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1.  Operating with models 

1.1  Introduction 
Global challenges – a critical state of the environment, limits in natural resources, a 
growing social inequality, world economic crises – create acute demand for systems 
analysis – an integrated scientific discipline that would focus on characterizing possible 
futures of complex large-scale social-environmental systems and actions that may lead 
to these futures.  

There is a strong diversification in ‘definitions’ of systems analysis. We sharpen our 
view if we agree, at least temporarily, that systems analysis lies, by definition, in the 
field of methodology. We sharpen our view even stronger if we say that systems 
analysis develops and applies methods for exploration of complex social-environmental 
systems. We hold this viewpoint in the present discussion paper. 

In this section (essentially following Kryazhimskiy, 2014) we make an attempt to 
characterize a basic set of rules in operation with the principal tools of systems analysis 
– models of large-scale social-environmental systems. All those rules have certainly 
been repeatedly used in research; our summary may hopefully serve as a zero 
approximation to a future ‘road map for a systems analyst'.  

In Section 2 we focus on a challenging and yet not so well explored issue of integration 
of models –synthesis of integrated knowledge from pieces of ‘partial’ knowledge 
provided by ‘partial’ models viewing a complex social-environmental system from 
different perspectives. 

1.2  Historical data, imitation methods and models 
A historical data set tells us about the real changes, which the complex social-
environmental system under investigation survived in the past. The historical data set is 
highly important from a systems analysis perspective; it reflects all the phenomena 
(nonlinearities, cross-scale interactions, heterogeneities, etc.) that drive the system.  

Theoretically speaking, all sorts of data possess that property. However, in the 
spectrum of all data that are principally available, some types of data are more 
informative than the others if we take into account the goal of research. Selection and 
collection of most informative data is a special important (sometimes very expensive 
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and time consuming1) task in systems analysis2. Here, for the sake of brevity, we do 
not discuss this task in any detail (leaving it for further discussions), and focus on 
techniques for utilizing the data.  

Suppose we are given a historical data set (say, a time series) and want to convert it 
into a meaningful statement about the system’s future. To do so, we are bound to use 
some method for imitation of the system’s dynamics; here, we call such methods 
imitation methods. 

Choosing an adequate imitation method is the key technical challenge. The complexity 
of a large-scale social-environmental system is usually so high and our knowledge 
about it is (despite the data at hand) so poor that we are principally unable to construct 
a method that would capture the system’s dynamics precisely3. 

In other words, in systems analysis we are forced to deal with methods that fail to 
mimic the systems dynamics to a degree, at which we can (like in the case of 
mechanical systems) claim, in advance, that our method-based forecasts are accurate, 
or at least not misleading. In this situation, prior to the use of the chosen imitation 
method one needs to assess the method in order to understand its forecasting ability. 

In a traditional view, an imitation method is a model – a set of mathematical formulas 
representing (to a certain degree of accuracy) the system design. In our discussion, we 
follow that tradition to a considerable extent; we associate basic types of imitation 
methods with models. In Section 2 go further and consider multi-model imitation 
methods involving several (many) models.    

1.3  Stages in model-based research  
Models representing the systems through mathematical relations are test beds for 
various analytic tools – from rigorous mathematical analyses to brute force simulations, 
which help us, indirectly, understand the operation of the systems. 

In this section we briefly announce typical stages in model-based research (see Table 
1). In sections 5 – 8 we comment on these stages in some detail. 

A model-based research starts with choosing a modeling paradigm and a model’s state 
space – two basic ‘coordinates’ of a model as a research instrument. Next two stages 
are construction of a model with the chosen basic ‘coordinates’, and assessment of the 
model, including a diagnostic analysis. Generation of a model-based forecast finalizes 
the research effort.  

Typically, the first three research stages are not separated in time. Quite often, one 
updates the model, based on results of model assessment, and one changes the 
initially chosen modeling paradigm or the initially chosen state space, based on 

1 For example, Wittemyer (2011) assessed the relations between African elephant mortality and various 
economic data (livestock and maize prices, change in national and regional GDP, the normalized 
difference vegetation index, and others) in Kenya to find economic metrics serving as indicators of 
changes in human use of and resulting effects on natural resources. 
2 Here, for brevity, we do not discuss how to cope with data errors, which can be significant and even 
misleading (we slightly touch upon this issue in Section 2; see footnote 12). 
 
3 In this context, the complexity of social-environmental systems is of a different type than that of 
mechanical systems; a mechanical system, no matter how complicated it is, is fully described by the 
mathematical model coupling the system's design with mechanical laws. 
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experience in constructing and assessing the model. The updating process may go 
through several iterations. 

