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Abstract

The	availability	of	refuelling	locations	for	alternative	fuel	vehicles	(AFVs)	is	an	important	factor	that	drivers	consider	before
adopting	an	AFV;	thus,	the	layout	of	initial	filling	stations	for	AFVs	will	influence	the	adoption	of	AFVs.	This	paper	presents	a
training	system	for	optimising	the	layout	of	initial	filling	stations	for	AFVs	by	linking	an	agent-based	model	of	the	adoption	of
AFVs	with	a	real	city/area's	road	network,	as	well	as	the	city/area's	social	and	economic	background.	In	the	agent-based	model,
two	types	of	agents	(driver	agents	and	station	owner	agents)	interact	with	each	other	in	a	city/area's	road	network,	stored	in	a
GIS	(Geographic	Information	System).	With	simulation	scenario	analyses	and	a	genetic	algorithm,	the	training	system
presented	in	this	paper	can	help	decision	makers	determine	close-to-optimal	layouts	for	initial	AFV	filling	stations.	This	paper
also	presents	a	case	study	of	the	application	of	the	training	system	that	analyses	the	layout	of	fast-charging	or	battery-changing
stations	for	the	promotion	of	electric	vehicles	adoption	in	Shanghai.
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	Introduction

1.1 With	increasing	concerns	regarding	climate	change	and	the	depletion	of	fossil	fuels,	developing	alternative	fuel	vehicles	(AFVs)
has	become	a	national	technology	strategy	for	many	countries,	e.g.	(China's	State	Council	2012;	US	Department	of	Energy
2013).	AFVs,	such	as	fuel	cell-powered	vehicles,	are	currently	more	expensive	than	traditional	gasoline-powered	vehicles.	It	is
widely	believed	that	technological	learning,	i.e.	the	cost	of	using	a	new	technology	tends	to	decrease	as	experience	in	it
accumulates	(Arrow	1962),	will	be	an	endogenous	driving	force	for	the	adoption	of	AFVs	(Schwoon	2008).	However,	there	is	a
"chicken	or	egg"	dilemma	between	AFVs	and	their	corresponding	filling	stations:	drivers	are	reluctant	to	switch	to	AFVs	if	they
find	that	compatible	filling	stations	are	rare,	and	energy	providers	are	reluctant	to	build	filling	stations	for	AFVs	if	they	find	that	few
people	are	using	them.	With	the	"chicken	or	egg"	dilemma,	it	is	difficult	for	technological	learning	to	take	off.	To	promote	the
adoption	of	AFVs,	governments	must	organise	some	initial	filling	stations	as	the	"seeds"	for	technological	learning.	Where	should
these	initial	filling	stations	be	located	so	that	they	can	induce	a	successful	diffusion	of	AFVs?	It	is	difficult	to	answer	this	question
with	traditional	operational	approaches	and	equilibrium	analysis	because	the	adoption	of	AFVs	is	a	complex	process	that	involves
various	heterogeneous	actors	interacting	with	each	other.	The	main	research	contribution	of	this	study	is	a	methodology	to	help
decision	makers	find	an	appropriate	layout	of	initial	filling	stations	by	linking	an	agent-based	model	with	real	social-economic	data
and	a	real	road	network	in	a	GIS	(Geographic	Information	System).	Here,	the	decision	makers	could	be	government	officials	or	a
company's	managers.	When	a	project	for	establishing	initial	filling	stations	for	AFVs	is	initialised	and	massively	sponsored	by
governments,	the	decision	makers	are	government	officials.	It	is	also	possible	that	a	leading	company	could	set	initial	filling
stations	for	its	own	business;	for	example,	Tesla	has	started	constructing	initial	recharging	stations	for	its	electric	vehicles	in	the

US[1].	In	this	case,	the	decision	makers	are	the	company's	managers.

1.2 Agent-based	models	(ABMs)	are	considered	to	be	powerful	tools	for	studying	complex	systems	involving	heterogeneous	actors
(Arthur	1999;	Farmer	&	Foley	2009).	Agents	in	ABM	are	defined	as	autonomous	decision-making	entities.	From	the	standpoint	of
artificial	intelligence,	an	agent	is	a	computer	system	that	is	either	conceptualised	or	implemented	using	concepts	that	are	more
typically	applied	to	humans	(Wooldridge	&	Jennings	1995).	ABMs	have	been	applied	to	address	dynamics	resulting	from
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interactions	among	heterogeneous	actors	in	various	fields,	such	as	stock	markets	(e.g.,	Palmer	et	al.	1994),	dissemination	of
culture,	e.g.	(Axelrod	1997),	electricity	trading,	e.g.	(Bunn	&	Oliveira	2001),	co-evolution	of	parochial	altruism	and	war,	e.g.	(Choi
&	Bowles	2007),	evacuations	from	buildings	that	are	on	fire,	e.g.	(Shi	et	al.	2009),	the	spread	of	contagious	diseases,	e.g.	(Beyrer
et	al.	2012)	or	technologies,	e.g.	(Delre	et	al.	2007),	and	many	others.	Agent-based	modelling	and	simulation	has	also	been	used
for	decision	support,	e.g.	(Strader	et	al.	1998;	Lee	&	Lee	2007).

1.3 Stephan	and	Sullivan	(2004)	put	forward	a	stylised	ABM	to	simulate	the	co-adoption	of	fuel	cell	vehicles	and	hydrogen	filling
stations	in	an	urban	area.	In	their	model	(henceforth	the	SS	model),	they	define	two	types	of	agents:	driver	agents	and	station
owner	agents.	The	co-adoption	of	fuel	cell	vehicles	and	hydrogen	filling	stations	is	the	result	of	the	interactions	among	the	agents
in	an	urban	area,	which	was	denoted	by	a	square	space	with	intersecting	roads	forming	right	angles.	Their	stylised	model	and
simulations	can	help	people	to	understand	the	complexity	of	the	adoption	process	of	AFVs,	but	their	work	did	not	incorporate	a
real	city/area's	social	and	economic	background.	Thus,	it	cannot	provide	decision	support	for	a	specific	city/area	to	solve	the
problem	of	designing	a	close-to-optimal	layout	of	initial	filling	stations	for	AFVs.

1.4 In	this	paper,	we	develop	a	training	system	by	linking	a	SS-like	agent-based	model	of	AFV	adoption	with	a	real	city/area's	road
network,	as	well	as	the	city/area's	social	and	economic	background,	in	a	Geographic	Information	System	(GIS).	The	system	can
aid	decision	makers'	intuition	in	finding	a	close-to-optimal	layout	of	initial	filling	stations	via	simulation	scenario	analysis	and	a
genetic	algorithm.

