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ABSTPACT 

T h i s  p a p e r  d e a l s  w i t h  t h e  l a n d  a l l o c a t i o n  problem of  f i n d i n g  
a  good l o c a t i o n a l  p a t t e r n  o v e r  t i m e  f o r  v a r i o u s  a c t i v i t i e s  ( s u c h  
a s  d i f f e r e n t  t y p e s  o f  i n d u s t r i e s ,  a g r i c u l t u r e ,  hous ing ,and  r e c r e -  
a t i o n )  w i t h i n  a r e g i o n .  A ma themat ica l  programming n o d e l  i s  
f o r m u l a t e d  t o  s u p p o r t  long-range  r e g i o n a l  development s t u d i e s  
a t  IIASA c o n c e r n i n g  t h e  Malmo a r e a  (Sweden) and t h e  S i l i s t r a  
r e g i o n  ( B u l g a r i a ) .  E s t i m a t e s  f o r  t h e  t o t a l  volume o f  d i f f e r e n t  
a c t i v i t i e s  w i t h i n  t h e  r e g i o n  i s  assumed t o  b e  a v a i l a b l e  ( e . g . ,  
as economet r i c  f o r e c a s t s  o r  i n  t h e  framework o f  c e n t r a l  p l a n n i n g ) .  
The problem i s  t h e n  t o  d e t e r m i n e  s u b r e g i o n a l  development  p l a n s  
i n  o r d e r  t o  m e e t  t h e  e s t i m a t e d  volume f o r  t h e  a c t i v i t i e s ,  t a k i n g  
i n t o  accoun t  t h e  i n i t i a l  s i t u a t i o n  as w e l l  a s  l a n d  a v a i l a b l e  i n  
t h e  s u b r e g i o n s .  A s  c r i t e r i a  f o r  e v a l u a t i n g  a l t e r n a t i v e  deve lop-  
ment p a t h s  w e  c o n s i d e r  i n v e s t m e n t  and o p e r a t i n g  c o s t s ,  t r a n s p o r -  
t a t i o n  and o t h e r  communication c o s t s ,  as  w e l l  as some e n v i r o n m e n t a l  
a s p e c t s .  While d e t e r m i n i n g  t h e  i n v e s t m e n t  and o p e r a t i n g  c o s t s ,  
economies o f  s c a l e  p l a y  a n  i m p o r t a n t  r o l e  f o r  c e r t a i n  a c t i v i t i e s .  

Formal ly ,  o u r  model i s  a dynamic m u l t i c r i t e r i a  o p t i m i z a t i o n  
problem w i t h  i n t e g e r  v a r i a b l e s  and q u a d r a t i c  o b j e c t i v e  f u n c t i o n s  
(which may be  n e i t h e r  convex n o r  c o n c a v e ) .  A s o l u t i o n  t e c h n i q u e  
i s  proposed f o r  t h i s  problem. The method, which re l ies  h e a v i l y  
on  t h e  network f l o w  s t r u c t u r e  o f  t h e  se t  of  c o n s t r a i n t s ,  i s  
i l l u s t r a t e d  u s i n g  a numer ica l  example. F i n a l l y ,  t h e  implemen- 
t a t i o n  of a  p l a n  i s  b r i e f l y  d i s c u s s e d .  



This  paper was o r i g i n a l l y  prepared under t h e  t i t l e  "Modelling 
f o r  Management" f o r  p r e s e n t a t i o n  a t  a  Nate r  Research Cent re  
(U.K. ) Conference on "River  P o l l u t i o n  Con t ro l " ,  Oxford, 
9 - 1 1  A s r i l ,  1979. 



A MATHEMATICAL PROGRAMMING APPROACH TO 
LAND.ALLOCATION I N  REGIONAL PLANNING 

Ake E. Andersson and Markuu K a l l i o  

1  . I n t r o d u c t i o n  

Many d i s c i p l i n e s  ( e . g . ,  t h e o r e t i c a l  geography,  economics,  

o p e r a t i o n s  r e s e a r c h )  have a t t e m p t e d  t o  t a c k l e  t h e  problem o f  

f i n d i n g  a n  e f f i c i e n t  a l l o c a t i o n  o f  l a n d .  Numerous approaches  

a r e  used  and t h e i r  b a s i c  f e a t u r e s  r e g a r d i n g  t h e  t r e a t m e n t  o f  
I 

s p a c e  and t i m e  d imensions  v a r y .  The a l t e r n a t i v e s  a r e  i l l u s t r a -  

t e d  i n  t h e  f o l l o w i n g  t a b l e .  

Tab le  1 .  A c l a s s i f i c a t i o n  ~ f  approaches  t o  t h e  s p a t i a l  a l l o c a -  

t i o n  problem. 