 
  Table 1: Stages in model-based research 

Stage 1 Choosing a modeling paradigm and a state space 

Stage 2 Constructing a model 

Stage 3 Assessing the model 

Stage 4 Generating a model-based forecast 

1.4  Stage 1. Modeling paradigms and state spaces 
A modeling paradigm is a disciplinary niche for a model, understood in a mathematical 
sense. The modeling paradigm pre-defines the style of the model-based research. A 
model can follow approaches in modeling of dynamical systems (see, e.g., Ljung and 
Glad, 1994) and pretend to imitate the system’s dynamics by imitating relations 
between the system's components; it can follow theory of optimal central planner 
control (Pontryagin, 1962; see also Aseev and Kryazhimskiy, 2007, presenting a 
control-theoretic technique applicable to problems of economic growth) and represent 
global optimization principles; it can follow theory of differential games (Isaacs, 1965; 
Krasovskii and Subbotin, 1988; Basar and Olsder, 1982) and implement global 
equilibrium principles; it can follow theory of evolutionary games (see, e.g., Weibull, 
1995) and demonstrate learning/adaptation schemes. The list can certainly be 
extended. Complex models can lie under several modeling paradigms (occupy several 
disciplinary niches) simultaneously. 

A model’s state space is a set, within which the model’s states are allowed to vary. The 
model’s state space characterizes the model’s ability to capture details, its resolution 
scale. The more complex is the model’s state space, the more details are captured by 
the model and the finer is the model’s resolution scale. 

Finite-dimensional vector spaces (whose points are finite-dimensional vectors of given 
dimensions) are the state spaces for widely used deterministic models described by 
finite-dimensional ordinary differential equations and their discrete-time analogues. 
Deterministic models described by partial differential equations and infinite-dimensional 
ordinary differential equations operate in infinite-dimensional functional spaces whose 
points are functions defined on solid sets4. By choosing a deterministic model, one 
‘declares’, implicitly, that one has a good understanding of the mechanism driving the 
system.  

Stochastic models deal with probability distributions of points. Their state spaces are 
structured as probability spaces, in which points act as elementary events. Usually, one 
chooses a stochastic model if the mechanism that drives the system is uncertain 
though one has an understanding of a statistics related to its operation. 

The points serving as states for the deterministic models (as elementary events for the 
stochastic models) are as usual regarded as direct prototypes of real, ‘physical’ values 

4 Here, by a solid set we mean a set whose cardinality (a mathematical generalization for the number of 
elements) is not less than that of the set of all real numbers (the cardinality of the continuum).  
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characterizing (not necessarily entirely) the real systems; the models and systems 
‘speak the same language’.  

In a less straightforward model design a model’s states are images of the ‘physical’ 
values; the transformation converting the ‘physical’ values into their images is not 
necessarily one-to-one. The transformation ‘compresses’ the ‘physical’ space by not 
distinguishing between the ‘physical’ points having the same image. The use of such 
image states can be efficient in forecasting radical structural changes (catastrophes)5. 
Indeed, on the one hand, the image variables representing clusters of ‘physical’ points 
are by construction less sensitive to weak perturbations in the dynamics than the 
‘physical’ points themselves. On the other hand, transitions between the clusters reveal 
remarkable irregularities in the model’s behavior and can signal on upcoming critical 
changes (catastrophes).  

Table 2 summarizes our preliminary classification of modeling paradigms and state 
spaces as ‘basic coordinates’ for models. 
 
Table 2: Modeling paradigms and state spaces  

 
Modeling paradigms 

 

Disciplinary niches Models’ functions 

Modeling  
of dynamical systems 

Imitation  
of the systems’ dynamics 

    

Optimal control Implementation  
of global optimization principles 

   

Differential games Implementation  
of global equilibrium principles 

   

Evolutionary games Implementation  
of learning/adaptation schemes 

   

 Vector 
spaces 

Probability 
spaces 

Image 
spaces 

State 
spaces 

 

1.5  Stage 2. Construction of models 
As mentioned in Subsection 1.3, construction of a model is not separated from the 
choice of a modeling paradigm and a state space, and from the choice of a model 
assessment method (see Table 1, stages 2 and 3). Accordingly, in this subsection we 
partially overlap with the previous one (discussing modeling paradigms and state 
spaces) and the next one (discussing model assessment methods).  

We dare to say here that choosing a modeling paradigm is, conceptually, not a too 
difficult task. Principally, one can have in mind the following simplified pattern. 

If the mechanism that drives the system does not include non-specified time-varying 
inputs or actions (the system is ‘closed’), or if we, for some reason, decide to ignore 

5 For example, Kryazhimskiy and Beck (2002) use binary, ‘minus’ and ‘plus’, images of short-term 
transitions to assess tendencies towards catastrophes; the transitions regarded as dangerous have ‘minus’ 
images and those regarded as safe have ‘plus’ images. Keilis-Borok et al., (2003) use binary images 
(codes) for crime trends to forecast homicide surges. 
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such actions, approaches in modeling dynamical systems will be an appropriate 
disciplinary niche and our model’s mission will be to imitate the system’s dynamics.  