1.5 Our	study	is	limited	to	AFVs	that	have	a	similar	refuelling	pattern	to	that	of	traditional	vehicles,	i.e.,	these	vehicles	must	go	to	a
refuelling/recharging	station,	and	the	refuelling	or	recharging	routinely	takes	several	minutes.	Recently,	electric	vehicles	have
appeared	as	promising	AFVs,	e.g.	(US	Department	of	Energy	2013).	Quickly	recharging	depleted	batteries	or	using	robots	to
exchange	them	with	fully	charged	ones,	which	would	only	take	several	minutes,	present	a	promising	system	for	electric	vehicles.
The	AFVs	in	this	paper	are	modelled	as	these	types	of	electric	vehicles,	and	the	filling	stations	presented	are	considered	either
fast-charging	or	battery-changing	stations.	The	framework	of	the	model	and	the	training	system	presented	in	this	paper	also	apply
to	other	AFVs,	such	as	hydrogen	fuel	cell	vehicles	or	gas-fueled	vehicles,	but	it	does	not	apply	to	electric	vehicles	that	need

several	hours	for	recharging[2].	With	the	aim	of	providing	a	general	training	system	for	the	initial	layout	of	any	type	of	AFV	with
refuelling/recharging	patterns	similar	to	those	of	traditional	vehicles,	this	paper	does	not	go	into	the	details	of	the	technological	or
economic	features	of	different	AFVs.	As	a	case	study	of	the	application	of	the	training	system,	this	paper	presents	an	analysis	of
the	initial	layout	of	fast-charging	or	battery-changing	stations	for	promoting	the	adoption	of	electric	vehicles	in	Shanghai.

1.6 The	remainder	of	this	paper	is	organised	in	the	following	manner.	Section	2	provides	the	framework	of	the	training	system.
Section	3	introduces	the	SS-like	agent-based	mode	and	its	linkage	with	GIS	and	a	real	city/area's	social	and	economic
background.	Section	4	presents	the	method	of	getting	a	close-to-optimal	layout	of	initial	filling	stations.	Section	5	provides	a	case
study	of	the	application	of	the	training	system.	Section	6	presents	the	concluding	remarks.

	The	framework	of	the	training	system

2.1 Figure	1	illustrates	the	framework	of	the	training	system,	which	can	be	divided	into	three	parts	represented	in	white	and	two
shades	of	grey.	The	first	part	is	the	core,	the	model	of	the	training	system,	which	is	in	the	middle	of	Figure	1.	In	this	part,	the
stylised	space	in	an	SS-like	agent-based	model	is	replaced	with	a	specific	city/area's	road	network	in	a	GIS,	and	the	driver
agents'	driving	routes	are	generated	from	the	social	and	economic	data	of	the	specific	city/area.	The	second	part	is	the	data	on
the	AFVs'	technological	and	economic	features,	the	road	network,	and	the	social	and	economic	data	of	the	specific	city/area.
Such	data	commonly	need	be	specified	by	researchers.	The	third	part	is	the	input	and	output	interface	for	the	users	(the	decision
makers	or	their	assistants).	With	the	third	part,	users	can	set	different	layouts	of	the	initial	filling	stations,	either	with	a	graphical
user	interface	(GUI)	or	with	a	genetic	algorithm	(GA).	Given	different	initial	layouts,	simulations	with	the	ABM	will	generate
different	adoption	scenarios	of	the	AFVs,	and	the	decision	makers	can	select	the	layout	that	generates	the	fastest	adoption
scenarios	as	the	close-to-optimal	solution.	At	the	early	stages	of	AFV	adoption,	governments	may	establish	a	policy	of	subsidising
the	AFVs.	Thus,	in	the	third	part,	the	system	also	incorporates	public	policy	by	allowing	users	to	set	the	intensity	of	a
government's	AFV	subsidy.

http://jasss.soc.surrey.ac.uk/17/4/6.html 2 16/10/2015



Figure	1.	The	framework	of	the	training	system

2.2 Figure	2	shows	the	main	GUI	interface	of	the	training	system.	Window	A	in	Figure	2	is	the	window	for	setting	the	number	of	initial
filling	stations.	After	setting	the	number	of	initial	filling	stations,	users	can	either	set	their	locations	one-by-one,	manually,	with
window	B	by	pushing	the	Manual	button,	or	set	them	with	the	GA-based	method,	which	will	be	introduced	in	section	4,	by
pushing	the	GA	button.	Window	C	is	for	setting	parameters,	such	as	the	number	of	driver	agents,	the	government's	subsidy,	and
so	on.	Window	D	is	for	controlling	the	starting,	pausing	and	ending	of	the	simulation.	Window	E	shows	the	dynamics	of	the
number	of	AFV	adopters.	Window	F	shows	the	dynamics	of	the	number	of	filling	stations	of	AFVs.	Window	G	shows	the	dynamics
of	distributions	of	filling	stations.	Window	H	is	for	selecting	and	editing	different	road	maps.

Figure	2.	The	main	GUI	interface	of	the	training	system
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	The	model

3.1 We	describe	the	model	following	the	ODD	(Overview,	Design	concepts	and	Details)	protocol	(Grimm	et	al.	2006).

Purpose

3.2 The	purpose	of	the	model	is	to	simulate	the	co-diffusion	of	AFVs	and	their	filling	stations	in	an	urban	city	with	different	layouts	of
initial	filling	stations	and	the	training	system	developed	based	on	the	model	aims	to	help	decision	makers	to	find	a	close-to-
optimal	layout	of	initial	filling	stations	via	simulation	scenario	analysis	and	a	genetic	algorithm.

State	variables	and	scales

3.3 There	are	two	types	of	agents	in	the	model:	driver	agents	and	station	owner	agents.	Driver	agents	are	characterised	by	the	state
variables:	identity	number,	living	location,	working	location,	time	period	of	buying	a	new	vehicle.	Driver	agents	will	calculate	their
concerns	on	refuelling	an	AFV	with	the	availability	of	filling	stations	in	its	driving	paths,	and	also	the	utility	of	using	an	AFV.	We
use	several	thousand,	e.g.	(8000	in	the	case	study	presented	in	section	5)	driver	agents	to	represent	the	drivers	in	an	urban	city.
Station	owner	agents	are	characterised	by	the	state	variables:	identity	number,	location,	and	threshold	for	surviving.	Each	station
owner	agent	operates	one	filling	stations	for	AFVs.	We	assume	there	are	several,	e.g.	(10	in	the	case	study	presented	in	section
5)	initial	filling	stations	(owner	agents)	for	AFVs.	During	the	simulation,	new	filling	stations	(owner	agents)	will	come	into	being
and	some	existing	ones	will	disappear.

3.4 In	addition	to	driver	agents	and	station	owner	agents,	other	entities	in	the	model	are	AFVs,	a	government,	and	an	urban	city.	All
AFVs	are	homogenous	with	a	technological	learning	rate.	The	government	gives	a	subsidy	to	driver	agents	who	buy	AFVs.	The
urban	city	is	composed	of	several	districts,	e.g.,	19	districts	in	Shanghai,	including	both	the	centre	and	suburbs	of	the	city.	The
road	network	in	our	simulations	includes	main	roads	in	the	urban	city.

3.5 One	step	in	the	simulation	represent	one	month,	we	run	each	simulation	for	180	months	(15	years).

Process	overview	and	scheduling

3.6 With	each	step	(or	month),	four	modules	or	phases	are	processed	in	the	following	order.
1.	Switching	to	AFVs.	This	phase	includes	the	following	three	sub-phases.

