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Abstract

We investigate the joint evolution of public goods cooperation and
dispersal in a metapopulation model with small local populations. Al-
truistic cooperation can evolve due to assortment and kin selection,
and dispersal can evolve because of demographic stochasticity, catas-
trophes and kin selection. Metapopulation structures resulting in as-
sortment have been shown to make selection for cooperation possible.
But how does dispersal affect cooperation and vice versa, when both
are allowed to evolve as continuous traits? We found four qualita-
tively different evolutionary outcomes. (1) Monomorphic evolution to
full defection with positive dispersal. (2) Monomorphic evolution to
an evolutionarily stable state with positive cooperation and dispersal.
In this case, parameter changes selecting for increased cooperation
typically also select for increased dispersal. (3) Evolutionary branch-
ing can result in the evolutionarily stable coexistence of defectors and
cooperators. Although defectors could be expected to disperse more
than cooperators, here we show that also the opposite case is possi-
ble: Defectors tend to disperse less than cooperators when the total
amount of cooperation in the dimorphic population is low enough. (4)
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Selection for too low cooperation can cause the extinction of the evolv-
ing population. For moderate catastrophe rates dispersal needs to be
initially very frequent for evolutionary suicide to occur. Although se-
lection for less dispersal in principle could prevent such evolutionary
suicide, in most cases this rescuing effect is not sufficient, because
selection in the cooperation trait is typically much stronger. If the
catastrophe rate is large enough, a part of the boundary of viability
can be evolutionarily attracting with respect to both strategy compo-
nents, in which case evolutionary suicide is expected from all initial
conditions.

Key words: adaptive dynamics; altruism; cooperation; dispersal; spatial
heterogeneity; evolutionary suicide

1 Introduction

Cooperation - how can it emerge and be maintained when threatened by
free-riders, individuals who do not cooperate themselves, but enjoy all the
benefits from the cooperation of others? Various mechanisms promoting co-
operation have been proposed. Potential cooperation events may be repeated
many times between the same individuals. If an individual decides not to
cooperate, the partner is likely to remember such defecting act, and not to
give help in the future either. Therefore, direct reciprocity may promote co-
operation (Trivers, 1971). In case pairwise interactions are repeated, but not
between the same individuals, by defecting one may get a bad reputation,
and that way risk the possibility of receiving help in the future. Therefore,
indirect reciprocity (Alexander, 1979; Sugden, 1986; Alexander, 1987; Nowak
and Sigmund, 1998a,b, 2005) may promote cooperation, depending on the
social norm (Ohtsuki and Iwasa, 2006).

Assortment has also been proposed to be a mechanism promoting co-
operation (Fletcher and Doebeli, 2009). Whatever the mechanism causing
assortment is, if a cooperating individual is more likely to interact with coop-
erating individuals than a defecting individual is, the direct benefit received
from them may promote cooperation. Assortment can occur for example in
populations that are not well-mixed, and in which cooperation is typically
possible only among nearby individuals. In such a population individuals are
likely to have some relatives around. Giving help to relatives is often bene-
ficial from an evolutionary point of view, and thus kin selection (Hamilton,
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1964a,b) may promote cooperation. Metapopulations, collections of local
populations connected by dispersal (Levins, 1969, 1970), provide a natural
setup for assortment. This has given motivation to study the evolution of
cooperation in metapopulation models or in other spatially heterogeneous
populations (Le Galliard et al., 2003; Parvinen, 2011).

Dispersal is a key feature in metapopulations, and its evolution has been
widely studied in various types of models (for references see this and the
following paragraphs). Already Hamilton and May (1977) observed that
kin selection can promote dispersal even in stable habitats, see also (Motro,
1982a,b, 1983; Frank, 1986): If the relatedness between a focal individual
and other individuals in the present patch is high, by dispersing the focal in-
dividual reduces kin competition. In large local populations this mechanism
is not effective, because the relatedness between individuals in a large local
population is essentially zero. When large local populations show equilibrium
dynamics, dispersal is typically selected against (Hastings, 1983; Parvinen,
1999), because there is no benefit to disperse between patches with similar
conditions. Temporal heterogeneity has been shown to be a mechanism pro-
moting dispersal, because it results in sparsely populated patches, into which
immigration typically is beneficial. Such temporal heterogeneity can result,
e.g., from non-equilibrium local population dynamics (Doebeli, 1995; Holt
and McPeek, 1996; Doebeli and Ruxton, 1997; Parvinen, 1999) or catastro-
phes (Ronce et al., 2000; Gyllenberg and Metz, 2001; Gyllenberg et al., 2002;
Parvinen, 2002, 2006). In case of small local populations, local population
dynamics is necessarily stochastic resulting in temporal heterogeneity, which
together with kin selection promotes dispersal (Metz and Gyllenberg, 2001;
Parvinen et al., 2003; Parvinen and Metz, 2008; Parvinen et al., 2012).