Cont inuous  t i m e  

, 

Most o p t i m a l  c o n t r o l  
mode 1 s 

( I s a r d  e t  a l .  1979) 

I s a r d ' s  dynamic t r a n s -  
p o r t a t i o n - l o c a t i o n  models 

( I s a r d  e t  a l .  1979) 

Beckmann-Puu t r a n s p o r t a -  
t i o n - l o c a t i o n  models  

(Beckmann 1953 and Puu 
fo r thcoming)  

Discrete 

Space 

Continu- 
o u s  

Space 

Discrete t i m e  

Most ma themat ica l  
programming.  
approaches  

(Andersson and 
La B e l l a  1979) 

New u rban  economics 

( M i l l s  1972) 

Weber models 

(Cooper 1967, 
N i  jkamp and 
P a e l i n c k  1975) 



Approaches involving continuous time and/or continuous 

space have (up until now) proved to be of limited practical 

value, except for some qualitative analysis. We have chosen 

a discrete space and time model, which is able to cope with 

practical complications in generating policy alternatives for 

two case studies at IIASA: a long-term development study of 

the Malmo area in southern Sweden and long-range planning of 

the Silistra region in Bulgaria. We intend to formulate a 

regional development program as a (dynamic) mathematical pro- 

gramming problem and provide a procedure for finding an optimal 

solution for such a problem under various criteria. 

We first provide an introductory discussion of regional 

planning. Thereafter, the problem is formulated as a dynamic 

(nonconvex) quadratic programming problem with integer variables. 

We develop a solution procedure for our programming problem, 

based on the theory of optimization over networks, and illus- 

trate this procedure using a numerical example. 

2. Characteristics of regional development 

In short, the physical aspect of the regional development 

planning problem may be stated as a problem of finding a suitable 

trajectory of the locational pattern of various activities in 

a region. To elaborate on this statement, the following three 

considerations are taken into account: (i) the current or 

initial locational pattern of resources within the region, 

(ii) future expectations (or plans) for the total volume of 

different types of activities over time, and (iii) the criteria 

used to evaluate alternative development of locational patterns 

for these activities. We shall now discuss each of these consi- 

derations in some detail. 

The current situation may be described by a nap indicating 

the distribution of resources within different subregions. As an 

example, the regional subdivision and the main road network for 

~kzne (including the Maln~o area) is given in Figure 1. Resources 

here are understood in general terms: they include both natural 

resources and various types of capacity. Examples of resources 

are capacity for industrial, transportation, farming activities, 



Freemy Other m a d  

Situat ion i n  1976 = 
Plan by 1990 - - - - -  - -  - - -  - - - -  
Further plans . . . . . . . . . . . . . . . . . . . . . . . . . - . . 

Figure 1. Regional subdivision and the network of 
main roads in ~ksne. 



water resources, renewable resaurces (such as forests) , and non- 
renewable resources (such as mineral deposits). 

Resources are used over time for various activities, such 

as industrial or agricultural production. We shall assume 

the total volume of such activities is known over the time 

period under study. Such forecasts may be available in the 

framework of central planning (as in Bulgaria) or they may be 

estimated using econometric techniques (as in Sweden), for 

instance. A feasible locational pattern at a given point of 

time is one that provides sufficient resources to achieve the 

estimated activity levels within the region at that time. This 

may require an increase in some of the resources (such as housing 

or industrial units) or it may allow a decrease over time (such 

as use of mineral resources). 

In general, there is much freedom in designing feasible 

patterns: there are alternative locations for most of the 

activities and, 'furthermore, certian sites may change activity 

over time. Then, the following question arises: what are the 

criteria that we should take into account while comparing alter- 

native feasible locational patterns over time? Clearly a single 

criterion is insufficient. Over the whole planning horizon, 

we must simultaneously account for investment costs for changing 

the capacity for various activities in various subregions over 

time, the operating cost of the production activities, cornrnuni- 

cation within the region, and environmental problems created 

by a certain locational pattern. Economies of scale are assumed 

to play an important role in determining the production costs. 

Furthermore, the location of a production unit relative to the 

location of natural resources and other production units may, 

of course, represent a significant share in operating costs. 

3. A ~lannina model 

3.1 Feasible allocation of land 

Our next task is to formulate the planning problem into a 

mathematical programming model. We shall first describe the 

set of alternative location patterns in terms-of mathematical 



r e l a t i o n s .  T h e r e a f t e r ,  w e  f o r m u l a t e  a p r e c i s e  s t a t e m e n t  o f  t h e  

proposed c r i t e r i a  f o r  e v a l u a t i n g  a l t e r n a t i v e  p l a n s .  