Buying	or	not.	Each	driver	agent	checks	whether	it	is	time	to	buy	a	new	vehicle,	the	buying	decision	following	a	lognormal
distribution.
Calculating	utility.	Each	driver	agent	who	will	buy	a	new	vehicle	calculates	the	utility	of	using	an	AFV.
Selecting	a	vehicle.	Each	driver	agent	who	will	buy	a	new	vehicle	with	a	positive	utility	of	using	an	AFV	selects	an	AFV,
otherwise	it	selects	a	traditional	vehicle.

2.	Removing	unsuccessful	station	owner	agents	(or	filling	stations).	If	an	existing	station	owner	agent	have	operated	for	more	than
6	steps	(half	a	year)	and	the	number	of	AFVs	passing	it	is	lower	than	the	threshold	it	can	survive,	it	will	be	removed	from	the
system.
3.	Coming	of	new	station	owner	agents.	New	station	owner	agents	appear	in	the	places	where	there	are	enough	AFVs	passing
through	these	places.
4.	Updating	AFVs'	cost.	The	new	cost	of	AFVs	is	calculated	with	technological	learning	effect.

Design	concepts

3.7 Emergence:	The	diffusion	of	AFVs	emerges	from	each	driver	agent's	decision	of	adopting	an	AFV	based	on	its	utility	of	using	an
AFV.	The	diffusion	of	filling	stations	emerges	from	station	owners	decisions	on	establishing	new	or	closing	existing	filling	stations.

3.8 Adaption:	Driver	agents	will	switch	to	AFVs	or	traditional	vehicles	based	on	their	utilities	of	using	AFVs.	Station	owner	agents	will
open	or	close	AFVs'	filling	stations	based	on	their	observations	on	the	number	of	potential	customers.

3.9 Sensing:	Driver	agents	know	the	locations	of	filling	stations	in	their	driving	paths	and	based	on	which	they	have	different	concerns
on	availability	of	refuelling	AFVs.	Station	owner	agents	know	the	number	of	AFVs	passing	through	their	locations	and	they	also
know	the	threshold	number	for	their	surviving.

3.10 Interaction:	The	number	and	layout	of	station	owner	agents	(i.e.,	filling	stations)	will	influence	driver	agents'	concern	on	availability
of	refuelling	AFVs.	And	in	turn,	the	number	of	driver	agents	adopting	AFVs	will	influence	the	coming	of	new	station	owner	agents
and	surviving	of	existing	station	owner	agents.	The	number	of	driver	agents	adopting	AFVs	will	influence	AFVs'	technological
learning	effect,	and	in	turn	technological	learning	effect	will	influence	the	cost	of	AFVS	and	thus	influence	the	number	of	driver
agents	adopting	AFVs.

3.11 Stochasticity:	Driver	agents'	intervals	of	buying	a	new	vehicle	follow	a	normal	distribution.

3.12 Observation:	The	number	of	driver	agents	adopting	AFVs	and	the	number	of	filling	stations	are	recorded	step	by	step.	The
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dynamics	(coming,	existing,	and	disappearing)	of	station	owner	agents	is	displayed	in	a	GIS	map	step	by	step.

Initialisation

3.13 In	the	case	study	presented	in	section	5,	the	simulations	start	with	8000	driver	agents,	0.05%	of	them	are	assumed	to	have
adopted	AFVs.	The	living	and	working	places	are	initialised	based	on	the	spatial	distribution	of	population	and	GDP	in	Shanghai.
There	are	10	initial	filling	stations	for	AFVs.	In	different	simulations,	the	layout	of	initial	filling	stations	could	be	initialised	different
(for	studying	what	type	of	layout	is	better	for	the	diffusion	of	AFVs).	The	initial	cost	of	AFVs	is	set	based	on	the	evaluation	on	the
average	cost	of	AFVs.	The	road	network	includes	the	main	roads	in	Shanghai.	Driver	agents'	living	and	working	places	are
determined	following	the	spatial	distribution	of	Shanghai's	population	and	GDP	(Gross	Domestic	Production).	Driver	agents'
driving	routes	to	attractions,	e.g.	(Shopping	malls)	are	generated	randomly	following	a	Poisson	distribution.

Input

In	the	current	model,	with	initialisation,	the	simulation	process	is	not	affected	by	external	(or	environmental)	dynamics.	In	the
future,	we	would	consider	including	external	dynamics	in	price	of	gasoline,	number	of	driver	agents,	and	so	on.

Submodels

Driver	agents

3.14 A	driver	agent	will	update	his/her	vehicle	after	a	certain	number	of	years,	which	exhibit	a	normal	distribution.	When	updating
his/her	vehicle,	a	driver	agent	will	evaluate	the	utility	of	using	an	AFV,	as	shown	in	Eq.	(1).

(1)

where	Ud	represents	a	driver	agent's	utility	of	using	an	AFV.	FixedBenefit	represents	the	benefit	of	the	lower	cost	of	buying	an
AFV	with	a	government	subsidy.	Because	an	AFV	is	usually	more	expensive	than	a	traditional	vehicle,	the	FixedBenefit	variable
can	be	negative.	With	more	drivers	switching	to	the	AFVs,	their	cost	could	decrease	as	a	result	of	the	technological	learning	effect
(Arrow	1962),	and	thus,	the	FixedBenefit	could	increase.	VariableBenefit	represents	the	energy	cost	savings	per	kilometer	when
using	an	AFV.	Government	subsidies	for	alternative	fuel	and	carbon	tax	policies	for	fossil	fuels	will	influence	the	VariableBenefit.
DistanceTraveled	denotes	how	many	kilometers	the	driver	agent	drives.	Beliefspace&Volume	represents	the	social	value	of	a
driver's	pride	in	being	environmentally	friendly	or	being	a	user	of	advanced	technology	and	the	reduction	of	maintenance	costs

once	AFVs	are	widely	diffused[3].	WorryFactor	represents	a	driver's	concern	about	the	availability	of	filling	stations.	If	a	driver	has
found	that	there	were	few	filling	stations	during	his/her	past	driving	experience,	then	his/her	WorryFactor	will	be	large;	thus,	the
utility	will	be	negative	and	he/she	will	not	adopt	an	AFV.	If	few	people	adopt	AFVs,	the	technological	learning	effect	will	be	weak
and	AFVs	will	remain	expensive.	A	driver's	WorryFactor	is	determined	by	his/her	driving	route	as	well	as	the	distribution	of	filling
stations.	For	the	driver	agents,	there	will	be	a	Don't	Worry	Distance,designated	as	DWD.	If	a	driver	can	find	the	next	filling	station
within	DWD,	he/she	will	not	worry	about	refuelling.

3.15 The	dynamics	of	a	driver	agent's	FixedBenefit	of	adopting	an	AFV	in	Eq.	(1)	is	calculated	with	Eq.	(2):

(2)

Where	CF	denotes	the	cost	of	purchasing	a	traditional	vehicle,	which	is	treated	as	constant	in	the	simulation,	Subsidy	denotes	the
per	cent	of	the	purchasing	cost	of	an	AFV	that	the	government	will	pay	to	the	driver	agent,	and	C(Q)	denotes	the	cost	of	an	AFV
when	the	cumulative	production	is	Q.