Direct costs of dispersal are in general expected to select against dispersal,
but also opposite effects have been observed (Comins et al., 1980; Gandon
and Michalakis, 1999; Heino and Hanski, 2001). Gandon and Michalakis
(1999) suggested that increases in the direct costs of dispersal may cause more
and more competition between highly related philopatric individuals, which
may eventually select for dispersal. Local adaptation (Kisdi, 2002; Nurmi
and Parvinen, 2011) is also expected to select against dispersal, because a
dispersing individual who is well adapted to the conditions in the present
location, takes the risk of arriving into a patch with conditions for which it
is maladapted.

It is obvious that dispersal affects the evolution of cooperation: for low
dispersal rates the relatedness between individuals in a small local popula-
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tion can be high, and cooperation can evolve. Increasing the dispersal rate
is expected to have a direct decreasing effect on relatedness, and thus make
cooperation less favorable. This is, however, not always the case (Parvinen,
2011). Although such an effect may first seem counterintuitive, note that in-
creasing the dispersal rate has also an indirect increasing effect on relatedness
through decreasing the average local population size. Furthermore, for high
dispersal rates, Parvinen (2011) observed evolution to too low cooperation
resulting in evolutionary suicide (Matsuda and Abrams, 1994; Ferrière, 2000;
Parvinen, 2005).

Cooperation is also likely to affect the evolution of dispersal. According
to first intuition, a cooperating individual could be expected to be willing
to remain close to its kin and thus disperse only moderately. On the other
hand, cooperation will also affect the evolution of dispersal by increasing the
local population size, which is expected to select for dispersal. These effects
give motivation for the study of the interplay of dispersal and cooperation,
about which only few studies exist (Pfeiffer and Bonhoeffer, 2003; Hochberg
et al., 2008).

Pfeiffer and Bonhoeffer (2003) used a game-theoretical approach to study
cooperation and dispersal in a spatial setting, in which cooperating cells pro-
duce ATP only with the efficient but slow method of respiration, and defec-
tors use also the faster method of fermentation, which in total is less efficient.
Population dynamics with two cell types, in case all cells are mobile, showed
that cooperators dominate when cell motion is low, and defectors dominate
when cell motion is high. This result is analogous to results in the model
studied in this article, when only cooperation is evolving (Parvinen, 2011).
Furthermore, Pfeiffer and Bonhoeffer (2003) assumed that non-dispersing
(clustering) cells remain attached to the mother cell in contrast with dispers-
ing (mobile) cells. Population dynamics of the resulting four different cell
types showed that for high resource influx, non-dispersing cooperators (clus-
tering respirator) dominate. Although their result is interesting, it leaves
open the question how will dispersal and cooperation evolve, when they are
continuously varying traits under natural selection. Hochberg et al. (2008)
partly investigated this question by studying a model, in which the dispersal
rate of cooperators and the dispersal rate of defectors were evolving. Co-
operation itself was not allowed to evolve as a continuously varying trait,
but in their model 2, the relative abundance of cooperators and defectors
was allowed to change. However, they did ”not explicitly consider dynamics,
such as group founding, group numbers, individual emigration and immigra-
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tion, and competition for limiting resources within or between groups.” The
novelty of this article is in that we study the joint evolution of dispersal and
cooperation, when both are continuously varying traits under natural selec-
tion, in a metapopulation model with realistic (local) population dynamics.

Our choice of a model is a metapopulation model with infinitely many
patches with small (finite) local populations, in which the evolution of dis-
persal (Metz and Gyllenberg, 2001; Parvinen et al., 2003; Cadet et al., 2003;
Parvinen and Metz, 2008; Parvinen et al., 2012) and the evolution of cooper-
ation (Parvinen, 2011) and other traits (Jesse et al., 2011) have already been
studied separately. The benefit of this model type is that it is rather realistic
concerning local population dynamics, in which stochastic events of birth,
death, emigration and immigration are accounted for. Also, a well-defined
proxy for invasion fitness is available (Metz and Gyllenberg, 2001), which
allows us to perform efficient evolutionary analysis with methods of adaptive
dynamics, instead of relying only on time-consuming simulations.

2 Model and methods

Our model is a structured metapopulation model with infinitely many habitat
patches with small local populations (Metz and Gyllenberg, 2001). In short,
our model is ecologically almost the same as the model by Parvinen (2011),
but here in addition to studying the evolution of cooperation we allow also the
dispersal rate to evolve. For the sake of completeness, we give the ecological
details here. For the calculation of invasion fitness, see the references above.