On the contrary, if we view the system as an ‘open’ system driven by time-varying 
actions not given in advance, we construct an ‘open’ model and equip it with an action 
selection principle, based on which we study the model’s behavior by generating 
selected (extreme, most likely, etc.) paths within the infinite pool of the model’s 
potentially allowable action-driven trajectories.  

Action selection principles base on several methodological approaches. 

The scenario-based approach is widely used. Scenarios represent exceptional ‘typical’ 
actions (as given functions of time) and ‘encircle’, in some sense, the set of all the 
system’s allowable paths into the future. Usually, the design of a set of scenarios 
results from an informal analysis, and the number of scenarios, especially for complex 
models, is small. Each scenario generates a ‘closed’ model with ‘frozen’ actions. Each 
‘closed’ model represents a variant of the system’s behavior and fits with the modeling 
dynamical systems approach as a disciplinary niche.   

The agent-based modeling approach (see, e.g., Bonabeau, 2002) aims at exploring 
repeated interactions of multiple agents that from their actions based on ‘typical’ 
individual feedbacks. Combinations of the agents’ ‘typical’ feedbacks result in a global 
action selection principle and transform the original ‘open’ model representing the 
agents’ society with ‘free’ actions into a ‘closed’ one.  

A central planner action selection principle aimed at finding the globally optimal 
scenario for the system’s performance brings us to optimal control theory as a 
disciplinary niche. A well-known example of the use of the global optimization principle 
is Nordhaus’s Dynamic Integrated Climate Economy (DICE) model (Nordhaus, 1994), 
which optimizes the global social welfare utility index under a feedback from the global 
climate system. Of special interest are cases where the optimal scenario agrees with 
historical data (checking this is part of the model assessment task – see Table 1 and 
Subsection 1.6 below). In such cases the optimal scenario turns into a business-as-
usual one, which gives us a strong reason for conjecturing that optimization (with 
respect to the given long-term performance index) is an underlying law in the system’s 
performance (see Figure 2 in Subsection 1.6 for an example). As usual, the process of 
construction of a model realizing the central planner’s optimal action scenario includes 
a serious control-theoretic analysis, through which the original ‘open’ model is 
converted into the final ‘closed’ one. 

If the system is driven by several agents pursuing individual interests, theory of 
differential games or theory of evolutionary games will be an appropriate disciplinary 
niche.  

Theory of differential games (as well as the related theory of multi-stage games) 
suggests methods for selecting the equilibrium (mutually acceptable and therefore 
most likely from a theoretical perspective) action strategies for ‘forward looking’ agents 
that measure their benefits based on the system’s overall performance. A well-
developed branch of theory of differential games, the theory of zero-sum differential 
games, covers in particular a typical situation, in which the single agent steers the 
system affected by non-predictable and non-observable dynamical disturbances 
(treated as actions of the agent’s opponent whose interest is opposite to that of the 
agent). The theory suggests techniques for constructing the agent’s optimal feedback 
action strategy that maximizes the agent’s global benefit under the worst action 
strategy of the opponent.  
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Theory of evolutionary games departs from an assumption that interacting and 
interdependent agents act ‘myopically’, ‘boundedly rational’, trying to adapt and, if 
possible, win in the changing environment. The theory is close in spirit to the agent-
based modeling paradigm and refers primarily to models of biological evolution and 
models of social behavior (Levin et al., 2012). 

Action selection principles help us explore futures of ‘open’ systems by modeling 
exceptional (‘boundary’, ‘most likely’, ‘most typical’) behaviors. A technical motivation 
for the use of this ‘selective’ approach is evident: it is hardly possible to model all 
possible futures. However, in some situations, advanced control-theoretic and 
computational techniques allow one to construct, for any given future ‘target’ point in 
time, the attainability domain of an ‘open’ model – the set of all the model’s states 
reachable at the ‘target’ point under all possible action scenarios (see Figure 1).  

 

 
 

 

 

 

As opposed to the choice of a modeling paradigm, the choice of a model’s state space 
and the model’s complexity is the most difficult and most sensitive task in the process 
of model construction. Traditionally, researchers aim to achieve the highest possible 
degree of precision in imitation of the systems’ dynamics. A common tendency is to 
use complex models operating in high-dimensional state spaces and incorporating 
numerous relations between their compartments6. Such models are usually 
mathematically intractable in the sense that they leave no room for rigorous 
mathematical analyses, appealing, primarily, for brute force simulations. Moreover, for 
such models (which are inevitably inaccurate), there is always a danger that small 
failures distributed across the models’ compartments and links will multiply and result in 
fatal modeling and forecasting failures. Model assessment exercises with the use of 
historical data (see Subsection 1.6) can help estimate a probability of fatal failures; 
however, the cost of such assessment exercises – in terms of time, effort and reliability 
of the result – grows dramatically with the increase of the model’s complexity. 

