 

u(0, 0, 0, N) = 0 and u(N, 0, 0, 0) = 1 where the dominant mutant allele is A and the recessive 379 

wild-type allele is a, the fixation probability of a mutant allele, u(0, 0, 1, 0), can be obtained 380 

by solving linear equations for u(i, j,k,l)  with i, j,k,l  0,1,, N  and i  j  k  l  N . 381 

This can be rewritten in a matrix form Au  b : 382 

 



P1000,1000 1 P1000,2000 L P1000,00 N 0

P2000,1000 P2000,2000 1 L P2000,00 N 0

M M O M
P00 N 0,1000 P00 N 0,2000 L P00 N 0,00 N 0 1





















u(1,0,0,0)

u(2,0,0,0)

M
u(0,0, N ,0)





















P1000,N 000

P2000,N 000

M
P00 N 0,N 000





















.  383 

The solution is obtained as: u  A1b . The transition probability is given by the multinomial 384 

distribution, 385 

 Pabcd ,ijkl 
N!

i! j!k!l! N  i  j  k  l !
xA

i yA
j ya

kzA
l 1 xA  yA  ya  zA Ni jkl

, (G2) 386 

where 387 
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xA 
a

N


b  c

2N






2

,

yA 
a

N


b  c

2N






1
a

N






,

ya 
a

N


b  c

2N






d  e

N
,

zA 
b  c

2N

b  c

2N


d  e

N






.
 388 

The expected frequencies in the next generation in equation (G2) are replaced by equations 389 

(B1)-(B2) when there is positive frequency-dependent selection due to reproductive isolation 390 

and viability selection for the mutant. 391 

 When the recessive mutant allele is a and the wild-type allele is A, we solved the 392 

equation, 393 

 



P1000,1000 1 P1000,2000 L P1000,00 N 0

P2000,1000 P2000,2000 1 L P2000,00 N 0

M M O M
P00N 0,1000 P00 N 0,2000 L P00 N 0,00 N 0 1





















u(1,0,0,0)

u(2,0,0,0)

M
u(0,0, N ,0)





















P1000,0000

P2000,0000

M
P00 N 0,0000





















,  394 

to obtain the fixation probability of a single mutant, u(N – 1, 1, 0, 0), with the boundary 395 

conditions: u(N, 0, 0, 0) = 0 and u(0, 0, 0, 0) = u(0, 0, 0, 1) = … = u(0, 0, 0, N) = 1. The 396 

expected frequencies in the next generation in equation (G2) are replaced by equations (B1) 397 

and (B5) when there is positive frequency-dependent selection due to reproductive isolation 398 

and viability selection for the mutant. 399 

 400 

 401 

Appendix S8: The partial dominance model with two phenotypes 402 

Thus far we considered the model in which h is a parameter that determines the intermediate 403 

phenotype of heterozygote (Appendix S1, S3). Here we consider the case where there are only 404 

two phenotypes (A and a) and the heterozygous phenotype is A with probability h and a with 405 

probability 1 – h. In this case, the mating probability between heterozygote (Aa × Aa) is 406 

 h2  (1 h)2  2h(1 h)(1 r)  y2  1 2h(1 h)r y2.   (H1) 407 

Therefore the frequencies after mating are 408 
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

T%x  x2  1 (1 h)r xy 
1

4
1 2h(1 h)r y2 ,

T%y  1 (1 h)r xy  2(1 r)xz 
1

2
1 2h(1 h)r y2  (1 hr)yz,

T%z 
1

4
1 2h(1 h)r y2  (1 hr)yz  z2 ,

 (H2) 409 

where T  1 2r(x  hy) (1 h)y  z . This is the same as (A1) when h = 0 or 1. By 410 

linearizing the dynamics (H2) after viability selection (A2) for small x and y, we have the 411 

same result as equation (3) in Appendix S1. The largest eigenvalue of the linearized system is 412 

(1 + hs)(1 – hr), and the mutant can invade if and only if (1 + hs)(1 – hr) > 1. This condition 413 

(s > r/(1 – hr)) is the same as the original diploid model (Appendix S1).  414 

 For diffusion approximation analysis, we take the limit of weak fecundity and 415 

viability selections, r  0 , s 0 , and large population N   with the products Nr and 416 