3.16 With	more	driver	agents	switching	to	AFVs,	the	cost	of	an	AFV	decreases	according	to	the	technological	learning	effect	(Arrow
1962),	described	by	Eq.	(3)

(3)

where	C0	denotes	the	initial	cost	of	purchasing	an	AFV,	Q	denotes	the	cumulative	production/purchasing[4],	b	is	the	elasticity	of

investment	cost	with	regard	to	cumulative	production	and	it	is	easy	to	prove	that	1−2−b	(which	is	called	technological	learning
rate)	is	the	percentage	of	cost	reduction	when	cumulative	production	doubles.

3.17 The	driver	agents'	VariableBenefit	is	calculated	with	Eq.	(4)
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(4)

where	EF	denotes	a	traditional	vehicle's	fuel	cost	per	kilometre	and	E	denotes	an	AFV's	fuel	cost	per	kilometre.	In	our	current
version	of	the	model,	EF	and	E	are	defined	as	a	constant	value.	From	the	long	run,	EF	and	E	might	be	dynamic	as	the	price	of
gasoline	and	electricity	are	changing,	which	will	be	considered	in	our	future	work.

3.18 In	the	model,	Beliefspace&Volume	is	calculated	with	Eq.	(5)

(5)

where	B	denotes	the	social	value	of	using	an	AFV,	and	it	is	defined	as	a	driver	agent's	average	annual	income	(see	Schwoon
2008),	MF	denotes	the	monthly	maintenance	cost	of	a	traditional	vehicle,	M0	denotes	the	initial	monthly	maintenance	cost	of	an
AFV,	nt	denotes	the	number	of	driver	agents	using	AFVs	at	time	t,	and	N	is	the	total	number	of	driver	agents.

3.19 One	step	in	the	model	represents	one	month.	A	driver	agent	remembers	the	availability	of	the	filling	stations	from	his/her
previous	driving	experiences,	and	thus,	the	WorryFactor	is	not	only	dependent	on	his/her	worry	in	the	current	step	but	is	also
dependent	on	his/her	worry	in	previous	steps.	The	WorryFactor	is	calculated	as	the	weighted	average	of	worry	in	the	current	and
previous	steps	(a	total	of	12	steps,	i.e.,	one	year),	and	the	closer	to	the	current	step,	the	larger	the	weight.

(6)

where	Wj	represents	the	weight	of	worry	at	step	j,	which	is	calculated	with	Eq.	(7).

(7)

where	a	∈	(0,1)	is	the	weight	for	the	current	step.	If	a	is	set	as	0.2,	the	weight	for	the	current	step	is	20%,	and	the	weight	for	one
year	ago	is	less	than	2%.

3.20 Worryj	in	Eq.	(6)	denotes	a	driver's	worry	about	the	availability	of	refuelling	at	step	j,	which	is	calculated	with	Eq.	(8):

(8)

where	StationDisancenj	means	the	distance	between	the	n	th 	refuelling	station	and	the	next	station	during	the	driver	agent's	trip	at
step	j,	DistanceTravledj	denotes	the	total	distance	that	the	driver	agent	drives	at	step	j,	and	λ	is	a	design	parameter,	which	is	used
to	transfer	worries	into	currency.	Its	meaning	can	be	thought	of	as	the	expected	loss	in	worry	for	each	kilometre.	The	DWD	(Don't
Worry	Distance)	depends	on	the	technology	unique	to	a	vehicle	as	well	as	the	driver	agents'	feelings	on	the	maturity	of	the	vehicle
technology.	For	example,	the	refuelling	range	of	a	traditional	vehicle	is	higher	than	that	of	an	AFV,	and	the	traditional	vehicle
technology	is	more	mature	than	an	AFV	technology;	therefore,	the	DWD	for	the	traditional	vehicles	is	larger	than	the	DWD	for	the
AFVs.

Station	owner	agents

3.21 A	station	owner	agent	will	consider	establishing	a	new	filling	station	if	he/she	finds	that	there	are	many	(i.e.,	above	a	threshold)
AFVs	passing	by	a	location.	The	establishment	of	new	filling	stations	will	influence	a	driver's	WorryFactor,	and	thus,	the	utility	of
using	an	AFV.	Once	a	station	is	built,	it	will	be	operated	for	at	least	6	months,	and	after	that,	it	will	be	closed	if	the	number	of	AFVs
passing	by	it	drops	to	less	than	a	threshold.

3.22 Following	the	SS	model,	a	station	owner	agent's	utility	for	building	a	new	filling	facility	is	defined	with	Eq.	(9)

(9)

where	Us	denotes	a	station	owner's	utility,	TotalTraffic	is	the	number	of	AFVs	passing	through	a	location	during	a	certain	time
period,	and	Threshold	is	a	number	indicating	that,	when	there	is	a	sufficient	number	of	AFVs	passing	through	a	filling	station,	the
station	can	make	a	profit	and	therefore	survive.	For	a	location,	the	TotalTraffic	is	determined	by	all	driver	agents'	decisions	on
adopting	AFVs	as	well	as	their	driving	routes	which	can	be	generated	with	the	method	introduced	in	section	3.7.3.	We	assume
that	a	station	owner	agent	will	observe	the	number	of	AFVs	passing	through	a	location	for	12	steps	(i.e.	12	months),	and	the
TotalTraffic	is	calculated	as	the	weighted	average	over	the	12	steps.	The	weight	for	each	step	is	calculated	with	Eq.	(6);	thus,
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larger	weight	is	placed	on	steps	closer	to	the	current	step.

3.23 Whether	a	filling	station	can	make	a	profit	and	survive	depends	not	only	on	how	many	potential	consumers	there	are	(i.e.	the
number	of	AFVs	passing	through	the	station)	but	also	on	the	number	of	competitive	stations.	In	our	model,	the	Threshold	is	a
function	of	the	total	number	of	AFV	refuelling	stations	as	well	as	the	distance	to	its	neighbouring	AFV	stations,	as	shown	in	Eq.

(10)[5].

(10)

where	G	denotes	the	total	number	of	existing	AFV	filling	stations,	Dmin	denotes	the	minimal	distance	between	two	neighbour
nodes	overall	the	road	network.	Here	"nodes"	means	nodes	of	the	road	network.	A	road	network	is	denoted	with	many	nodes	and
links	(or	edges)	in	a	GIS.	Dmin	indicates	the	shortest	link	(or	edge)	in	the	road	network.	It	does	not	mean	the	minimal	distance
between	two	filling	stations.	Di	denotes	the	distance	between	the	location	at	which	a	new	filling	station	is	considered	to	be	built

and	its	i	th 	neighbouring	filling	station,	and	β	is	a	design	parameter	signifying	the	weighted	distance	to	its	neighbouring	stations.	It
follows	from	Eq.	(10)	that	more	total	AFV	filling	stations	as	well	as	more	and	closer	neighbouring	stations	result	in	a	higher
Threshold.	In	our	model,	we	set	β=10,	which	means	that	a	very	close	neighbouring	filling	station	will	increase	the	Threshold	by
10.	With	Eq.	(10),	two	filling	stations	can	be	in	direct	neighbourhood,	if	the	number	of	AFVs	passing	through	their	location	is	large
enough,	i.e.,	larger	than	the	threshold	calculated	with	Eq.	(10)	and	thus	both	of	them	can	have	good	business	to	survive.	Eq.	(10)
reflects	our	stylised	assumption	that	each	filling	station	needs	a	certain	number	of	customers	to	survive.