6 This tendency is represented by, for example, complex agent-based models. 
 

Figure 1: The attainability domain for Nordhaus’s simplified DICE model (Nordhaus, 1994) for year 
2100, with 1965 as the starting year, and the landscape of the values of the global social welfare utility 
index; the small black circle is Nordhaus’s optimal point (Smirnov, 2005). 
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Simplifying the situation, we can say that reliability of a model-based forecast is inverse 
proportional to the model’s complexity and to the dimension of the model’s state space. 

In this context, aggregated, low-dimensional, mathematically tractable (and well 
assessed against data – see section 7 below) models produce the most reliable 
forecasts; a drawback of such forecasts is that they are highly aggregated and miss 
many important details. Models operating in simple image spaces (whose elements 
represent clusters of ‘physical’ points – see Subsection 1.4) and having extremely 
rough resolution scales have also a potential for being highly reliable from a prognostic 
point of view; on the other hand, such models are targeted to forecasting strong events 
(catastrophes) only and unable to capture any smooth trends. 

Finding the optimal compromise in the tradeoff between a model’s complexity and its 
ability to produce reliable forecasts is the key challenge at the stage of model 
construction. 

1.6   Stage 3. Model assessment  
Three ‘universal’ model assessment techniques are calibration, retrospective 
forecasting and sensitivity analysis.  

Calibration is a procedure, through which one adjusts a model to data. Calibration is 
usually understood as identification of the model’s parameter values, which give the 
best fit with the historical data. For deterministic models the best-fit parameter values 
minimize the distances between the models’ trajectories and the historical ones. For 
stochastic models producing bundles of trajectories with different probabilities, the 
best-fit parameter values are usually defined to be the ones that provide the maximum 
likelihoods for the historical trajectories. 

Retrospective forecasting is a diagnostic stage of analysis. A goal is to qualify the 
model’s ability to mimic the system’s dynamics in the past. If we find that the model is 
satisfactory in this respect, we arrive at an important diagnostic conclusion that the 
system operated (in the past) in agreement with the chosen modeling paradigm and 
the chosen model design. This gives us a basis for stating that the model will most 
likely produce a satisfactory forecast (‘most likely’ implies here that we assume that the 
system’s dynamics will not survive a serious change in a subsequent period).  

Retrospective forecasting is organized as a test for checking the ability of the calibrated 
model to produce forecasts in retrospect. To perform the test we split the historical time 
series in two periods – a virtual past and a virtual future, the latter following the former. 
Then we ‘travel to the past’ – virtually, we bring ourselves to the end of the virtual past. 
We use our model to process the data in the virtual past and to produce a forecast for 
the virtual future. Finally, we ‘travel back to the present’ and compare our model-based 
forecast for the virtual future with the data series for the virtual future. Assessing the fit 
between the model-based forecast and data in the virtual future, we make our decision 
on the model’s ability to forecast. To get better knowledge on the model’s ability to 
forecast, one carries out retrospective forecasting tests several (many) times, each 
time choosing new virtual past and virtual future periods. Based on the resulting set of 
forecast-data fits, one assesses the model’s ability to forecast statistically (see Figure 2 
for an illustration)7. 

7 To make the statistics fitter to standard definitions of probability theory, one can carry out ‘statistically 
identical’ retrospective forecasting tests with fix lengths of the virtual past and virtual future periods.  
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Sensitivity analysis is an instrument for testing robustness of model- and data-based 
forecasts to errors in data and in the model’s design. The underlying phenomenon is 
bifurcation. Bifurcation occurs if a small change in a model’s parameter values makes 
the model switch to a radically different behavior. Such behavior switches happen if the 
changed parameter values cross the so-called bifurcation curve  

For a simple model, one can find the bifurcation curve analytically and see if the vector 
of the reference parameter values identified through calibration lies far enough from the 
bifurcation curve, or close to it. In the former case, the reference model configured by 
the reference parameter values is robust in the sense that if one assumes that the 
calibration result is (slightly) inaccurate, one can still believe that the model- and data-
based forecast given by the reference model is essentially correct; let us call this 
situation regular. If the reference parameter values lie close to the bifurcation curve 
(the irregular situation), the reference model is sensitive – the model configurations 
corresponding to different behaviors provide alternative forecasts. In both situations, 
the model-based forecasts (supported by a successful retrospective forecasting 
exercise) can be considered as reliable (here we come back to our earlier statement on 
reliability of simplified models – see Subsection 1.5). 