2.1 Ecological dynamics

The strategy of an individual is a 2-dimensional vector s = {c,m}. The
first strategy component describes the rate c at which individuals contribute
resources locally. The value of the cooperative contributions to a public pool
of local resources are multiplied with the factor ρ, and then shared among all
individuals in the patch. Therefore, the average rate of received contributions
in a local population of size N is ρA = ρ

N

∑

ciNi, where Ni is the size of the
sub-population with cooperative strategy ci, and N =

∑

Ni. We assume
that the received contributions have an increasing effect on the birth rate,
which is the same among all individuals in the patch. More precisely, the per
capita birth rate in a patch of N > 1 individuals is
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βN = b(N) + h(ρA) = b(N) + h
( ρ

N

∑

ciNi

)

, (1)

where b(N) is the birth rate in the absence of cooperation, and h describes
the functional response in the effect of received contributions. The function
h is assumed to be a smooth non-negative increasing function with h(0) =
0. In numerical examples we assume Holling type II functional response,
h(ρA) = ρA

1+γρA
.

The personal cost of contribution to the public good is an increase in the
death rate of the contributor only. We assume that the death rate of an
individual with contribution strategy c is

δN (c) = d(N) + c (2)

where d(N) is the death rate in the absence of cooperation.
In some cases, such as for bacteria producing exoproducts, allowing con-

tributions to public resources when alone is realistic. As pointed out by
Parvinen (2011), the condition 1 < ρ 6 2 ensures that cooperation is altru-
istic in the sense that the direct benefit of cooperation as an increased birth
rate never exceeds the cost of cooperation as increased death rate in patches
of size 2 and larger. However, in patches of size 1, the increasing effect of
cooperation on the birth rate does exceed the increasing effect of coopera-
tion on the death rate, at least for small c. Such cooperative behaviour of
a lonely individual cannot really be called altruistic. Therefore, like Hauert
et al. (2006), we also study the case in which the public goods interactions
occur only in local populations of size 2 and greater, in which case we set
β1 = b(1) and δ1(c) = d(1). For simplicity of notation, we denote this case
with Ñ = 2, where Ñ denotes the smallest local population size in which
cooperation occurs.

No real-life patch can host an infinite number of individuals. Therefore
(and also for technical reasons), we assume that there is an upper limit
Kmax for the local population size, thus βKmax

= 0. Following Parvinen
(2011), in numerical examples we have assumed that per capita birth rates are
unaffected by density, b(N) = b0 for N < Kmax, while per capita death rates
increase linearly with local population size, d(N) = b0N/K. Therefore, in
local populations of size K the birth rate equals the death rate in the absence
of cooperation. In numerical examples we have used the value Kmax = 2K
for the upper limit of local population size.
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The second strategy component is the rate m at which individuals emi-
grate and enter a global disperser pool. While in the disperser pool, individ-
uals experience mortality at rate d̃. They leave the disperser pool by settling
into a new patch at rate α. Dispersers choose the patch they immigrate into
at random, independently of the local population size. Immigration into a
full patch with local population sizeKmax is not possible. Individuals encoun-
tering full patches simply remain in the dispersal pool. Occasionally a local
catastrophe kills the local population. The patch remains habitable and can
be recolonized by dispersers from the disperser pool. These extinctions of a
local population due to external disturbances occur at rate µ. The possible
transitions in the state of a patch are illustrated in Figure 1 together with
the metapopulation structure.

a) b)

0 1 2 N Kmax

Immigration Birth or
immigration

Birth or
immigration

Birth or
immigration

Birth or
immigration

Birth or
immigration

Death or
emigration

Death or
emigration

Death or
emigration

Death or
emigration

Death or
emigration

Death or
emigration

Local extinction

Disperser pool

Figure 1: a) Transition diagram for a single patch. Arrows describe the pos-
sible transitions in the state of the patch. Local population size is increased
by one by birth and immigration events and decreases by one when a death
or emigration event occurs. Local extinction events can kill all individuals
in a patch, thus resetting its population size to zero. b) Illustration of the
metapopulation structure: local populations consist of a small number of
individuals with different strategies. Dispersal occurs via a disperser pool.

At the metapopulation level we study the local population size distribu-
tion pn, where pn is the probability that a randomly selected patch has a
local population of size n. The differential equations for pn, which are also
called as forward Kolmogorov equations, are obtained by straightforward
book-keeping of the events described above (See, e.g., Parvinen, 2011).

2.2 Adaptive dynamics

In the framework of adaptive dynamics (Metz et al., 1996; Geritz et al., 1997,
1998), invasion fitness (Metz et al., 1992) is defined as the long-term exponen-
tial growth rate r(smut, Eres) of a mutant phenotype smut in an environment
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Eres set by the resident. If the invasion fitness is positive, r(smut, Eres) > 0,
the mutant phenotype may grow in (meta)population size, invade and pos-
sibly replace the former resident. Adaptive dynamics investigates the long-
term outcomes of such invasion events.