Ns being kept finite (Appendix S3). Assuming that both s and r are the order of e, a small 417 

positive constant, the change in the allele frequency p of the mutant allele A is 418 

 p  p(1 p)  p  h(2 p 1)  r 1 2 p2  4hp(1 p)   s O( 2 ).  (H3) 419 

Note that s in (H3) is the selection coefficient favoring the phenotype A. From (H3) we have 420 

the frequency dynamics: 421 

 

p  p(1 p) p  h(2 p 1)  r 1 2 p2  4hp(1 p)   s .   (H4) 422 

When h = 1/2, this is a half of the haploid model (equation 8). The dynamics has two stable 423 

equilibria at p = 0 and p = 1, and an internal unstable equilibrium at 424 

pc 
h

2h1


(2h2  2h1)r  (2h1)s

2r (2h1)
 when r > s. The relative fixation rate of a single 425 

mutant relative to that of a neutral mutant is given by   2N : 426 

   1

exp
y
2

y  2h(1 y)  R(1 y)(1 2hy  y) S  dy
0

1


.  (H5) 427 

where R = 4Nr and S = 4Ns. As shown in Figure S3, the lowest fixation probability is 428 

obtained when h = 1/2. When h = 1/2, the fixation probability is exactly the same as the 429 

haploid model (Figs. 4G, 4H).  430 

 Exact fixation probabilities without approximation in small populations are also 431 

calculated as Appendix S6. Results are shown in Fig. 4B (the dotted dark-green line). 432 

 433 

 434 
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Figure S1: Allele frequency dynamics affected by positive frequency-dependent selection due 

to reproductive isolation (indicated by white arrows). X-axis: the mutant allele frequency (p). 

Y-axis: scaled derivatives of the mutant allele (p /r). The haploid model (the solid gray line, 

eq. 8 when s = 0), the partial dominance model with two phenotypes (the dotted dark-green 

line, eq. H5 when s = 0 and h = 1/2), and the partial dominance model with three phenotypes 

(the dotted lime-green line, eq. 10 when s = 0 and h = 1/2). An unstable equilibrium at p = 1/2 

(the white point) divides two basins of attraction. Stable equilibria are at p = 0 and 1 (the 

black points). 

 



 



Figure S2: Relative fixation probabilities of a single mutant with reproductive isolation (and 

without viability selection: s = 0) to that of a neutral mutant. A, B: X-axis is the reproductive 

isolation parameter (r). C: X-axis is four times the product of the reproductive isolation 

parameter and the effective population size (4Nr). Y-axis is the product of fixation probability 

and effective population size (2Nρ). A: N = 3 (the first step analysis and Monte Carlo 

simulations), C: N = 10 (Monte Carlo simulations), C: N → ∞ (diffusion approximation) 

and N = 1000 (Monte Carlo simulations). Dotted dark-green lines: the partial dominance 

model with two phenotypes. Dotted lime-green lines: the partial dominance model with three 

phenotypes. 



 
Figure S3: Effects of partial dominance in the diploid model without delayed inheritance in 

large populations. Blue points: the recessive mutant (h = 0). Red points: the dominant mutant 

(h = 1). Dotted dark-green lines: the partial dominance model with two phenotypes. Dotted 

lime-green lines: the partial dominance model with three phenotypes. When R (= 4Nr) = 0, 

the fixation probability is 1 regardless of h values. 

 



 

Figure S4: A: The bifurcation plot along the degree of dominance parameter (h). Y-axis is the 

frequency of the mutant homozygote (x). Red points: stable equilibria. Blue points: unstable 

equilibria. B: Simulation results of deterministic recursion equations (3)-(4). Red points: basin 

of attraction toward a stable equilibrium of the mutant allele. Blue points: basin of attraction 

toward a stable equilibrium of the resident allele. Green points: basin of attraction toward a 

stable equilibrium of both the mutant and resident alleles. The coexistence equilibria are 

shown as black points. The parameter condition is r = 0.7 and s = 1.5.  

 



 
Figure S5: The alleles with the highest fixation probabilities in the diploid model without 

delayed inheritance given certain strength of reproductive isolation and viability selection. A: 

N = 3 (the first step analysis), B: N → ∞ (diffusion approximation). 

 

 



Table S1: The diploid model with delayed inheritance (when A is a dominant allele) 

 

Mating comb. Mating probability AAA AaA Aaa aaA aaa 

AAA×AAA xA
2 1 0 0 0 0 

AAA×AaA 2xAyA 1/2 1/2 0 0 0 

AAA×Aaa 2(1 – r)xAya 1/2 1/2 0 0 0 

AAA×aaA 2xAzA 0 1/2 1/2 0 0 

AAA×aaa 2(1 – r)xAza 0 1/2 1/2 0 0 

AaA×AaA yA
2 1/4 1/2 0 1/4 0 

AaA×Aaa 2(1 – r)yAya 1/4 1/2 0 1/4 0 

AaA×aaA 2yAzA 0 1/4 1/4 1/4 1/4 

AaA×aaa 2(1 – r)yAza 0 1/4 1/4 1/4 1/4 

Aaa×Aaa ya
2 1/4 1/2 0 1/4 0 

Aaa×aaA 2(1 – r)yazA 0 1/4 1/4 1/4 1/4 

Aaa×aaa 2yaza 0 1/4 1/4 1/4 1/4 

aaA×aaA zA
2 0 0 0 0 1 

aaA×aaa 2(1 – r)zAza 0 0 0 0 1 

aaa×aaa za
2 0 0 0 0 1 
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