For a complex model, we have, typically, no way to find the bifurcation curve (manifold) 
analytically and, consequently, no way to understand in advance if the situation is 
regular or irregular. We approach some understanding if we carry out a numerical 
sensitivity analysis – run the model several (many) times, with different parameter 
values concentrated around the reference ones. In the regular situation the simulated 
trajectories lie close to each other, in the irregular one we see divergent trajectories. 
The cost for sensitivity analysis – in terms of time, effort and reliability of the result – 

Figure 2: A retrospective forecasting test (Krasovskii and Tarasyev, 2010). The red curve is the capital-per-worker time 
series for the UK (in ratios to the level of 1950) in period 1950-2006 (Groningen Total Economy Data Base, 
http://www.ggdc.net/). The four other curves are the simulated optimal capital-per-worker growth trajectories for the UK 
for the same period (each simulated trajectory is optimal in the sense that it maximizes the integrated consumption index 
– a standard growth criterion used in theory of endogenous economic growth). The optimal trajectories are simulated 
using an aggregated optimal economic growth model. The model was calibrated four times, with four virtual past data 
series – 1950-1974 (dark blue); 1950-1984 (pink); 1950-1994 (lavender); and 1950-2004 (blue). In the three former 
cases, the retrospective forecasts for virtual futures cover, respectively, 1975-2006, 1984-2006 and 1995-2006, and 
show good fits with data, telling us that the model produces reliable forecasts. Based on success in retrospective 
forecasting, the researchers extended the simulated trajectories beyond 2006 to provide forecasts for the real (not virtual) 
future. These forecasts show a trend change in a not far-distant future – linear growth (seen in the time series) switches 
to saturation. 
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grows with a model’s dimension and complexity. For super-complex models having 
thousands of parameters (including those that are not measurable in principle), various 
combinations of which can, potentially, configure bifurcation manifolds, it is hardly 
possible to carry out meaningful sensitivity analyses. As mentioned in section 6, 
forecasts based on very complex models cannot be regarded as reliable ones. 

1.7   Stage 4. Model-based forecasts 
A model-based forecast results from extension of the model’s trajectory into the future. 
If the model is satisfactorily assessed against historical data, we are quite confident 
that the forecast is reliable8. However (in contrast to the case of mechanical systems), 
we can never guarantee that our model-based forecast is correct. A model assessment 
exercise (see Subsection 1.6), no matter how accurate and successful it is, is coupled 
with the system’s history (past data). The latter may not capture some ‘hidden’ 
phenomena in the system’s dynamics. A model agreeing with the system’s history may 
fail to adequately represent the system’s dynamics in a subsequent period if a ‘hidden’ 
phenomenon becomes active.  
If we do expect a new ‘hidden’ phenomenon to become active in the future and if we 
understand (to some extent) the way it acts, we can, accordingly, modify our model 
design prior to forecasting. Having no data on the operation of the new phenomenon, 
we are bound to modify the model based only on our theoretical understanding of the 
expected change. To compensate for the fact that the model’s parameters responsible 
for the new phenomenon are not calibrated against data, we can vary these 
parameters in some reasonable range and produce a corresponding set of the model’s 
future trajectories. The latter set serves then as a ‘fuzzy’ forecast showing us a range 
of the system’s possible paths into the future under the action of the new phenomenon 
that is not understood in all detail and has never operated in the past. 

The model assessment techniques discussed in Subsection 1.6 – calibration, 
retrospective forecasting and sensitivity analysis – aim at raising reliability of model-
based ‘quantitative’ forecasts expressed in terms of values of ‘real’ variables 
characterizing behavior of particular real systems under investigation. There are 
forecasts of a different type – ‘qualitative’ ones. A qualitative forecast characterizes 
trends and relations expected to occur in the system’s future, without specifying these 
in terms of numbers9. A qualitative forecast results straightforwardly from a theoretical 
or numerical assessment of a model in no strong connection to real data. 

1.8   Monitoring and updating 
We expect systems analysis to be a process of constant generation of new knowledge 
about complex social-environmental systems. Generation of new knowledge includes 
refining knowledge through learning from experience. Forecasts produced earlier 
provide solid bases for learning. In the course of time, a forecast produced earlier 
overlaps with a recent history and turns into a retrospective one (see Subsection 1.6); 

8 Based on the results of model assessment (see Subsection 1.5), we complement the forecast with 
estimates for the forecasting errors.   
9 The statement ‘species X will extinct’, with no indication of any time horizon, is an example of a 
qualitative forecast; see Figure 6 for another example. 
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one can see if it fits with recent historical data10. As time moves on, a basis for 
retrospective model assessment is automatically extended, which appeals for carrying 
out retrospective model assessment repeatedly, on-line. Periodically, the changes in 
the current assessment results will make the researchers update their instrumental 
research components – the modeling paradigms, state spaces, models and estimates 
of the models’ forecasting abilities (as mentioned in Subsection 1.3, the research 
stages are not separated from each other). On-line monitoring/updating will be a 
promising approach to constantly enhancing our knowledge about complex social-
environmental systems and their futures. 

 

2. Integration of models  

2.1   A multi-model approach 
Here we come back to the statement that the laws that drive a complex social-
environmental system are never perfectly understood (see Subsection 1.2). Any model 
captures the system’s operation only partially. The use of a single model can be 
misleading11. This understanding leads us to a conjecture that analysis of complex 
social-environmental systems should tend to employ a multi-model approach. 
Following the multi-model approach, we use a family of models showing the system 
from different angles and complementing each other (see Figure 3 for a metaphoric 
illustration).  