3.24 When	the	Us	for	a	location	is	positive,	a	filling	station	for	AFVs	will	be	built	there.	Once	a	new	filling	station	is	built,	it	will	be
operated	for	at	least	6	steps.	After	6	steps,	if	Us	becomes	negative,	then	the	station	will	be	closed.

3.25 With	the	agent-based	model,	we	can	run	computer	simulations.	A	successful	adoption	process	could	be	described	as	the
following.	At	the	beginning,	there	are	few	pioneer	adopters	of	AFVs.	With	the	initial	filling	stations	organised	by	the	government,
the	technological	learning	effect	causes	the	FixedBenefit	to	increase,	and	more	drivers	will	adopt	AFVs.	As	a	result,	more	filling
stations	will	be	built,	further	decreasing	the	drivers'	WorryFactor	and	encouraging	more	drivers	to	adopt	AFVs.	More	drivers
adopting	AFVs	will	result	in	greater	rate	of	technological	learning	and	the	establishment	of	more	filling	stations,	thus	causing	a
beneficial	cycle	of	the	adoption	of	AFVs.	Adoption	could	also	devolve	into	a	cycle	of	negative	feedback	and	fail	if	the	effect	of
technological	learning	is	too	weak,	if	government	subsidies	are	insufficient,	or	if	the	layout	of	initial	filling	stations	is	not
appropriate.

Figure	3.	Adoption	of	AFVs	at	step	50	with	different	β	and	λ

3.26 In	the	model	introduced	above,	λ	in	Eq.	(8)	and	β	in	Eq.	(10)	are	two	design	parameters,	which	are	parameterised	ad-hoc.	Figure

3	plots	the	ratios	of	AFVs	at	step	50	with	different	values	of	λ	and	β,	with	other	parameters	set	as	the	same [6].	From	Figure	3	we
can	see	that,	with	the	increase	of	λ,	the	diffusion	of	AFVs	becomes	slower,	this	is	because	a	larger	λ	denotes	a	bigger	weight	to
concerns	on	the	availability	of	AFVs'	filling	stations,	thus	driver	agents	will	be	more	reluctant	to	adopt	AFVs.	Figure	3	also	shows
that	with	the	increase	of	β,	the	diffusion	of	AFVs	becomes	slower.	This	is	because	with	a	larger	β,	the	threshold	for	a	filling	station
to	survive	becomes	higher,	and	thus	the	diffusion	of	filling	stations	becomes	slower	which	result	in	slower	diffusion	of	AFVs.
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Linking	the	agent-based	model	with	a	GIS	and	social	and	economic	background

Techniques	and	solutions

3.27 In	the	original	SS	model,	agents	live	in	a	stylised	space	defined	by	a	square,	and	the	road	network	is	defined	by	intersecting	lines
that	form	right	angles.	Most	of	the	driver	agents'	driving	trips	are	for	commuting.	The	driver	agents'	homes	and	work	places	are
initialised	randomly	in	the	square	space.	For	each	driver	agent,	his	commuting	trip	is	set	to	be	the	shortest	path	between	his
home	and	work	place.	The	driver	agents'	other	driving	trips	are	set	from	their	homes	to	an	attraction,	e.g.	a	shopping	mall.	The
stylised	model	can	explain	the	complexity	of	the	adoption	process,	but	the	simulations	are	far	from	realistic	scenarios	because
they	are	not	linked	with	a	real	social-economic	background.	To	help	decision	makers	find	a	close-to-optimal	layout	of	the	initial
filling	stations,	our	training	system	links	the	agent-based	model	with	a	real	city/area's	road	network	in	a	GIS	as	well	as	the
city/area's	social	and	economic	background.

3.28 In	recent	years,	with	the	fast	development	of	GISs,	a	large	amount	of	spatial	data	is	stored	digitally	in	various	GISs.	Integrating
these	spatial	data	into	agent-based	models	is	an	advance	of	the	ABM	approach,	and	researchers	have	focused	increasingly
greater	attention	to	this	effort	(Gilbert	2007).	The	integration	of	ABMs	and	GISs	still	faces	a	large	number	of	challenges,	and	the
primary	issue	is	that	the	software	platform	and	technology	of	ABMs	and	GISs	have	been	developed	independently	(Stanilov
2011).

3.29 The	integration	of	ABMs	and	GISs	can	be	classified	into	two	types,	grid-based	integration	and	vector-based	integration.	The	first
type	of	integration	is	relatively	simple.	It	replaces	the	square	space	with	a	polygon	denoting	an	area's	shape,	but	the	main
elements	in	the	space	are	still	grids.	Most	of	the	current	integrations	of	ABMs	and	GISs	are	of	this	type.	The	second	type
integrates	vectors	denoting	the	space	topology	into	an	ABM.	This	type	of	integration	is	more	complex,	and	it	usually	demands
very	large	computational	requirements	(Stanilov	2011).

3.30 A	city/area's	road	network	in	a	GIS	is	stored	mostly	as	vectors.	With	Repast	(North	et	al.	2013)	as	the	ABM	platform,	and	with
ArcGIS	(ESRI	2004)	as	the	GIS	platform,	we	explored	a	vector-based	solution	for	linking	the	SS	model	with	a	real-road	network.
In	our	solution,	Repast	and	ArcGIS	work	mostly	independent	of	each	other,	and	all	of	the	communications	between	Repast	and
ArcGIS	are	realised	through	reading	and	writing	operations	on	shapefiles	in	which	spatial	vectors	are	stored	as	two-dimensional
tables.	The	data	exchange	works	in	both	directions	between	Repast	and	ArcGIS	at	each	simulation	step.	In	the	agent-based
model,	new	filling	stations	will	be	established	and	some	old	ones	might	be	closed	at	each	step,	which	will	influence	driver	agents'
utility.	So	at	each	step,	Repast	will	obtain	the	position	of	all	agents	from	ArcGIS's	shapefile	and	write	back	the	changing	of	station
owners'	position	to	shapefile.	And	of	course,	visualisation	is	another	reason	for	getting	back	to	ArcGIS.

A	simple	method	for	the	driving	trip	generator

3.31 Various	existing	traffic	forecasting	methods	(e.g.	1987;	Tsekeris	&	Stathopoulos	2006;	Chrobok	et	al.	2005;	Dia	2001)	can	be
used	to	generate	the	driving	trips	in	an	area	for	the	agent-based	model.	These	methods	commonly	require	very	intensive	data
collection	and	analysis.	Considering	that	our	model	is	not	intended	for	traffic	management	or	planning,	we	developed	a	simpler
method	as	an	alternative	option	(in	addition	to	traditional	methods)	for	users	to	generate	driving	trips	for	the	ABM	(Ma	et	al.
2014).	The	method	does	not	require	extensive	work	to	be	performed	on	the	data.	It	uses	widely	available	social,	economic,	and
spatial	data	as	inputs	to	generate	driving	trips	in	an	area.	The	method	is	described	below.