In structured metapopulation models, the direct computation of fitness
is complicated. For this reason, Gyllenberg and Metz (2001) and Metz and
Gyllenberg (2001) presented the metapopulation reproduction ratio

Rm(smut, Eres). (3)

Consider a single mutant disperser arriving in a patch. This mutant may
reproduce and thus gain descendants in this patch, but this will not neces-
sarily happen because of demographic stochasticity. As long as this mutant
or at least one of its descendants is present in the local population, we call it
a mutant colony. Again, because of demographic stochasticity and catastro-
phes, the mutant colony will eventually go extinct. During its lifetime, some
mutants will emigrate from this mutant colony to the disperser pool. Their
average number is the metapopulation reproduction ratio Rm of the mutant.
In other words, it is the expected number of successful dispersers produced
by a typical mutant colony initiated by a single mutant disperser. For de-
tails, see also Parvinen et al. (2003) and Parvinen and Metz (2008). The
invasion condition r(smut, Eres) > 0 is equivalent to Rm(smut, Eres) > 1, and
thus Rm is a proxy for invasion fitness, and can be used to study evolution
in metapopulation models.

The fitness gradient, which for vector-valued strategies consists of deriva-

tives ∂
∂si,mut

r(smut, Eres)
∣

∣

∣

smut=sres
with respect to each strategy component,

gives the direction into which strategies are expected to change with muta-
tions of small size. The components of the fitness gradient are sign-equivalent
with the corresponding derivatives of the fitness proxy

Di(sres) =
∂

∂si,mut

Rm(smut, Eres)

∣

∣

∣

∣

smut=sres

. (4)

Strategies for which the fitness gradient is zero, or equivalently D(sres) = 0,
are called singular strategies (Geritz et al., 1997, 1998). For determining
the expected direction of selection and finding singular strategies we have
used the direct calculation method for the fitness-proxy gradient (4), pro-
vided by Parvinen (2011) for this class of structured metapopulation models.
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For determining other properties of the singular strategies, calculating (3)
is necessary, which can be done using the algorithm provided by Metz and
Gyllenberg (2001).

If the invasion fitness is negative for all mutant strategies different from
the resident strategy,

r(smut, Eres) < 0 for all smut 6= sres, (5)

this singular strategy is uninvadable, and thus an evolutionarily stable strat-
egy, ESS (Maynard Smith, 1976). A singular strategy s∗ is an evolutionary
attractor (Eshel, 1983) if the repeated invasion of nearby mutant strate-
gies into resident strategies will lead to the convergence of resident strate-
gies towards s∗. For scalar strategies, the condition for such convergence is
D′(s∗) < 0, whereas the situation with vector-valued strategies is more com-
plicated (Christiansen, 1991; Marrow et al., 1996; Matessi and Di Pasquale,
1996; Geritz et al., 1998; Leimar, 2001; Meszéna et al., 2001).

Because cooperation and dispersal are physiologically rather different
traits, we find it realistic to assume that these traits evolve independently.
Each mutation thus affects only one trait, and therefore mutational covari-
ance is equal to zero. Furthermore, the variance-covariance matrix σ2 of the
mutation distribution is a diagonal matrix. Under this assumption, the di-
rection of expected evolutionary change can be illustrated by showing the
signs of the fitness gradient vector (such as in Figure 2). We have assumed
the diagonal elements of the variance-covariance matrix to be equal to 1, thus
σ2 = diag{1, 1}.

For one-dimensional strategy spaces, singular strategies, which are con-
vergence stable, but not uninvadable, are of special interest. In a neighbor-
hood of such a singular strategy there is an area of protected coexistence,
which means that two strategies are mutually invadable, and cannot oust
each other out (Geritz et al., 1997, 1998). Furthermore, the two strategies
will evolve away from each other because of disruptive selection. This process
is called evolutionary branching, and therefore such singular strategies are
called branching points. The general conditions for evolutionary branching
in higher-dimensional trait spaces is an open question in adaptive dynamics.
Nevertheless, in this article we found singular strategies near which evolu-
tionary branching with respect to the cooperation strategy is expected to
happen, after which the dispersal strategy components may also evolve away
from each other.
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3 Results

First we investigate the joint evolution of cooperation and dispersal in the
absence cooperation in local populations of size one (Ñ = 2). Figure 2 shows
zero-isoclines of the components of the fitness gradient, and thus illustrates
the potential direction of monomorphic adaptive dynamics of cooperation
and dispersal, as well as possible outcomes, in the absence of mutational
covariance.