 

 

 

 

 

 

 

 

 

 

 

Once we decide to use a family of models, we abandon the area of (single-)model-
based research (discussed in Subsections 1.3 – 1.7) and enter a broader area of 
research based on multi-model imitation methods (we use the terminology introduced 
in Subsection 1.2).  

A multi-model imitation method employs alternative models that may differ structurally. 
The core of multi-model imitation is integration of models – methods for generation of 

10 Simulated time series for 1995-2027 (Lutz et al., 2002), shown in Figure 5 were generated as forecasts. 
Now they appeal for comparison with data for the last decade.  
 
11 For example, any model from a given family of models can fail to be satisfactory in retrospective 
forecasting (see Subsection 1.6). 

Figure 3: Earth maps as a metaphor for the multi-model approach. A detailed map is an image of a part of the 
Earth surface. Due to the curvature of the Earth surface, the image, which is quite precise at the center, loses its 
precision at the periphery. If we want to get a better precision in some small area in the periphery, we look at 
another map centered in that area. Thus, two, or more maps serve as complementary models of a part of the Earth 
surface. (This approach is used in differential geometry in studies of complex manifolds using families of local 
Euclidean maps.) 
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integrated knowledge about the systems, based on pieces of knowledge provided by 
the ‘partial’ models employed (see Figure 4 for an illustration). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model integration has already been used in studies of complex social-environmental 
systems (see Figure 5 and Figure 6 for examples); in particular, the idea of model 
integration lies behind participatory methods (see, e.g., Pahl-Wostl, 2002), which 
synthesize knowledge from experts’ opinions serving as individual models.  
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Figure 4: An illustration to integration of models. A plane is observed from two observation stations. Each station 
provides limited information on the location of the plane – the straight line connecting the station and the plane. The two 
lines are two alternative models for the plane's location. The plane is located at the point, at which the lines intersect. 
Intersecting the lines is a method to integrate the models.  

 

Figure 5: Simulated time series of the food-secure (PS) and food-insecure (PI) rural populations (left) and the 
resource stock (right) for the detailed (EM) and simplified (RM) PEDA (population, environment, development, 
agriculture) models for Mali in 1995-2027 (Lutz et al., 2002). The simplified model disregards the urban population, 
aggregates over education, age and sex, and reduces the number of population states from 1600 to two (food-secure 
and food-insecure rural population). A good fit in the simulation results (which is also seen in other simulations 
corresponding to different parameter values) shows that the composition of the population states and the resource 
degradation process are insensitive to the education, age and sex structures. The latter observation is an integrated 
knowledge obtained from the use of two alternative models. 
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Although model integration does not seem to be commonly recognized as a promising 
research avenue today, it may have a strong potential to develop into a powerful 
instrumental framework for systems analysis. One can think of a ‘model calculus’ – a 
structured family of partially formalized model integration techniques. Below we 
suggest a sketch on possible model integration methods.  

In the model integration toolbox, cross-verification of models will be an important 
instrument. Models viewing a complex uncertain system from different perspectives 
cross-verify each other by registering identical phenomena in the system’s behavior; in 
this situation we get a strong evidence for regarding the registered phenomenon to be 
a true feature of the system12.  

Quite often, due to modeling and observation errors, the outcomes from different 
models disagree with each other (even observation data resulting from different 
observation methods can differ essentially13); the models seem to be inconsistent. 

12 A good fit in the simulation results for the full and simplified PEDA models in the Mali case study (see 
Figure 5), and the   common features of the simulated alternative trajectories of the global energy system 
(see a comment to Figure 6) are illustrations for the model cross-verification phenomenon.  
 
13 See, e.g., Nilsson, et al., (2007) for analysis of uncertainties in estimates for regional terrestrial biota full 
carbon accounts. 
 

Figure 6: A snapshot from a typical model run of a model conceptualizing the emergence of new technologies and 
their combinations as a random process (reflecting the unpredictability of technological innovation) subject to resource 
constraints and economic incentives (Ma et al., 2008). Ellipses represent primary energy technologies, which combine 
into alternative technology chains. The technology color codes indicate the level of development of various 
technologies ranging from large (red), very small (either emerging embryonic technologies or technologies being 
phased out, yellow) to technologies not used at all (white). Arrows indicate the directions of linkages, whereas the 
extent of linkages is given as numerical values of the corresponding energy flows. The individual trajectories obtained 
in 200 runs can be viewed as alternative models for historical development of the global energy system. The 
researchers analyzed the alternative histories and revealed their common features. For example, they found that the 
simulated evolution of the global energy system is characterized by increase in complexity (in terms of the number of 
energy chains), a ‘complexity peak’, and decline in complexity; another finding is that in all simulations there is a 
powerful tendency towards “decarbonization” – decrease in the carbon intensity of energy systems. These and other 
general conclusions (qualitative forecasts – see section 8) resulting from analysis of multiple simulations integrate 
pieces of knowledge provided by the individual; models. 
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Situations of a similar type are addressed by theory of ill-posed problems (Tikhonov 
and Arsenin, 1974), which deals with solutions in poorly defined cases including those 
where the constraints for the sought solution are incompatible. The theory suggests 
regularization techniques allowing one to ‘reconcile’ the constraints and find 
appropriate ‘surrogate’ solutions. We expect that this theoretical background can be 
used in the context of systems analysis. 