3.32 Cities/areas	are	commonly	composed	of	several	districts,	and	statistical	data,	such	as	GDP	and	population	size,	are	often	widely
available	at	the	district	level.	Thus,	our	method	uses	statistical	data	at	this	level	to	generate	driving	trips.	Compared	with	trips	for
other	purposes,	such	as	shopping	and	leisure,	commuting	trips	are	more	fixed,	both	in	terms	of	time	and	space.	As	shown	in
Table	1,	commuting	trips	in	a	city/area	can	be	divided	into	four	major	types	resulting	from	the	combinations	of	one's	home	and
work	place	locations.	For	different	cities/areas,	the	proportion	of	the	four	types	of	commute	in	Table	1	could	be	different.

Table	1:	Spatial	types	of	commutes

Type Location	of	home Location	of	work	place
Within-commute Centre Centre
Inward-commute Suburb Centre
Reverse-commute Centre Suburb
Lateral-commute Suburb Suburb

3.33 Several	driver	agents'	homes	might	be	very	close,	for	example,	in	the	same	community.	In	the	simulation,	we	simply	assume	that
they	are	living	in	the	same	location,	called	a	living	quarter.	Similarly,	several	driver	agents'	work	places	might	be	very	close,	for
example,	in	the	same	business	park.	In	the	simulation,	we	also	simply	assume	that	they	are	working	in	the	same	location,	called
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a	working	quarter.	As	shown	in	Figure	4,	our	method	of	generating	commute	driving	trips	starts	by	calculating	the	number	of	living
quarters	and	working	quarters	in	each	district,	using	population	and	GDP	data.

3.34 The	number	of	living	quarters	in	each	district	is	calculated	with	Eq.	(11)

(11)

where	LQi	denotes	the	number	of	living	quarters	in	the	ith	district	of	a	city,	Pi	denotes	the	resident	population	in	the	ith	district,	m
denotes	the	total	number	of	living	quarters	in	the	city/area,	and	n	denotes	the	number	of	districts	in	the	city.

3.35 The	number	of	working	quarters	in	each	district	is	calculated	with	Eq.	(12)

(12)

where	WQi	denotes	the	number	of	working	quarters	in	the	ith	district,	l	denotes	the	total	number	of	working	quarters,	and	GDPi
denotes	the	ith	district's	GDP.

Figure	4.	Method	of	generating	a	commute	driving-trip.	Rectangles	with	bold	frames	and	gray	background	denote	the	inputs
used	to	generate	the	commuter	driving	trips

3.36 After	obtaining	the	number	of	living	and	working	quarters	in	each	district,	they	are	placed	in	each	district	randomly	in	a	GIS	digital
map.	Then,	each	driver	agent	is	randomly	assigned	a	living	quarter,	and	following	the	proportion	of	the	four	commute	types	in
Table	1,	each	driver	agent	is	randomly	assigned	a	working	quarter.	Dijkstra's	algorithm	(Dijkstra	1959)	is	applied	for	each	driver

agent	to	decide	his/her	commute	route
[7]
.	Dijkstra's	algorithm	is	one	of	the	most	popular	algorithms	for	finding	the	shortest	path

between	two	locations,	and	it	is	widely	used	in	many	GIS	systems.

3.37 In	addition	to	driving	trips	for	one's	commute,	driving	trips	for	other	purposes	are	generated	from	the	driver	agents'	home	and
attractions	such	as	shopping	malls.	Additionally,	there	are	also	randomly	chosen	driving	trips.	For	each	step,	which	denotes	one
month	in	our	model,	we	assume	that	there	are	20	two-way	trips	for	one's	commute,	and	a	number	of	trips	to	attractions	that	follow
a	Poisson	distribution	with	a	mean	of	8	and	an	upward	limit	of	10.

3.38 We	tested	the	method	with	data	from	Shanghai,	one	of	the	largest	cities	in	China,	and	found	the	commute	times	produced	by	the
method	were	in	close	agreement	with	survey	results	(see	more	details	in	the	case	study	in	section	5),	which	provides	some

validation	of	the	potential	usefulness	of	the	method
[8]
.
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	Getting	a	close-to-optimal	solution

4.1 Users	of	the	training	system	can	attain	a	close-to-optimal	solution	either	by	a	trial-and-error	method	or	with	the	help	of	a	genetic
algorithm.	The	training	system	provides	a	GUI	through	which	a	user	can	put	(in	this	case,	10)	initial	filling	stations	in	a	map	by
inputting	their	coordinates	manually.	After	setting	a	layout	of	the	initial	refuelling	stations,	the	user	can	run	the	simulation	to
generate	an	adoption	scenario	of	the	AFVs.	The	user	can	set	as	many	different	layouts	as	he/she	wants,	and	generate	different
adoption	scenarios.	By	comparing	these	scenarios,	the	user	can	select	the	layout,	which	generates	the	fastest	adoption	of	AFVs.
If	a	decision-maker	already	has	a	design	of	layout	in	his/her	mind,	he/she	can	use	the	training	system	to	test	whether	the	design
can	generate	a	successful	adoption	of	AFVs,	and	after	the	testing,	he/she	might	modify	a	portion	of	the	design	and	do	testing
again.

4.2 In	additional	to	setting	the	initial	layout	manually,	we	also	developed	a	GA	to	help	users	to	set	an	initial	layout	with	close-to-
minimal	concerns	(on	refuelling)	of	all	driver	agents.	The	GA	treats	a	layout	as	a	genome,	and	the	probability	that	a	layout	is
selected	as	the	parents	for	the	next	generation	is	calculated	with	Eq.(13).

(13)

where	f	is	the	average	of	all	potential	adopters'	concerns	with	the	layout,	and	fmax	is	the	maximal	average	of	all	potential	adopters
concerns	with	all	layouts	in	the	same	generation,	and	fmin	is	the	minimal	average	of	all	potential	adopters'	concerns	with	all
layouts	in	the	same	generation.	With	Eq.	(13),	for	smaller	average	concerns	of	a	layout,	there	is	a	larger	probability	that	the	layout
is	selected	as	the	parents	for	the	next	generation.	The	GA	will	be	terminated	with	one	of	the	following	conditions:	(1)	the	minimal
average	concerns	with	a	series	of	generations	are	stable;	(2)	the	number	of	iterations	with	the	GA	reaches	a	predefined	number.

4.3 The	initial	layout	generated	with	the	GA	does	not	have	to	be	the	best	one.	It	is	an	option,	which	is	not	generated	with	users'
intuition	but	with	a	special	objective	(minimal	concerns	of	all	potential	adopters)	and	might	help	the	adoption	of	AFVs.	Users	can
use	it	as	a	starting	layout	to	find	their	satisfying	one	with	simulation	scenario	analysis	described	in	the	first	paragraph	of	this
section.