First consider small values of the catastrophe rate µ, Figure 2a. Although
a part of the boundary of the strategy space without cooperation (c = 0) is
evolutionarily repelling, the part near the zero-isocline of the dispersal com-
ponent is evolutionarily attracting. Because the isoclines do not intersect,
there is no internal singular strategy of the joint evolution of cooperation and
dispersal. In this case joint evolution will lead to the boundary of strategy
space without cooperation, and the value of dispersal rate will become ap-
proximately 1.1. For µ ≈ 0.305 this boundary at the singular dispersal rate
becomes evolutionarily repelling, and an internal singular strategy appears
(See also Figure 4). From the shape of the zero-isoclines and directions of
the arrows near the singular strategy it is clear that strategies will converge
to this singular strategy (see Matessi and Di Pasquale, 1996). This singular
strategy is first a fitness minimum with respect to the cooperation compo-
nent (Figure 2bcd), but becomes evolutionarily stable for larger values of
µ, around µ ≈ 0.62 (Figure 2e). As illustrated also by Parvinen (2011, his
Figs. 3a and 4b), for large values of the dispersal rate m and the catastrophe
rate µ, the boundary of viability may become evolutionarily attracting with
respect to the cooperation strategy, and thus evolutionary suicide (Ferrière,
2000; Gyllenberg and Parvinen, 2001; Gyllenberg et al., 2002; Webb, 2003;
Parvinen, 2005; Rankin and López-Sepulcre, 2005) may take place. However,
as we observe from Figure 2cde, near this boundary there can be selection
for decreased dispersal, which means that this boundary is evolutionarily
repelling with respect to the dispersal component. Therefore it depends on
the initial strategy values, mutational variance and chance, whether the joint
evolution of cooperation and dispersal will result in evolutionary suicide (see
Figure 3). We can nevertheless conclude, that allowing the dispersal rate to
evolve can potentially have a rescuing effect on the metapopulation. For even
larger values of the catastrophe rate µ, a part of the boundary of viability is
evolutionarily attracting with respect to both strategy components, in which
case evolutionary suicide is expected from all initial conditions (Figure 2f).
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d) µ = 0.6 e) µ = 0.7 f) µ = 1.1
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Figure 2: Zero-isoclines of the components of the two-dimensional fitness
gradient (4) for different values of the catastrophe rate µ, which illustrate
the direction of expected evolutionary change without mutational covariance.
Areas of unviable strategies are shown in grey. The zero-isocline curves are
either drawn thin or black bold curves with white dashes. Thin curves corre-
spond to strategies that are uninvadable (local fitness maxima) with respect
to the strategy component for which the selection gradient vanishes. Black
bold curves with white dashes correspond to local fitness minima, which
means that they are branching points with respect to the corresponding
strategy component. The thick red (grey in the printed version) curve in
panels b-e corresponds to a boundary of viability, which is evolutionarily
attracting with respect to the cooperation component, and may allow for
evolutionary suicide. All visible boundaries of viability in panel f are evo-
lutionarily attracting with respect to the cooperation component, and the
boundary drawn with the thick red curve is evolutionarily attracting also
with respect to the dispersal component. Therefore, evolutionary suicide is
inevitable. Parameters: b0 = 1, K = 5, Kmax = 10, d̃ = 0.0555, α = 0.5,
γ = 0.01, ρ = 2, and Ñ = 2.
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Figure 3: A trait substitution sequence resulting in evolutionary suicide when
Ñ = 2. In each step, a mutation in the direction of the fitness gradient is
assumed to occur. Although the extinction boundary is evolutionarily re-
pelling with respect to the dispersal component, selection in the cooperation
component causes the evolution towards the extinction boundary, at which
the population size (a) suddenly drops to zero. Panel (b) shows the trajec-
tory of strategies together with the isocline plot (Figure 2f). Parameters:
µ = 0.7. Other parameters as in Figure 2

The zero-isoclines of the components of the fitness gradient in case co-
operation occurs also in local populations of size one (Ñ = 1) are otherwise
qualitatively similar to those illustrated in Figure 2, except that we did not
observe evolutionarily attracting boundaries of viability, which means that
evolutionary suicide is not expected to happen (isocline-plots not shown).

At least for the parameter values used in Figure 2, at most one evolu-
tionarily attracting (monomorphic) singular strategy vector exists. Figure 4
illustrates the dependence of this singular strategy on various parameter val-
ues, and also the effect of the presence (Ñ = 1) or absence (Ñ = 2) of
cooperation in local populations of size one. Increasing the catastrophe rate
increases the amount of empty or sparsely populated patches, into which im-
migration is beneficial. Indeed we observe from Figure 4, that increasing the
catastrophe rate has an increasing effect on dispersal. Note, however, that
also non-monotonic dependence of evolutionarily stable dispersal rates on
catastrophes have been observed (Ronce et al., 2000; Gyllenberg et al., 2002;
Parvinen et al., 2003; Parvinen, 2006). Once catastrophes are very frequent,
most individuals reside in thinly populated patches anyway, and thus benefits
of dispersal can decline. Concerning the cooperation component, increasing
the catastrophe rate decreases average local population sizes, and therefore

12



increases within-patch relatedness. For low values of the catastrophe rate,
relatedness is too low for cooperation to evolve. Once the catastrophe rate
is large enough (µ ≈ 0.3 for Ñ = 2 or µ ≈ 0.22 for Ñ = 1), positive coop-
eration strategies c do evolve, and c increases with µ. In case of Ñ = 2, for
µ & 0.92, no evolutionary singular strategy exists, and evolutionary suicide
occurs from all initial conditions.