In analysis of complex social-environmental systems, in situations where models’ 
outcomes disagree with each other, one is usually inclined to look for the ‘most 
accurate’ model, implying that the models are ordered in accuracy (though the order is 
unknown). In this context, a challenging question would be if there is a test for 
identifying the ‘most accurate’ model.  

One can expect that, typically, the models whose outcomes disagree with each other 
are not ordered in accuracy (‘model A’ can in some aspects be more accurate and in 
some aspects less accurate than ‘model B’).  In this situation, the models can be 
assumed to be ‘equally inaccurate’. We come to a need to develop a methodology for 
synthesizing an ‘integrated outcome’ (an analogue of a ‘surrogate’ solution in theory of 
ill-posed problems) that would incorporate the features of the models’ alternative 
outcomes. A thorough analysis of extreme (possibly, very rare) cases where the 
models’ outcomes ‘come to agreement’ could be the key.  

Often, in analysis of a complex social-environmental system, one departs from 
‘disciplinary’ models representing different compartments of the system and capturing 
the impacts of other compartments through exogenous inputs14. Traditionally, one 
applies the integrated assessment modeling paradigm (see, e.g., Argent, 2004) and 
establishes physical on-line links between the ‘disciplinary’ models – by letting part of 
the output variables of, say, ‘model A’ enter ‘model B’ as exogenous inputs, and vice 
versa. The interlinked ‘disciplinary’ models form a higher dimensional ‘interdisciplinary’ 
model. We call this model integration technique hard integration – as opposed to soft 
integration discussed below. 

Hard integration has a clear motivation. Its potential drawbacks are not so obvious but 
can be critical. The complexity of the resulting integrated model (in terms of the 
dimension of the state space and the number of links between the model’s 
compartments) is higher than the ‘sum’ of the complexities of the original ‘disciplinary’ 
models. Adding more ‘disciplinary’ modules, we find that the complexity of the 
integrated model grows much faster than the number of the ‘disciplinary’ modules. A 
highly complex integrated model can turn out to be not reliable enough (in Subsection 
1.5 we argued that ‘reliability of a model-based forecast is inverse proportional to the 
model’s complexity and to the dimension of the model’s state space’). Moreover, due to 
nonlinear integration of the system’s parts in the entire complex system, simple 
mechanical interlinking the ‘disciplinary’ models can result in an inadequate 
representation of the entire system even if all ‘disciplinary’ models represent the 
corresponding parts of the system satisfactorily.    

To compensate for possible errors in the outcomes from the complex integrated model, 
one can apply the cross-verification instrument (see above) involving the original 
‘disciplinary’ models and/or partially integrated models.  

 

A promising line in model integration research will be developing ‘dialogues’ between 

14 In analyses of spatially distributed systems one can use ‘regional’ models instead of ‘disciplinary’ ones, 
or both types of models. 
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complex agent-based models and conceptual aggregated models. The agent-based 
models operate at microscopic scales. They flexibly implement detailed assumptions 
about the agents’ behaviors but do not serve as instruments for generating general 
conclusions. Conceptual aggregated models operate at macroscopic scales. They 
capture general trends but are unable to interpret them at the micro-level. A 
challenging task will be to interlink agent-based and aggregated models so that the 
aggregated models will convert the microscopic trajectories generated by the agent-
based models into macroscopic trends, and, conversely, the agent-based models will 
interpret the macroscopic trends suggested by the aggregated models in terms of 
microscopic behaviors.  

We presume that research employing the multi-model approach will go, typically, 
through the same stages as research employing a single model (see Table 1 in 
Subsection 1.3). One starts with choosing modeling paradigms and state space for the 
models to be employed. Next, one constructs and assesses models and model 
integration techniques. Generation of a forecast is the final stage in research.  

2.2   Soft integration 
In the rest of this section we consider two approaches to soft integration of models. 
Soft integration, in contrast to hard integration (see Subsection 2.1), suggests that 
integrated knowledge is synthesized through analysis of the models’ outputs, without 
interference with the models’ operation.  

Obvious positive features of soft integration are the following. 

• Soft integration is applicable in cases where hard integration is impossible – for 
example, in cases where the models are represented by data sets – see 
Subsection 2.3. 