A s  i n d i c a t e d  above,  w e  a d o p t  a  d i s c r e t e  t i m e  and d i s c r e t e  

s p a c e  f o r m u l a t i o n ,  t h a t  i s ,  w e  c o n s i d e r  t h e  p l a n n i n g  h o r i z o n  

t o  be  p a r t i t i o n e d  i n t o  T  p e r i o d s  ( t  = 0 , 1 , 2 ,  ..., T-1) and t h e  

r e g i o n  p a r t i t i o n e d  i n t o  R s u b r e g i o n s  ( r  = 1 , 2 ,  ..., R ) .  F o r  

i n s t a n c e ,  e a c h  t i m e  p e r i o d  t may be  f i v e  y e a r s  i n  l e n g t h ,  i n  

which case t h e  p l a n n i n g  h o r i z o n , m a y  c o n s i s t  o f  t h r e e  t o  f i v e  

such  s e r i o d s .  Each r e g i o n  r i s  a s s o c i a t e d  w i t h  a l a n d  area 
r 

Lr and a n  i n i t i a l  c a p a c i t y  xiO f o r  a c t i v i t y  i, i = 1 , 2 ,  ..., I. 

Thus, t h e r e  i s  a n  a r e a  Lr a v a i l a b l e  f o r  t h e s e  a c t i v i t i e s  i n  

s u b r e g i o n  r d u r i n g  e a c h  p e r i o d  t. 

W e  s h a l l  d e n o t e  by x n  t h e  v e c t o r  whose components are - r 
X i 0 '  The a l l o c a t i o n  of  l a n d  f o r  d i f f e r e n t  a c t i v i t i e s  i f o r  

t h e  f i r s t  p e r i o d  t = 0  i s  d e t e r m i n e d  by t h e  i n i t i a l  s t a t e  x  0  ' 
F o r  o t h e r  p e r i o d s  t h e  l a n d  u s e  may b e  a l t e r e d  t h r o u g h  i n v e s t m e n t  

d e c i s i o n s .  L e t  yi(t) b e  t h e  i n c r e a s e  o f  c a p a c i t y  i ( f o r  a c t i v i t y  - 
i) i n  s u b r e g i o n  r d u r i n g  t ,  l e t  d:(t) b e  t h e  d e c r e a s e  (demol i -  

t i o n ) ,  and l e t  xf ( t )  b e  t h e  t o t a l  c a p a c i t y  i i n  r e g i o n  r a t  t h e  

b e g i n n i n g  o f  p e r i o d  t ,  f o r  a l l  i, r ,  and t .  I n  t h i s  n o t a t i o n  

w e  have ,  f o r  a l l  t ,  

r r r where x  ( t )  (xi ( t )  ) , y ( t )  ( y i ( t )  ) , and d ( t )  E (di  ( t )  ) a r e  
nonnega t ive  v e c t o r s  w i t h  I x R coniponents, and x ( 0 )  = x o .  

One way o f  h a n d l i n g  economies o f  s c a l e  i s  t o  c o n s i d e r  a  

se t  o f  i n d i v i s i b l e  p r o d u c t i o n  u n i t s  o n l y .  Assuming t h a t  t h e s e  

u n i t s  c o r r e s p o n d  t o  r e a l  a l t e r n a : t i v e s ,  t h e  p r o d u c t i o n  c o s t  

estimates c a n  b e  g i v e n  r e l a t i v e l y  e a s i l y .  T h i s  approach  l e a d s  

t o  a n  i n t e g e r  programming f o r m u l a t i o n .  I n  p a r t i c u l a r ,  f o r  o u r  

purposes  it i s  s u f f i c i e n t  t o  c o n s i d e r  o n l y  one  p l a n t  s i z e  t h a t  

y i e l d s  a n  a v e r a g e  p r o d u c t i o n  c o s t  c l o s e  t o  t h e  minimum p o s s i b l e  

and y e t  i s  a r e l a t i v e l y  s m a l l  u n i t  compared w i t h  t h e  t o t a l  

c a p a c i t y  i n c r e a s e  r e q u i r e d .  Thus, t h e  v e c t o r  y  ( t )  i n d i c a t e s  

t h a t  t h e  c a p a c i t y  i n c r e a s e s  have t o  b e  e x p r e s s e d  by a  n o n n e g a t i v e  

i n t e g e r  v e c t o r .  



Notice in equation (1) that no physical deprecation is 

assumed. Thus the operating cost is assumed to cover the rein- 

vestment cost that is needed to maintain the capacity over 

period t. For the amount d(t) to be demolished we may have a 

lower and an upper bound denoted by L (t) and U (t) , respectively: 

This may be due to initially existing capacity, which ought to 

be closed down during period t. We shall assume d(t) and xo 

be integer vectors as well, so that x(t) is an integer vector. 

Let zi(t) be the total amount of capacity i at the beginning 

of period t, and denote z (t) (zi (t) ) . ~ h u s  we have 

A minimum requirement for capacities is given by a vector 

Z (t) E (Zi (t) ) corresponding to an estimate of the total volume 

of activities within the region: 

The land availability constraint can approximately be 

taken into account through the following inequality: 

r Ixi(t) - < Lr , for all r and t . 
i 

Although this may seem quite restrictive, it is reasonable to 

assume in our study that the same amount of land is needed for 

each unit of various industrial activities. Such a unit is 

roughly determined by the chosen scale of the production units. 