Increasing the multiplication factor ρ is expected to make cooperation
more beneficial. Figure 4cd indeed illustrates that once cooperation evolves
(ρ > 1.65 for Ñ = 2, ρ > 1.43 for Ñ = 1), the value of the cooperation
component at the singular strategy will increase with ρ. In the absence of
cooperation, the factor ρ has no effect on the benefits of dispersal. Therefore
the dispersal component changes only when ρ is above the threshold. Fig-
ure 4ef, however, shows that increasing the multiplication factor ρ may also
decrease the cooperation component of the singular strategy. In this case the
catastrophe rate is relatively high (µ = 0.7), and so is cooperation. Although
increasing ρ increases the birth rate, the marginal benefit of cooperation may
even decrease because of the functional response.

Figure 4 illustrates also the effect of the presence (Ñ = 1) or absence
(Ñ = 2) of cooperation in local populations of size one on the singular
strategy. From Figure 4a we observe that it depends on parameters which
case results in a higher value of the cooperation component c. The corre-
sponding quantitative effect on the dispersal component seems to be clearer
(Figures 4bd). Although for Ñ = 1 the cooperation component c can be
smaller than with Ñ = 2, in case Ñ = 1 the total level of cooperation can be
higher, which can result in higher average local population size, and therefore
in higher dispersal rates (Figures 4bd).

From Figure 4 one can make the conclusion that in the studied metapop-
ulation model, cooperation and dispersal appear mainly to be positively cor-
related: changes in parameters making cooperation more beneficial seem to
cause crowding, and thus make dispersal more beneficial. Note, however,
that from this result we cannot make the conclusion that cooperators should
disperse more than defectors. Each observation in Figure 4 namely corre-
sponds to a different set of parameters, and thus to a different environment
experienced by individuals. In order to make this kind of conclusions, we
should investigate situations, which result in the coexistence of cooperators
and defectors, and then study to which extent does their dispersal behaviour
differ.

Figure 5 illustrates evolutionary dynamics, when there is an internal sin-
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Figure 4: Cooperation (a,c,e) and dispersal (b,d,f) components of vector-
valued singular strategies for different values of the (a,b) catastrophe rate µ
and (c-f) multiplier parameter ρ when cooperation in patches of size one is
allowed (Ñ = 1, dashed blue curves) or is not allowed (Ñ = 2, continuous
curves). Bold curves correspond to fitness minima with respect to the coop-
eration component. Parameters: (a,b) ρ = 2, (c,d) µ = 0.4, (e,f) µ = 0.7.
Other parameters as in Figure 2.
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Figure 5: A trait substitution sequence resulting in evolutionary branching
when Ñ = 2. In each step, a mutation in the direction of the fitness gradient
is assumed to occur. At first, each mutant is able to take over the resident,
and becomes the new resident itself. Once the strategies are close enough
to a monomorphic singular strategy, the mutant population will coexist with
the resident, and thus the population becomes dimorphic. The strategies of
the dimorphic population will diverge until an evolutionarily stable strategy
coalition is reached. After the evolving population has become dimorphic,
the strategy components corresponding to the more cooperating strategy are
illustrated with dashed curves. Parameters: µ = 0.4. Other parameters as
in Figure 2.
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gular strategy (c ≈ 0.23, m ≈ 1.41), which is a fitness minimum with respect
to the cooperation component. Starting from a monomorphic population
with c = 0, m = 0.9, evolution first takes the evolving strategy near the inter-
nal singular strategy. Eventually two strategies are able to coexist, and their
cooperation strategies evolve away from each other. The difference in their
cooperation strategies causes also different selective pressures on their dis-
persal strategies. Finally, the dimorphic population reaches an evolutionarily
stable strategy coalition of two strategies, a defector with {c,m} ≈ {0, 1.480}
and a cooperator with {c,m} ≈ {1.091, 1.505}. Such coexistence is possi-
ble, because each of the two strategies have their own niche: cooperators
are good colonizers and perform well in sparsely populated patches where
defectors have not yet arrived, and defectors perform well in the presence
of cooperators. In this case, surprisingly the cooperator disperses more fre-
quently than the defector. One could namely expect that the cooperator
would benefit more from a sessile strategy due to kin cooperation.

