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WHY A POPULATION CONVERGES TO STABILITY

W.B. Arthur

A large part of mathematical demography is built upon one
fundamental theorem, the *strong ergodic theorem" of demography.
If the fertility and mortality age-schedules of a population
remain unchanged over time, its age distribution, no matter what
its initial shape, will converge in time to a fixed and stable
form. 1In brief, when demographic behavior remains unchanged,

the population, it is said, converges to stability.

There are two basic ways to prove that this is so, depen-
ding on whether demographic behavior is described in discrete
time, or in continuous time. For the discrete case, proof
amounts to showing that an infinite product of the Leslie tran-
sition matrix achieves a limiting constant form. This is the
principle behind the proofs of Leslie (1945), Lopez (1961),
Parlett (1970), and many others. For the continuous case, proof
amounts to solving the Lotka integral renewal equation and
studying the asymptotic behavior of its solution terms. This
is the principle behind the proofs of Lotka and Sharpe (1911),
Lotka (1938), Coale (1972) and again, many others. Some of the
modern papers (see, for example Cohen (1979)) probe the abstract,
outer reaches of convergence, but the underlying principles

remain largely the same.



While neither form of proof is mathematically difficult,
neither offers much in the way of direct and ready insight. The
problem is that both forms are built on borrowed theory, either
on positive matrix theory or on asymptotic integral equation
theory. Both forms of proof are not self-contained.1 The mech-
anism forcing the age-structure to converge in each case there-
fore remains partially hidden within the borrowed theory and
becomes difficult to see. Those who do not want to steep them-
selves in the theory of primitive matrices or in k-th order roots
of integral equations are therefore left curious. Why should it
be that a population converges? What is it about the process of
regeneration of population numbers that means the age structure
will converge to a stable form, and population growth to a con-

stant rate? What mechanism underlies population convergence?

This short paper presents a new argument for the convergence
of the age structure, one that is self-contained, and that brings
the mechanism behind convergence into full view. The idea is
simple. Looked at directly, the dynamics of the age-distribution
say little to our normal intuition. Looked at from a slightly
different angle though, population dynamics define a smoothing
or averaging process over the generations -- a process comfortable
to our intuition. This smoothing and resmoothing turns out to
be the mechanism that forces the age structure toward a fixed

and final form.

The Problem. The problem can be stated simply enough. Assuming

constant fertility and mortality behavior, with no in- or out-
migration, a population evolves in discrete time according to

the dynamics
(1) Bt = Z{Bt_xpxmx ,

where B, is the number of births in year t, m. is the probabil-

ity of reproducing at age x, and p, is the probability.of sur-

viving until age x. Present births, in other words, are the

1)Lotka did publish a self-contained proof, in 1922. He
sandwiched the initial age-distribution between two boundary
curves that close in over time, eventually coinciding to trap
the age distribution within a fixed shape. The proof is in-
genious but the logic is loose, and the mechanism forcing con-
vergence is difficult to see.



sum of births born to people at childbearing ages who still

survive. Summation is taken over the age groups 1 to M (where
M is an upper limit to childbearing). And the numbers in the
M- 1B_q
B, nor p, nor m, of course, is negative.

initial "generation", B are assumed given. Neither

The age composition, or proportion at age a at time t, is

given by

B,_.p
(2) c - __t-ara

a,t
LBy _xPx
X
the numbers at age a, divided by the total population. We seek

to prove that the distribution c converges to a limiting con-

N a,t
stant function Cy-
Two observations will help us to furnish a proof. First,

note that it is enough to prove that B
t

£ converges to an expo-

. * r * .
nential form, B, - Be ~, whereB and r are constants. For if

t
this is true it follows by substituting for Bt-a and Bt-x in (2)

that the age distribution becomes fixed and unchanging with time:

e
(3) c > —Fg— = C
a,t ze rxp a

X

Armed with this we can confine our attention to why the birth

sequence, B should become exponential. Second, note that

tl
convergence to an exponential form is hard to prove, the target
is moving as it were; but convergence to a fixed value is easy.
Therefore we will normalize or redefine the problem to one of

convergence to a fixed value.

Smoothing Process. Begin with the dynamics

() Bt = th—xpxmx !
X

o . rt

and divide both sides by e 7,

B B -rx

t t-x e

(5) — = ] — P, m
ert % ert e~ TX TX'X
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Renaming Be to be the variable ﬁt-"-the "growth-corrected"

birth sequence -- the new, but equivalent dynamics become
A A ~-rx
(6) Bt = E Bt—x € Py My

We will speak somewhat loosely of B in what follows as "births",
remembering though that these "births" differ from real births

by an exponential factor.