For other activities, for which economies of scale are less 

important, the unit of capacity is determined so that its land 

requirement is about the same as that for an industrial unit. 

The purpose of this slightly restrictive assumption is to obtain 

a network flow formulation, which then greatly simplifies the 

analysis of our model. 



subregions - activities - 
P e r i o d  1 

P e r i o d  2 

Figure 2. The network structure of a model with 
T = I = R = 2 .  

Remark: In order to take advantage of the network structure 

of the model, the subregional capacity levels xf (t) should be - 
suppressed , i.e., one solves xf (t) from (1) and substitutes 

1 

elsewhere. Whiie doing so, one has to pay special attention to 

restrict the demolition activities in order to maintain non- 

negativity for the x:(t) variables. For instance, one may allow 

demolition only for certain time periods and for some initially 

existing capacity. 



An example of the network structure of our model for a 

2-period, 2-region and 2-activity case is given in Figure 2. 

The nodes on the left refer to the land available and those 

on the right to the installed capacity. The vertically di- 

rected arcs on the left describe unoccupied land and those on 

the right the capacity carried over from one period to the next 

(for which we have a lower bound given by equation (4)). The 

other arcs, which are horizontal and'may not be directed, refer 

to land allocations (for the two activities) or land made avail- 

able (through demolition). The conservation equations for each 

node together with' the lower bounds, given by equation (4) (for 

the vertical flows on the right), and the integrality requirements 

constitute the constraints for a possible land allocation. 

3.2 Evaluation criteria 

We consider the following decision criteria: (a) investment 

and demolition costs, operating costs (including transportation 

of raw material and industrial products), (b) private communica- 

tion costs (such as commuting, recreation, and leisure time), 

and environmental considerations including (c) congestion and 

(d) environmental synergisms. We intend to quantify these 

considerations as follows. 

(a) Investment, demolition, and operating costs. Let B: (t) and 

13: (t) be the unit cost of investment and demolition, respectively, 

for capacity i in subregion r during period t. Define 
r 

B (t) (B: (t) ) and D (t) = (Di (t) ) . Then the total investment 

and demolition cost for period t 1s given B (t)y (t) + D (t) d (t) . 
We divide the operating costs into the interaction costs 

between the activities to be located (such as transportation 

of goods, communication) and other operating costs (which may 

also be dependent on the locations of the production units). 

The costs of interactions between activity i and j located in 
r rs s areas r and s, respectively, will be written as xi(t)cij (t)xj (t), 

where xf (t) and xS(t) define (as above) the number of units 

located: and crS(;) is the cost of interaction per unit of 
ij 

activity i on zone r and per unit of activity j on zone s. 



Such a  f o r m u l a t i o n  o f  i n t e r a c t i o n  c o s t s  was f i r s t  p roposed  by 

Koopmans and Beckmann ( 1 9 5 7 ) .  S i m i l a r  f o r m u l a t i o n s  have  l a t e r  

been  developed by Lundqu i s t  and K a r l q u i s t  ( 1 9 7 2 ) ,  Andersson ( 1 9 7 4 ) ,  

S n i c k a r s  ( 1 9 7 2 ) ,  and Los ( 1 9 7 8 ) .  

rs W e  may i n t e r p r e t  t h e  i n t e r a c t i o n  c o s t  c i j ( t )  as a p o t e n t i a l  

t r a n s p o r t a t i o n  (communicat ion)  c o s t .  The c o s t  cf;  ( t )  i s  t h e n  

g i v e n  a s  a p r o d u c t  o f  t h e  f o l l o w i n g  f a c t o r s :  t h e  f r e q u e n c y  of 

i n t e r a c t i o n  o f  one  u n i t  o f  a c t i v i t y  i w i t h  a c t i v i t y  j d i v i d e d  

by Z . ( t )  ( t h e  e s t i m a t e d  t o t a l  number o f  u n i t s  j ) ,  a n o n d e c r e a s i n g  
I 

f u n c t i o n  o f  t h e  d i s t a n c e  between s u b r e g i o n s  r and s, and t h e  

u n i t  c o s t  o f .  i n t e r a c t i o n .  The p r o d u c t  o f  t h e  f i r s t  two f a c t o r s  

y i e l d s  an e s t i m a t e  f o r  t h e  number o f  i n t e r a c t i o n s  f o r  one  u n i t  

o f  a c t i v i t y  i i n  s u b r e g i o n  r w i t h  one  u n i t  o f  j  i n  s u b r e g i o n  s .  