In order to better understand the results of dimorphic evolution, Figure 6
illustrates how the evolutionarily stable strategy coalition of two strategies
varies with respect to the catastrophe rate µ. The less cooperative popula-
tion always evolves to full defection, c = 0. Figures 6a-c show results in the
absence of cooperation in local populations of size one (Ñ = 2). In this case
the cooperation strategy of the cooperative population evolves to c ≈ 1.1.
Although the cooperation strategy value of the cooperator only slightly varies
with µ (Figure 6a), Figure 6c shows that increasing µ increases the relative
frequency of cooperators. The dispersal components of these two strategies
are more affected by the catastrophe rate. For moderate catastrophe rates,
0.3 . µ . 0.45, the defectors have a majority. Therefore, cooperators dis-
perse more frequently than the defectors to be able to take advantage of
empty or sparsely populated patches. This effect diminishes, when increas-
ing µ increases the amount of cooperators, to the extent that for µ & 0.45
cooperators disperse less frequently than the defectors. Figures 6d-f show re-
sults in the presence of cooperation in local populations of size one (Ñ = 1).
The results are mostly qualitatively similar to the previous case (Ñ = 2),
but now cooperators always disperse more than the defectors.
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Figure 6: Cooperation (a,d) and dispersal (b,e) components of vector-valued
singular strategies in the monomorphic singularity and in the dimorphic sin-
gular strategy coalition with respect to the catastrophe rate µ. Panels (c,f)
show the dispersal pool sizes of cooperators and defectors in the dimorphic
singular strategy coalition, and thus illustrates their relative frequencies. The
bold curves in panels (a,d) correspond to fitness minima with respect to the
cooperation component. Upper row (a-c): no cooperation in local popula-
tions of size one, lower row (d-f) cooperation also in local populations of size
one. Other parameters as in Figure 2.
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4 Conclusion

In addition to direct (Trivers, 1971) and indirect reciprocity (Alexander,
1979; Sugden, 1986; Alexander, 1987; Nowak and Sigmund, 1998a,b, 2005;
Ohtsuki and Iwasa, 2006), assortment (Fletcher and Doebeli, 2009) has been
proposed as a general mechanism for promoting cooperation. Such assort-
ment naturally occurs in metapopulation models, which consist of small lo-
cal populations connected with dispersal. As observed previously (Parvinen,
2011), dispersal affects the population distribution and the average related-
ness in local populations, and therefore also the evolution of cooperation. On
the other hand, cooperation naturally affects the local population dynamics,
and therefore also the evolution of dispersal. There are numerous studies,
in which the evolution of one of these traits has been studied (see the intro-
duction for references). In this article we have studied the joint evolution of
dispersal and cooperation, when both are continuously varying traits under
natural selection, in a metapopulation model with realistic (local) population
dynamics.

In this investigation, we have taken the advantage of a well-defined (proxy
for) invasion fitness, the metapopulation reproduction ratio (Gyllenberg and
Metz, 2001; Metz and Gyllenberg, 2001). An efficient numerical calculation
method exists for the invasion fitness (see also Parvinen et al., 2003; Parvinen
and Metz, 2008), as well as for the fitness gradient directly (Parvinen, 2011).
This allows us to use the framework of adaptive dynamics (Metz et al., 1992,
1996; Geritz et al., 1997, 1998) for evolutionary studies.

We observed four qualitatively different evolutionary outcomes in the joint
evolution of cooperation and dispersal.

1. The population can evolve to full defection (c = 0, m > 0)

2. The population evolves to a monomorphic singular strategy with pos-
itive cooperation (c > 0, m > 0). In this case, parameter changes
selecting for increased cooperation typically also select for increased
dispersal.

3. The population first evolves to the monomorphic singular strategy, but
then evolutionary branching results in the evolutionarily stable coexis-
tence of a defector (c1 = 0, m1 > 0) and a cooperator (c2 > 0, m2 > 0).
Depending on parameters, either one of them can be the more fre-
quently dispersing strategy (m1 > m2 or m1 < m2).
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4. For moderate catastrophe rates, if the initial dispersal rate is large
enough, selection for less cooperation can result in evolutionary sui-
cide, although the extinction boundary is evolutionarily repelling with
respect to the dispersal component. If the catastrophe rate is large
enough, a part of the boundary of viability can be evolutionarily at-
tracting with respect to both strategy components, in which case evo-
lutionary suicide is expected from all initial conditions.

Outcome (4) was observed only in the absence cooperation in local popula-
tions of size one (Ñ = 2).