	A	case	study	with	Shanghai

5.1 Sponsored	by	the	Shanghai	Science	and	Technology	Committee	and	the	Shanghai	Education	Committee,	we	performed	a	study
of	the	initial	layout	of	fast-charging	or	battery-changing	stations	for	electric	vehicles	in	Shanghai.

5.2 Shanghai	is	one	of	the	biggest	cities	in	China.	Its	economy	and	facilities	are	well	developed.	In	2011,	Shanghai	became	the	first
city	in	China	to	start	demonstration	projects	of	plug-in	electric	vehicles.	It	has	the	potential	to	be	selected	as	the	adoption	centre
for	AFVs.	With	this	study,	we	aim	to	find	the	optimal	layout	of	initial	filling	stations	for	electric	vehicles	based	on	the	concept	of
fast-charging	or	battery-changing	stations.	The	main	purpose	of	presenting	this	case	study	is	to	demonstrate	how	the	training
system	can	help	the	decision	makers	find	a	close-to-optimal	layout.	As	a	result,	we	do	not	implement	intensive	data	collections	to
generate	driving	routes	in	Shanghai;	instead	we	use	the	simple	method	introduced	in	para.	3.31	to	generate	driving	routes.

5.3 Shanghai	is	composed	of	19	districts;	we	assume	that	each	district	has	an	attraction	located	at	its	centre.	We	also	assume	that
there	are	400	living	quarters	and	400	working	quarters	in	Shanghai.	Here,	we	did	not	use	the	real	number	of	living	and	working
quarters	in	Shanghai	because	the	agent-based	model	does	not	aim	to	replicate	reality;	instead,	it	uses	a	small	number	of	agents
to	represent	all	of	the	drivers	in	Shanghai.	In	effect,	the	distribution	of	the	representative	agents	is	most	important	and	not	the
number	of	actual	drivers	in	reality.	The	numbers	of	living	and	working	quarters	in	each	district	were	calculated	with	Eq.	(11)	and
Eq.	(12),	with	the	statistical	data	taken	from	the	Shanghai	Statistics	Year	Book	(2009).	We	assume	that	each	living	quarter	is	the
location	of	20	driver	agents'	homes.

5.4 Table	2	gives	the	proportion	of	different	commuting	trip	types	from	the	latest	transportation	survey	in	Shanghai	in	2009	(SFTS
2009).	Then,	using	the	method	introduced	in	Section	3.7.3,	we	generate	the	driving	trips	in	Shanghai.

5.5 According	to	the	latest	transportation	survey,	the	average	speed	on	Shanghai's	main	roads	during	commuting	periods	ranges
from	15	to	21	kilometers/hour	(SFTS	2009).	We	used	the	median	speed,	18	kilometers/hour,	to	calculate	the	driver	agents'
commute	time,	and	we	found	that	the	mean	commute	time	of	10	simulations	is	47.3	minutes,	which	is	close	to	the	46	minutes
reported	in	the	survey.	The	distribution	of	the	commuting	times	in	our	simulations	is	also	in	agreement	with	the	results	of	another
survey,	performed	by	Wang	and	Gan	(2010).

Table	2:	The	percentages	of	commutes	in	Shanghai	in	2009	(%)

Origin	Destination Center Suburbs
Center 92.9 7.1
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Suburb 12.1 87.9

5.6 We	use	Shanghai's	main	road	network	for	our	simulation.	The	road	network	includes	more	than	800	pieces	of	road	and	more
than	500	nodes.

5.7 Based	on	a	survey	on	the	traditional	and	electric	vehicles	in	the	market,	we	performed	the	following	estimation	for	traditional
vehicles	and	electric	vehicles	in	the	model.	The	cost	of	a	traditional	vehicle	is	assumed	to	be	25,000	US$,	its	annual	maintenance
cost	is	150	US$,	and	its	fuel	cost	per	kilometre	is	0.1	US$.	The	initial	price	of	an	electric	vehicles	is	40,000	US$,	its	initial	annual
maintenance	cost	is	300US$,	and	its	energy	cost	per	kilometre	is	0.025US$	(i.e.	25%	per	cent	of	a	traditional	vehicle).	The	social
value	of	using	an	AFV	is	set	according	to	the	average	annual	income,	which	is	7000	US$.	The	technological	learning	rate	of	the
electric	vehicle	is	assumed	to	be	10%.

5.8 In	Shanghai,	the	subsidy	from	the	government	for	an	electric	vehicle	is	approximately	40%	of	the	total	price	(including	a	free
license	plate,	which	is	otherwise	priced	by	a	monthly	auction,	and	a	reduced	purchasing	tax).	The	driver	agents'	DWD	is	set	to	11

km.	In	addition,	λ	in	Eq.	(6)	is	set	to	500	US$[[9]],	which	indicates	the	expected	loss	of	worry	for	each	kilometre,	and	only	40	driver
agents	are	designated	as	adopters	of	AFVs	at	the	beginning	of	the	simulation.	Suppose	the	government	plans	to	build	10	initial
filling	stations,	then	what	type	of	layout	can	induce	a	successful	adoption	process	of	electric	vehicles?

5.9 The	time	period	for	each	driver	agent	to	update	his/her	vehicle	follows	a	normal	distribution	with	a	mean	of	four	years	(48	steps)
and	a	standard	deviation	of	one	year	(12	steps).

Figure	5.	Shanghai	main	road	network	and	the	distribution	of	attractions,	living	quarters,	and	working	quarters	in	the	agent-
based	model

5.10 Figure	5	depicts	the	main	road	network	of	Shanghai,	the	distributions	of	living	quarters,	working	quarters,	and	attractions	as	well
as	the	initial	filling	stations.
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a.	Dispersed	layout

b.	Concentrated	layout
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c.	GA	layout
Figure	6.	Three	different	layouts	of	initial	filling	stations

Figure	7.	Adoption	of	electric	vehicles	with	different	layouts	of	initial	filling	stations

5.11 Figure	6	plots	three	different	layouts	of	the	10	initial	filling	stations.	The	first	two	layouts	(Figure	6a	and	Figure	6b)	are	set
randomly.	In	Figure	6a,	the	10	initial	filling	stations	are	put	randomly	over	the	whole	Shanghai.	In	Figure	6b,	the	10	initial	filling
stations	are	put	randomly	in	the	centre	of	Shanghai.	Figure	6c	is	a	layout	generated	with	the	GA	algorithm	introduced	in	section
4.