L e t  ~ t ( t )  b e  t h e  o t h e r  o p e r a t i n g  c o s t s  f o r  one  u n i t  o f  

a c t i v i t y  i i n  s u b r e g i o n  r d u r i n g  t .  Such a . t e r m  may, for i n -  

s t a n c e ,  i n c l u d e  i n t e r a c t i o n  c o s t s  between t h e  i n d u s t r i a l  u n i t  

and some p r e l o c a t e d  si tes o f  i n t e r a c t i o n  ( s u c h  as a m i n e r a l  

d e p o s i t ,  w a t e r  s u p p l y i n g  area, p o r t  of  e x p o r t ) .  I f  w e  d e f i n e  a 
rs s q u a r e  m a t r i x  C ( t )  r ( c  ( t )  ) and a  v e c t o r  F ( t )  = (Ff ( t )  ) , t h e n  i j  

f o r  p e r i o d  t ,  t h e  t o t a l  i n v e s t m e n t ,  d e m o l i t i o n ,  and  i n t e r a c t i o n  

c o s t s ,  d e n o t e d  by I l ( t ) ,  can  b e  w r i t t e n  as 

A l t e r n a t i v e l y ,  t h e  i n t e r a c t i o n  c o s t s  nay  b e  t a k e n  t h r o u g h  

as a c c e s s i b i l i t y  c o n c e p t ,  which w i l l  now b e  d e f i n e d .  The a c c e s -  
rs s i b i l i t y  A i j  o f  a u n i t  j  i n  s u b r e g i o n  s f o r  a u n i t  i i n  s u b r e g i o n  

r i s  d e f i n e d  as a p r o d u c t  o f  f r e q u e n c y  o f  i n t e r a c t i o n  o f  one  

u n i t  of  i w i t h  j ,  and a n o n i n c r e a s i n g  f u n c t i o n  o f  t h e  d i s t a n c e  

between s u b r e g i o n s  r and s. D e f i n i n g  a  s q u a r e  m a t r i x  A as 

(nrS) t h e  t o t a l  sys t em a c c e s s i b i l i t y  i s  g i v e n  as  x ( t ) A x ( t ) .  
1 I 

Because a  h i g h  l e v e l  o f  a c c e s s i b i l i t y  i s  d e s i r a b l e ,  we may 

r e p l a c e  t h e  i n t e r a c t i o n  c o s t  x  ( t )  C ( t )  x  ( t )  i n  e q u a t i o n  ( 6 )  by 

t h e  n e g a t i v e  o f  t h e  t o t a l  sys t em a c c e s s i b i l i t y  ( p o s s i b l y  m u l t i -  

p l i e d  by a p o s i t i v e  s c a l a r ,  s i n c e  a c c e s s i b i l i t y  may n o t  b e  

measured i n  monetary u n i t s ) .  



Both potential transportation (communication) costs and 

accessibility are of fundamental importance in spatial planning 

problems. Accessibility has been a dominating concept in the 

recent development of regional theory. It has been given an 

axiomatic foundation by Weibull ( 1 9 7 6 ) ,  and our definition 

above is consistent with his assumptions. Because accessibility 

adds to the dimensionality of our decision criteria, we shall 

consider potential transportation costs as a measure of the 

communication costs. 

(b) Private communication costs. We account for private communi- 

cation costs in a way similar to that of the above. However, 

a distinction between private and other communication costs is 

made because these constitute two separate criteria for evalua- 

tion in our planning problem. 

Private communication costs, denoted by 12(t), may then be 

given as 

I2 (t) = F (t)x(t) + x (t)C (t)x(t) 1 
P P 

where F (t) is a vector of unit communication costs between 
P 

housing and prelocated sites (such as recreation areas, i.e., 

lakes, rivers, forests, etc.) and C (t) is a matrix of potential 
P 

communication costs of connecting the housing units to other 

activities to be located. Thus, components of F (t), which do 
P 

not correspond to the housing activities, are defined as equal 

to zero. Similarly, components of C (t) are equal to zero if 
P 

they do not correspond to interaction with a housing unit. 

(c)' Congestion. Excessive congestion of activities is the most 

obvious kind of environmental problem. We measure congestion 

by capital density allocated by subregions (i.e., congestion 

at zone r is defined as I K ~  (t) xi(t)/Lr, where Ki (t) is the 
i 

capital stock per unit of activity i). Average congestion in 

a regional system is defined as the weighted sum of the conges- 

tion of each subregion. If the ratio of capital stock in sub- 

region r and total capital stock within the region is taken as 

such weights, then the average congestion, denoted by 13(t) , is 



written as 

where G(t) is an appropriately defined square matrix and ~ ( t )  

is the total capital stock. 