We now need only show that for some value of r, B eventually
becomes constant over time. Allowing ourselves some foresight,

we .choose r to satisfy

(7) 1 = Je ™ p.m

Finally, renaming e_rxpxmx as y., we may write the new but equi-

valent dynamics as

~

(8) Bt = z Bt—xwx
X
where, by virtue of (7),

T = 1 v, -
X

The original dynamics have been changed but little; B, has

t

merely been normalized to the new variable B Notice though,

£
in the new system for ﬁ-, the coefficients Y (x) sum to one --y is
a weighting function. The new dynamics therefore describe a con-
tinuous smoothing process: ﬁt is the weighted average of the M

immediate past values of B; 8 is the weighted average of ﬁt

t+1
and the M-1 immediate past values of B; 'ﬁt+2 the weighted average
of ﬁt+1' ﬁt and the M-2 immediate past values of B. And so on.

This constant averaging, then averaging of the averages, we would
~ *
suspect,will converge B to a fixed value B (as in Figure 1), and

*
equivalently will converge B to the exponential form B ert. Why?
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Figure 1

The reason is easy to sketch when all ¢ (x) are strictly
positive (greater than e say). Mark the largest of the initial
birth values as ﬁ_p, the smallest as ﬁ_q, the difference between
them being d. The initial given values therefore lie within a
spread of d units. Now, the first value ﬁo, generated by the
process will fall short of the greatest value B_p by at least

ed units:

ﬁ = 2 é_ IP + ﬁ_ ]
0 x#q X'X qg'g
= B v, +B v -8B v + B v
x#£q X'X [SARe] P'g a'qg
so that
9 B, < B _ -y (B_ -8 < B - gd
(9) 0o = Bp wq( -p -q) -p €

Similarly, ﬁo mustAexceed the smallest value ﬁ_q by at least ed
units. Therefore B0 will lie strictly inside the initial spread
of birth values -- inside by a fixed factor 1 -2e. The same
argument applies all the more so to §1, and again to ﬁz, and so

on until B The spread of the entire new generation of B

M-1°
values therefore lies strictly within that of the old one, and
by a specified uniform factor. Repeating the argument over the
generations, the generational spread in B diminishes geometri-

a *
cally to zero. Bt therefore converges to a fixed value B and



*
Bt therefore converges to exponential growth, B ert.

So far so good. But what if some of the wx values are
zero as in real populations where no reproduction takes place

at certain ages? Will the process always converge? The answer

is no.

0 1 2 3 4 5 6 7 8 Time

Consider the four-age-group population in Figure 2, with w1 =

w3 = 0, and w2 = wu = %. Childbearing occurs only in the second
and fourth age-groups. This population will oscillate indefi-
nitely. Here the smoothing process does not smooth: something

is wrong. To see what, we need to look at smoothing more closely.

Smoothing - A Closer Look. In general, assume that some, or

several, of the Yy values are zero. The value ﬁo then depends
directly on only certain of the original B values. Similarly,
ﬁ1 depends directly only on the neighbors of these values. For

the system
Be = Beg¥3 ¥ Beyby 7 Vb = 0,

we can graph this dependence as in Figure 3a, picturing each
birth cohort as a point, with a directed arrow drawn between

them if dependent.



Figure 3a

The graph extends indefinitely downward.
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Figure 3b

Notice though that

while B0 depends directly on only two of the initial values,

Bu depends on three of them, and B8 on all four of them.

If

we so chose, we could therefore write the dynamics with present

B values specifying B eight steps ahead:

t+8

This process, with new weights y°',
perfectly well, moreover it remains a smoothing process as
see by following the weights backward from ﬁa: they divide

continue to sum to one.

Most important,

Py [ ] A 1 A L}
B g¥a * Bi_3¥3 *+ By _yvy

describes the evolution

of ﬁ

we can

up but

it is a function of aqll

the initial values and is strictly positive in all its coeffi-

cients. We could therefore apply the convergence argument above,

showing that the spread in any four consecutive values must be

reduced eight steps ahead by a fixed factor.

Taking B values

now twelve at a time (the original initial four plus the inter-

vening eight), generational spread once again reduces geometric-

ally; B converges, even though we started with some V weights as

zero.