5.12 	Figure	7	plots	the	adoption	of	the	electric	vehicles	with	the	three	different	layouts.	From	Figure	7	we	can	see	that	with	the	layout
generated	with	the	GA,	the	diffusion	of	the	AFVs	is	about	two	years	(24	simulation	steps)	earlier	than	that	with	the	second	layout
and	about	eight	years	(96	simulation	steps)	earlier	than	that	with	the	first	layout.	This	comparison	can	somehow	validate	our
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belief	that	reducing	driver	agents'	initial	total	concerns	on	refuelling	can	help	the	diffusion	of	AFVs.	The	GA	helps	decision	makers
find	the	layout	that	produces	close-to-minimal	average	concerns	for	all	potential	adopters.	Decision	makers	can	generate	several
initial	layouts	with	the	GA,	as	shown	in	Figure	8,	which	plots	the	decreasing	of	average	concerns	when	applying	the	GA	with
different	populations	at	each	generation.	And	then	decision	makers	can	test	these	layouts	with	the	agent-based	model	and	select
the	one	that	can	induce	the	most	successful	adoption.

Figure	8.	Decrease	of	the	average	concerns	using	the	GA

5.13 In	this	study,	we	assumed	the	number	of	initial	filling	stations	is	10.	By	increasing	efforts	to	promote	the	adoption	of	electric
vehicles	through	fast-charging	or	battery-changing	stations,	the	number	of	initial	filling	stations	would	be	larger.	What	we	have
presented	here	is	mainly	an	illustration	of	how	the	training	system	can	help	decision	makers	find	the	appropriate	layout.	Users	of
the	system	can	explore	close-to-optimal	layouts	with	different	situations	and	for	different	cities/areas.

	Concluding	remarks

6.1 Adoption	of	AFVs	is	a	complex	process	involving	heterogeneous	actors.	It	is	difficult	to	identify	an	optimal	layout	of	initial	filling
stations	for	alternative	fuel	vehicles	in	a	city/area	with	traditional	operational	optimisation	or	equilibrium	analysis.	This	paper
presents	a	training	system	for	finding	a	close-to-optimal	layout	by	integrating	an	agent-based	model	with	a	GIS	and	the	social	and
economic	background	of	a	city.

6.2 In	addition	to	the	layout	of	the	initial	filling	stations,	adoption	of	AFVs	will	also	be	influenced	by	other	factors,	with	some	of	them
addressed	by	the	model	introduced	in	this	paper,	e.g.	(technological	learning	potential,	government	subsidies,	etc.).	To	focus	on
solving	the	problem	of	finding	a	close-to-optimal	layout,	the	current	study	assumes	other	factors	are	already	known.	In	reality,
even	with	a	good	layout	of	the	initial	filling	stations,	the	widespread	adoption	of	AFVs	could	fail	as	a	result	of	other	factors.
Studying	the	influences	of	these	other	factors	is	beyond	the	scope	of	this	paper.

6.3 Although	the	agent-based	model	and	simulations	presented	in	this	paper	attempt	to	be	more	realistic	with	the	integration	of	a	real-
road	network	as	well	as	incorporation	of	social	and	economic	data,	they	do	not	purport	to	accurately	replicate	reality.	It	is	beyond
any	research	project's	capacity	to	know	each	driver's	extract	driving	routes	in	a	city/area	because	there	could	be	millions	of
possible	routes.	What	the	agent-based	model	and	simulation	in	this	work	did	was	to	capture	the	spatial	distributions	of	all	drivers'
routes	with	representative	agents.	As	a	result,	the	training	system	described	here	can	help	expand	decision	makers'	imaginations
as	well	as	enhance	their	intuition	of	the	design	for	appropriate	layout	of	initial	filling	stations.

6.4 Traditional	approaches	for	locating	new	filling	stations	mainly	consider	the	traffic	flow	and	external	constrains	such	as	far	away
from	sparks,	and	they	pay	little	attention	to	the	co-diffusion	process	of	AFVs	and	their	filling	stations.	The	model	and	approach
presented	in	this	paper	focus	on	the	co-diffusion	process	of	AFVs	by	explicitly	modelling	the	interactions	among	driver	agents
and	station	owner	agents	which	are	very	important	during	the	taking	off	of	AFVs'	diffusion.	The	model	and	study	mainly	focused
on	developing	a	training	system	by	linking	a	stylised	agent-based	model	with	GIS	and	social-economic	background	of	a	specific
city.	The	agent-based	model	itself	was	kept	as	simple	as	previous	study.	For	example,	the	current	model	does	not	consider	the
dynamics	of	gasoline	price	and	governments'	subsidy.	The	driver	agents	in	current	model	are	only	characterised	by	their	driving
routs.	In	reality,	driver	agents'	income,	age,	gender,	education,	and	so	on,	might	influence	their	decision	on	adopting	AFVs.	The
training	system	presented	in	this	paper	is	a	prototype	system.	It	provides	a	platform	for	adding	further	realities	into	the	model	and
simulations.	In	the	future	work,	we	would	add	external	(or	environmental)	dynamics	into	the	model,	such	as	the	dynamics	of
gasoline	price,	governments'	dynamic	subsidy,	and	so	on.	We	would	also	model	driver	agents'	heterogeneity	in	terms	of	their
income,	age,	gender,	education,	and	so	on.	In	addition,	in	future	work,	we	would	develop	more	complicated	GA	methods	for
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getting	the	close-to-optimal	layout	of	initial	filling	stations.	We	plans	to	develop	a	GA-method	which	allow	decision	makers	to	trade
off	between	cost	and	effect	of	the	layout,	and	we	also	plan	to	develop	a	GA	method	which	nests	the	agent-based	simulation
process	into	the	genetic	algorithm	and	use	the	adoption	result	as	a	measure	of	a	given	layout's	fitness.	In	the	current	model,
whether	a	filling	station	can	survive	is	simply	determined	by	the	number	of	AFVs	passing	through	it.	In	the	future	work,	we	would
consider	a	more	detailed	economic	evaluation	on	the	investment	cost,	operation	cost,	and	revenue	of	filling	stations.
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	Notes

	1	See	http://www.teslamotors.com/supercharger	Archived	at:	http://www.webcitation.org/6Ok93xxwD

2	For	such	electric	vehicles,	it	is	better	to	install	recharging	facilities	in	parking	places.

3	With	a	greater	adoption	of	one	type	of	AFVs,	there	will	be	more	service	centers	for	the	maintenance	of	that	type	of	AFVs.	Thus,
the	maintenance	will	be	more	convenient,	and	the	price	of	maintenance	might	decrease	with	competition.

4	In	the	model,	we	simply	assume	that	the	supply	of	and	demand	for	AFVs	are	the	same.

5	For	a	specific	kind	of	AFVs,	it	is	better	to	do	a	detailed	study	of	the	economics	of	establishing	a	new	refueling	station,	which	will
be	discussed	in	our	future	work.

6	See	more	details	in	section	5.	In	the	simulations	reported	in	Figure	3,	the	layout	of	initial	filling	stations	is	set	as	in	Figure	6b.

7	In	reality,	a	driver	might	not	select	the	shortest	path.	In	this	simplified	method,	we	follow	the	SS	model	because	the	method	is
not	used	for	traffic	forecasting	but	for	generating	driving	routes	of	representative	agents.

8	With	the	method,	we	also	did	another	case	study	with	Beijing,	which	also	provides	some	validation	of	the	potential	usefulness	of
the	method	(Ma	et	al.	2014).

9	We	adopt	the	idea	of	average	month	income	(see	Schwoon	2008)
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