(d) Environmental synergisms. Environmental problems are 

normally of a much more complicated and synergistic nature 

than those described in our congestion cost measure. A unit of 

heavy industry is, for instance, of little environmental conse- 

quence if located together with other heavy industry a consider- 

able distance from housing. On the other hand, if it has to be 

located close to housing or outdoor recreation, the disturbance 

can be enormous. Because of the public good nature of pollution, 

one has to take into account the number of persons affected. An 

environmental interaction matrix E = (E~') would consequently i j 
measure the disturbance between different activities i and j 

located in region r and s, respectively. Naturally, numerical 

values for the E~~ may be very difficult to assess. i j 
In order to account for the environmental effects at least 

qualitatively, one might use powers of ten as values for these 

parameters (e.g., 0.1, 1, 10, 100, etc.). A measure 14(t) 

for environmental synergism effects may then be given as 

For each of the four criteria c and for each time period 

t we define a weighting factor f3 (t) that accounts for the time 
C 

preference. Thus, our planning problem becomes a 4-criteria 

optimization problem, where the criteria Ic are given by 

for c = 1,2,3,4 



We do not propose that a particular multicriteria optimi- 

zation technique should be used. Rather we suggest that simply 

nonnegative weights A, should be used for the criteria in order 

to form a linear scalarizing function that would be minimized. 

In this way a linear approximation for the (negative) utility 

function g is given as 

Of course, different values for the parameters Ac may be used 

in order to generate a set of interesting development alterna- 

tives for the region. 

3.3 Summary of the model 

In summary, the planning problem (P) is to find nonnegative 

integer vectors x(t) , y (t) , d (t) , and z (t) , for all t, to 

minimize g in (,I 1) 

(PI 'subject to ( 1 )  - ( 5 )  and 

with the initial state x(0) = xo . 

The objective function of this problem is a quadratic form. 

However, in genera1,this function is not convex. It is easy to 

see that, for instance, the potential transportation cost 

matrix C(t) normally is not positive semidefinite. If we have 

a static 1-activity and 2-zone problem, and the transportation 

costs are equal to the distances d (between subregions r and 
rs 

s), then the potential transportation cost is given as 

1 2  xcx = (x ,X ) 

where the diagonal elements drr are equal to zero. Clearly, if 

drs > 0 for r f s, our matrix C is not positive semidefinite, 
1 2  since for (x ,x ) = (1,-1) we have xCx < 0. It can be shown 



that this result holds for multiactivity multizone problems in 

general (see Snickars 1972). Our planning problem will thus 

not necessarily have a unique optimum. Instead it is reasonable 

to expect a number of locational patterns to correspond to local 

optima, one or more of which are also global optima. This phenom- 

enon is illustrated by a numerical example in Section 5. 

4. A solution technique 

In this section we consider the network formulation of the 

problem (P) , i.e., we assume that variables xt(t) have been solved 
from (I), substituted elsewhere, and that their nonnegativity is 

guaranteed without an explicit consideration. Let x be a vector 
r r whose components are our decision variables yi(t), di (t) , and 

zi(t), for all i, r and t. Let us denote our objective function 

in equation (11) by g = g(x) and the set of all nonnegative vec- 

tors x satisfying our constraints (1) - (5) by S. In this notation 

our problem (P) may be restated as finding an integer vector x to 

(P minimize g(x) . 
xES 

Formally, the set S can be described as the set of feasible 

solutions to a transshipment network as illustrated in Figure 2. 

We exploit the fact that every linearized problem (P) (a 

problem where the objective function of (P) is replaced by a 

linear function) is a transshipment problem for which very 

efficient solution techniques exist (see, e.g., Bradley et al. 

1977). This is due to the fact that every extreme point of S 

is an integer solution provided that L,, Dj(t), and Z.(t) are 
3 

integers for all r, j ,  and t (see, e.g., Dantzig 1963). Thus, 

while solving the linearized problem, the integrality require- 

ment can be relaxed. 

We shall propose the following approach for solving (P): 

0 l o  Choose an initial solution x E S, and set the iteration 

count k to 0.  

2' Solve the linearized problem (L) : 
k minimize Vg(x ) x 

xES 
k for an optimal solution zk E S. Iiere Vg(x ) denotes the 

k gradient o< ,g (x) at x = X . 



3' Solve t h e  l i n e  s ea rch  problem ( Q )  : 
k 

minimize g ( a x k  + ( 1  - a )  z  ) 

f o r  an op t imal  s o l u t i o n  ak E [O, 1 ] . 
i k k  

4' Stop (i) i f  a = 0, o r  (ii) i f  min g ( z  ) - g ( a  x  
i < k  - 

k k  + (1-a ) z  ), < 6 ,  where 6 i s  an a p p r o p r i a t e  t o l e r a n c e ,  

o r  (iii) i f  ano ther  a p p r o p r i a t e  c r i t e r i o n  i s  s a t i s f i e d  
k  

(such a s  computing t i m e ) .  Otherwise r e p l a c e  x  by 
k k  akxk + ( 1  - a  ) z  , k by k  + 1 ,  and r e t u r n  t o  s t e p  2 ' .  

A s  mentioned above, t h e  l i n e a r i z e d  problem (L) i s  a t r a n s -  

shipment problem and' it can be solved extremely e f f i c i e n t l y .  

For computations,  we s h a l l  use  t h e  code r e p o r t e d  i n  R a l l i o  e t  a l .  