What then went wrong with the case where w1 and w3 were

zero? Forming its graph (Figure 3b) we see there is no future B



value that is a function of all the original given values.
Even-indexed B's depend on even-indexed ﬁ's; odd ones depend
on odd ones. Here two separate but identical processes are
going on: the even process never "sees" the initial values of
the odd process and vice-versa. Both processes iterate their
initial values to a limit: but there is an even limit and an

odd limit. The process oscillates indefinitely between them.

We can therefore deduce a general principle. If the graph
of the process, drawn one stage down and ignoring the directed-
ness, 1s connected, some B value can be written as an all-
positive function of the initial values and B will converge. If
it is unconnected, two or more separate processes are going on.
B will have cluster points but no single limit; the process will
oscillate. It is not too difficult to show that if B, depends
on at least two initial points, -j and -k, that are relatively
prime (no common divisor other than 1), then the graph must
connect. Sufficient for our purposes though is the more easily
checked observation that if there are two consecutive positive
reproductive ages, the graph must connect. Only one smoothing
¢ converges to a limitigg value B*;
hence B_ converges to steady exponential growth B e  7; hence the

t
age composition converges to a fixed and stable form.

process then happens; hence B

The Limiting Coefficient. One question remains. How can we

determine Bi the limiting coefficient of the exponential birth
sequence? One possibility is to look for a quantity that is
invariant, that is carried along unchanged over the generations.
Such a quantity would enable us to relate B*at the end of the
process to the B values at the beginning. Now, each generation
at any time can donate to the future a certain number of direct
descendants. On these direct descendants all future population
must be built -- they are the system's "reproductive potential"

or "reproductive value" as it were. We might suspect this repro-
ductive potential, Zn the growth-corrected dynamics we have
defined, to be invariant. A little algebra shows that this turns

out to be the case.



At time t, age-groups ﬁt—M""’gt—1' taken together, con-

tribute Vt direct descendants to the future --to the period from

t onward:

Ve = BemW *

(10)

ﬁt_M.‘.‘] (IPM_1 +1JJM) +--~+%t_1 (UJ1 +1})2 +...+IJ.)M) .

Similarly age-groups ﬁt+1—M""’ﬁt contribute Vet to the

period from t+1 onwards:

A

Visr = BeomerU ¥ Bropan Wyoq F¥p) Foe e B g g+t )

Noting that the coefficient of Bt is one, and using (8) to re-

place B we find

t’
Vier = BV * Beama o Ty oot Boq¥y oot BV * By -
(11)

Comparing (10) with (11) term for term, we see that Vt = Vt+1;

Vt is indeed an invariant quantity V.

At the start

~ ~ ~

Vg =V = B yuy * B_yypq (g + Uy) Feeet Bog(ug + Ug +oeaty)

(12)
And in the limit

Vo= BRy B lhig * U e +BT H )
(13) v = B*(w1 + 2Py et My

Since y is the distribution of childbearing in the population,

*
the coefficient of B is the mean age of childbearing, denoted Ar’
Putting (12) and (13) together yields the result we seek:

* 1 A~

B = A (B_pUy + Bopggq (g * Ypg) +ooe # B (Vg + o+ 0]
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*_ 1 ™ r(M-1) r }
B = A {B_Me Uy + Boya (WM-'-‘]_HPM) +...+ B_je (w1+”_+¢M)
M-1 . -1
¥ 1 ri
(14) B = - 7 e ) B o m..
Ar j=O X=- (M—j) X¥X+] Xx+]

* . .
The value B is directly determined by the initial birth sequence

and the fertility and mortality age patterns.

Conclusion. To go back to the original question, why, in plain

words, does a population converge? The argument presented here

is both simple and new. Once the population's tendency to grow
is eliminated, by dividing growth out of the dynamics, the
process of population replacement, barring bizarre feproductive
patterns, literally smoothes the generations out. Childbearing
and hence the function Y is not concentrated at one age but is
spread over several years. Hence past humps and hollows in the
birth sequence are thrown in together in the replacement process.

They are averaged together --they smooth out.

Adding growth back means that a smooth exponential increase
is reached in the long run -- an exponential that is fully fixed
given information from the initial birth sequence and the net
fertility pattern. And once the birth sequence reaches exponen-
tial increase, the age-distribution must assume its stable shape,

no matter what it started as.
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