The case (3) is especially interesting. For better understanding of the
observed results (Figure 6) it is essential to identify the ”niches” of different
strategies, which enable the coexistence of cooperators and defectors. A co-
operator performs well (better than a defector) when arriving into empty or
sparsely populated patches, whereas defectors exploit the high abundance of
cooperators. For low catastrophe rates, the average local population size is
high, and there are not enough sparsely populated patches so that coopera-
tion could evolve. When the catastrophe rate is increased, also the amount
of empty patches increases, so that cooperation can evolve. Initially, the rel-
ative benefit of catastrophes to cooperators is small, and thus the coexistence
of cooperators and defectors is possible. When the catastrophe rate is further
increased, the proportion of cooperators in the evolutionarily stable dimor-
phic population increases, until cooperators overtake the defectors. Although
it has been observed previously that evolutionary branching (Geritz et al.,
1997, 1998) provides a mechanism for the evolutionary emergence of cooper-
ators and defectors (Doebeli et al., 2004; Brännström and Dieckmann, 2005;
Parvinen, 2010, 2011), here we have been able to investigate the question
how should defectors and cooperators disperse? In a dimorphic population,
cooperators and defectors observe different benefits of dispersal. When the
proportion of cooperators is small, cooperators disperse more frequently than
the defectors to be able to take advantage of empty or sparsely populated
patches. When there proportion of cooperators is large and their cooper-
ation strategy is large enough, it is advantageous for defectors to disperse
frequently to avoid kin competition, so that not too many defectors exploit
the cooperators in a patch. Similar effect of the proportion of cooperators on
the relative dispersal behaviour of cooperators and defectors was observed
also by Hochberg et al. (2008), but note that their starting point was the
presence of cooperators and defectors, whereas in our approach, the coex-
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istence of cooperators and defectors is a result of a long-term evolutionary
process including evolutionary branching. To conclude, defectors tend to dis-
perse less than cooperators when the overall cooperation in the dimorphic
population is low enough.

Acknowledgements: The author wishes to thank the Academy of Fin-
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Heerwaarden (1996). Adaptive dynamics, a geometrical study of the con-
sequenses of nearly faithful reproduction. In S. J. van Strien and S. M.
Verduyn Lunel (Eds.), Stochastic and Spatial Structures of Dynamical Sys-

tems, pp. 183–231. North-Holland, Amsterdam.

Metz, J. A. J. and M. Gyllenberg (2001). How should we define fitness
in structured metapopulation models? Including an application to the
calculation of ES dispersal strategies. Proc. R. Soc. London B 268, 499–
508.

Metz, J. A. J., R. M. Nisbet, and S. A. H. Geritz (1992). How should we
define ”fitness” for general ecological scenarios? Trends Ecol. Evol. 7,
198–202.

Motro, U. (1982a). Optimal rates of dispersal. I. haploid populations. Theor.
Popul. Biol 21, 394–411.

Motro, U. (1982b). Optimal rates of dispersal. II. diploid populations. Theor.
Popul. Biol 21, 412–429.

Motro, U. (1983). Optimal rates of dispersal. III. parent offspring conflict.
Theor. Popul. Biol 23, 159–168.

Nowak, M. A. and K. Sigmund (1998a). The dynamics of indirect reciprocity.
J. Theor. Biol 194, 561–574.

Nowak, M. A. and K. Sigmund (1998b). Evolution of indirect reciprocity by
image scoring. Nature 393, 573–577.

23



Nowak, M. A. and K. Sigmund (2005). Evolution of indirect reciprocity.
Nature 437, 1291–1298.

Nurmi, T. and K. Parvinen (2011). Joint evolution of specialization and
dispersal in structured metapopulations. J. Theor. Biol 275, 78–92.

Ohtsuki, H. and Y. Iwasa (2006). The leading eight: Social norms that can
maintain cooperation by indirect reciprocity. J. Theor. Biol. 239, 435–444.

Parvinen, K. (1999). Evolution of migration in a metapopulation. Bull.

Math. Biol. 61, 531–550.

Parvinen, K. (2002). Evolutionary branching of dispersal strategies in struc-
tured metapopulations. J. Math. Biol. 45, 106–124.

Parvinen, K. (2005). Evolutionary suicide. Acta Biotheoretica 53, 241–264.

Parvinen, K. (2006). Evolution of dispersal in a structured metapopulation
model in discrete time. Bull. Math. Biol. 68, 655–678.

Parvinen, K. (2010). Adaptive dynamics of cooperation may prevent the
coexistence of defectors and cooperators and even cause extinction. Proc.
R. Soc. London B 277, 2493–2501.

Parvinen, K. (2011). Adaptive dynamics of altruistic cooperation in a
metapopulation: Evolutionary emergence of cooperators and defectors or
evolutionary suicide? Bull. Math. Biol. 73, 2605–2626.

Parvinen, K., U. Dieckmann, M. Gyllenberg, and J. A. J. Metz (2003). Evo-
lution of dispersal in metapopulations with local density dependence and
demographic stochasticity. J. Evol. Biol 16, 143–153.

Parvinen, K. and J. A. J. Metz (2008). A novel fitness proxy in structured
locally finite metapopulations with diploid genetics, with an application to
dispersal evolution. Theor. Popul. Biol. 73, 517–528.

Parvinen, K., A. Seppänen, and J. D. Nagy (2012). Evolution of complex
density-dependent dispersal strategies. Bull. Math. Biol. 74, 2622–2649.

Pfeiffer, T. and S. Bonhoeffer (2003). An evolutionary scenario for the tran-
sition to undifferentiated multicellularity. Proc. Natl. Acad. Sci. USA 100,
1095–1098.

24
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