(1979) .  The op t imal  ( b a s i c )  s o l u t i o n  f o r  ( L )  s a t i s f i e s  t h e  i n t e g r a -  

l i t y  requirements  f o r  a l l  v a r i a l b e s  x r ( t ) .  Thus, zk i s  f e a s i b l e  f o r  

( P ) .  We approximate t h e  op t imal  s o l u t i o n  of  (P)  by t h e  b e s t  

of t h e  s o l u t i o n s  zk genera ted  by t h e  above procedure.  T h i s ,  

of cou r se ,  may mot be an e x a c t  s o l u t i o n  f o r  ( P ) .  

Problem ( Q )  i s  a  q u a d r a t i c  problem wi th  one v a r i a b l e  a  and 

one c o n s t r a i n t  i) - < , a  - < 1 . Thus, ( Q )  i s  extremely simple.  Let  

( R )  be t h e  problem t h a t  i s  ob ta ined  by r e l a x i n g  t h e  i n t e g r a l i t y  

requirement on x  i n  (P) . S o l u t i o n  x  k+l  i s  t h e  b e s t  f o r  problem 
k  

( R )  and can be found when moving from xk i n  t h e  d i r e c t i o n  z  . 
k Thus, t h e  sequence {x ) genera ted  by t h i s  procedure i s  e x a c t l y  

t he  same a s  t h a t  genera ted  by t h e  Frank-Wolfe method ( 1 9 5 6 )  

when app l i ed  t o  problem ( R )  . I f  xk converges t o  an op t imal  
* s o l u t i o n  x  f o r  ( R )  and x i s  op t imal  f o r  ( P ) ,  t hen  

g ( x * )  5 g ( F )  - < min g ( z i )  , 
i < k  

(i. e . ,  g  (x*) i s  a  lower bound on t h e  op t imal  va lue  of (P)  ) . We 

may never know g ( x * )  b u t  may s t i l l  be mot ivated t o  use  t h e  
k  d i f f e r e n c e  of min g ( z i )  and g ( x  ) a s  a  s topping  c r i t e r i o n ,  t h e  

i < k  

b e s t  f e a s i b l e  va lues  f o r  (P) and ( R )  found s o  f a r .  Th i s  i s  

i l l u s t r a t e d  i n  F igure  3.  



Value of 
functional g 

Iteration k 

F i g u r e  3 .  F u n c t i o n a l  v a l u e  f o r  Problem ( R )  ( t h e  b e s t  one  
found s o  f a r )  and f o r  Problem (P) a s  a  f u n c t i o n  
of i t e r a t i o n  c o u n t  k .  

I f  g  i s  a  convex f u n c t i o n ,  xk converges  t o  x* .  O t h e n i i s e  

w e  may a p p l y  t h e  method s e v e r a l  t i m e s  s t a r t i n g  w i t h  d i f f e r e n t  
0 s o l u t i o n s  x  . 

5. A numer ica l  example 

A s  a  s i m p l e  example, we c o n s i d e r  a  s t a t i c  problem w i t h  

f o u r  r e g i o n s  and f o u r  a c t i v i t i e s .  The a c t i v i t i e s  j ,  t h e i r  

b u i l d i n g  r e q u i r e m e n t s  2, t h e  r e g i o n s  r ,  and t h e i r  l a n d  a v a i l -  

a b i l i t y  Lr a r e  d e s c r i b e d  i n  Tab le  2 .  

L e t  x i  be  t h e  number o f  u n i t s  i t o  be l o c a t e d  t o  r e g i o n  r ,  
1 1  1  4 4 4 4 and d e n o t e  x  = (xl,x2,x3,, x 1 , x 2 , x 3 , x 4 ) .  I f  t h e  inves tment  

c o s t s  a r e  assumed t o  be independen t  of  r e g i o n ,  t h e y  c a n  t h e n  b e  

c o n s i d e r e d  a s  a  c o n s t a n t  t e r m  and t h u s  o m i t t e d  from f u r t h e r  

c o n s i d e r a t i o n .  Our l i n e a r  t e r m  i n  t h e  o b j e c t i v e  f u n c t i o n  s h a l l  



then consist only of the communication cost between housing and 

recreation facilities. The linear term is then given as 

cx = (0,0,0,54900,0,0,0,45500,0,0,0,32800,0,0,0,39400)x. 

Table 2. An example of land requirements and availability. 

j Activity z j iiegion r Lr - 
1 agriculture 5 A 1 

2 industry 4 

3 service 3 

4 housing 6 D 10 

The quadratic term xQx consists of congestion and communi- 
rs cation costs, where the matrix Q = (2. . )  is given as 
1 3 

otherwise , 

and 

The objective function appears to be nonconvex. Thus,we 

ran our solution procedure starting from randomly generated 
0 solutions x . The procedure was repeated tens of times, each 

one taking a few seconds in PDP 1 1  of IIASA. Two local optima 

were found. Both of these solutions appeared to be equally 

good, thus yielding to our location problem alternative global 



optima as conjectured above. The nonzero components of these 

solutions are given in Table 3. 

Table 3. Two local optima of the example. 

j\= 

1  

2 

3 

4 

total 

6. ~mplementation of a plan 

A plan generated, for instance, with the aid of our nodel 

is of little value if it cannot be implemented. There are essen- 

tially four ways of implementing a plan: 

j\r 

1  

2 

3 

4 

total 

a) To leave implementation to the market system without 

constraints but with charges (rent) for the land use. 

b) To use direct central decisions to implement complete 

investment strategies. 

c) To use the planning system to generate zoning constraints 

for activities and leave the detailed implementation to 

the market. 

d) To use a scheme of negotiations between the allocators 

of land and the allocators of investment. 

A B C D 

1  4 

4 

2 1  

5 1  

1  2 5 10 

Each approach shall now be discussed briefly. 

A B c D 

1 2  2  

4 

3 

5 1  

1 2 5 10 

total 

5 

4 

3 

6 

Market implementation. This method consists of determining 

rental values for land in different zones. Subsequently the de- 

cision makers of the sectors would be given a possibility to choose 

their own preferred location which under the sectorial criteria 

would yield the desired location pattern. In the following we 

shall provide some theoretical background on the existence of 

such rental values. 

total 

5 

4 

3 

6 



Consider first a simple case where n activities i are to be 

located on n available subregions r.. Let b; be the net benefit 

of activity i (excluding the rent for land) given that it has 

been located on subregion r. Suppose that according to the plan, 

the locations are determined so that the total net benefit is as 

large as possible. An optimal plan then results as a solution 

to the following assignment problem (Dantzig 1963): 

r r 
maximize lbixi 

ir 

, , r 
For an optimal basic solution, x is equal to 1 if activity i i 
is to be located on subregion r and it is zero otherwise. 

Let pr and ri denote the optimal dual multipliers for con- 

straints (1 4) and (1 5) , respectively. If according 'to the (optimal) 

plan subregion r is assigned to activity i, then bf - pr - n = 0. 
i w 

We shall interpret pr a-s the rent for subregion r. Thus ni = b; - Pr 
is the profit for activity i. Given the rental values pr, another 

L 

location k for i would yield a profit of nl bt - pk. By the 
k - optimality condition, bi pk - n. k k < TT i-e., < 0, or .rr = bi - pk - i, 

1 - i 
any other location k for i would yield a profit nf  which is no 

higher than ri. Thus,profit maximization of each activity sepa- 

rately yields an optimal location pattern under these rental 

prices. 

It is often believed that a decentralized pricing system 

cannot be used to allocate a resource if there are economies of 

scale leading to indivisibilities. In fact, it has been shown 

by Koopmans and Beckmann (1957) for the example above, that de- 

centralized implementation of the optimal solution cannot be 

achievedin general if the goal function is nonlinear, for example, 



quadratic. The same is usually true when integrality constraints 

are su~erimposed on the system, i.e., when capacity for some 

activities has to be built in given units of size. In our case, 

both nonconvexity and the integrality requirement (due to economies 

of scale) are likely to prevent a market implementation of the 

plan. The pure market solution to the implementation problem 

may then be ruled out. 

Centralized implementation. Another extreme procedure for 

implementation is the central decision principle where the plan 

is enforced by the regional authority. However, this procedure 

is extremely information-demanding at the level of central plan- 

ning. A planning model, for instance the one described in this 

paper, is by numerical necessity of a highly aggregated nature. 

Such aggregation may rule out a centralized implementation scheme 

with its requirements of detailed information, i.e., with fine 

disaggregation into fairly homogeneous branches of industry. One 

might also argue that it is impossible, or at least uneconomical, 

to generate very disaggregated technological and administrative 

data at the central level. 

Zoning. One way of using a model for regional planning 

is as a constraint-generator for more detailed decision making. 

A compromise between centralized and market implementation is 

the "zoning principle" according to which central authorities 

constrain land use for each subregion to fall within an aggregate 

category of activities leaving all detailed decisions to the 

market. It is obvious that a planning model can be used to 

generate such constraints on land use. 

 egot ti at ion. Another implementation procedure is a nego- 

tiation scheme that also may be seen as a compromise between 

the pure planning and market approaches. This procedure, however, 

comes closer to the market implementation. The allocation model 

may be used to generate a reasonably representative set of pareto 

optimal locational patterns. These solutions may then be used 

as reference points in the negotiation between the land allocating 

authorities and the sectorial decision makers (on investments in 

new units of production and other activities). 



The c h o i c e  between d i f f e r e n t  implemen ta t ion  a p p r o a c h e s  can-  

n o t  be  d e t e r m i n e d  o b j e c t i v e l y  b u t  must  b e  d e c i d e d  i n  a n  i n s t i t u -  

t i o n a l  a n a l y s i s  r e l e v a n t  t o  t h e  r e g i o n  and  c o u n t r y .  
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