• Soft integration does not raise the complexity of the models and, as a 
consequence, does not reduce the reliability of the overall analysis (see 
Subsection 2.1). 

• As opposed to hard integration requiring serious coordinated efforts of model 
designers and programmers, soft integration requires coordination in delivering 
the models’ outputs to the integration group only. 

In what follows we essentially base on Kryazhimskiy et al., (2014) and Kryazhimskiy 
(2014). 

2.3   Model integration in climate research 
Climate change is the research field, in which recognition of the value of the use of 
multiple models has pioneered. For example, the Fourth IPCC Report relies on the 
results of 23 global climate models (Randall et al., 2007) and considers their mean; for 
the Fifth IPCC Report, the IPCC Expert group developed recommendations on good 
practice in assessing multi-model climate projections and combining those with 
advanced statistical approaches (Knutti et al., 2010a).  

In a multi-model ensemble each model is usually attributed with its intrinsic 
uncertainties, often grouped into uncertainties in initial conditions, uncertainties in 
boundary conditions, parameter uncertainties and structural uncertainties (Tebaldi and 
Knutti 2007). For that reason, each model’s outcome is commonly represented as a 
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random variable (or a random process). A systems analyst deals then with a family of 
probability distributions providing alternative descriptions to the same object.  

In particular applications, researchers facing such phenomena employ specific features 
of the systems under investigation to reconcile alternative pieces of information and 
generate integrated knowledge (see, e.g., Nilsson et al., 2007). However, the 
subjectivity of the experts’ makes those research efforts vulnerable for criticism. 
Development of a well-justified tool for integration of different viewpoints into a single 
picture becomes a challenge in systems analysis.  

There have been impressive attempts undertaken to create a formal methodology for 
integration of alternative models-based results. To our knowledge, such attempts 
concentrate, primarily, on the question of weighting (in an appropriate way) the models 
that form a multi-model ensemble, based on assessment of the models’ performance 
for the past and the present (Rajagopalan et al., 2002, Robertson et al., 2004, Tibaldi 
and Knutti 2007); the weights may also incorporate information on the degree of the 
models’ interdependence (see, e.g., Knutti et al., 2010b for an overview of currently 
available approaches). Knutti et al., 2010a, pointing out serious difficulties in weighting 
the models, claims that “a robust approach to assigning weights to individual model 
projections of climate change has yet to be identified. … Studies should employ formal 
statistical frameworks rather than using ad hoc techniques.” 

2.4   Posterior integration of probability distributions. Background 
Weighting, or prioritizing models is necessarily based on additional information on the 
models’ performance (e.g., as mentioned above, assessment of the models’ success in 
the past). Often such information is not available; all the models are then ‘equal 
partners’. Here, we present a method for soft integration of models in this ‘equity’ 
situation. We focus on a case where each model in a model family is a probability 
distribution on a given set of objects (which can be numbers – though not necessarily); 
we call it the object set.  

We assume that one of the objects in the object set is true – though unknown to us – 
and all the other ones are false. We can then associate each model with a method to 
observe the true object. The method is used many times. Each time a random error 
(whose distribution is not known to us) shifts the true object within the object set. 
Objects appear as observation results with some frequencies. The model – a 
probability distribution on the admissible object set – is the histogram of those 
frequencies. The model tells us that each object whose probability is greater than zero 
can be the true one, and suggests a likelihood of its being the true one. 

For simplicity we deal here with a finite family of models, which we number 1, … ,𝑛𝑛, and 
with a finite object set, which we denote 𝑍𝑍. Model 𝑖𝑖 = 1, … ,𝑛𝑛 is a probability distribution 
𝑝𝑝𝑖𝑖  on 𝑍𝑍, which assigns, for each object 𝑧𝑧 ∈ 𝑍𝑍, a probability for 𝑧𝑧 to be the true object, 
𝑝𝑝𝑖𝑖(𝑧𝑧). 

If the original object set is an infinite subset of a finite-dimensional Euclidean space15 
and the original probability distributions (the original models) have densities, one can 
use an approximate finite object set and approximate models in the integration analysis 
discussed below. The approximate object set is defined by putting a grid on the original 
object set and viewing the centers of the grid cells as approximate objects. For every 
original probability distribution on the original object set (an original model), one defines 

15 For the sake of mathematical rigor, one also needs to require the object set to be Borel measurable 
(e.g., closed) and bounded. 

 15 

                                                 



its approximation (an approximate model) as the probability distribution on the centers 
of the grid cells, which equips the center of each grid cell with the probability given by 
the original probability distribution to that grid cell. Varying the grid, one can construct a 
family of approximate object sets and approximate models and carry out the integration 
analysis for every approximation. If the results of the analyses are close to each other, 
one can conjecture that the resulting information on the location of the true object is 
reliable. 

We assume 𝑝𝑝𝑖𝑖(𝑧𝑧) > 0 for every 𝑧𝑧 ∈ 𝑍𝑍 and every  𝑖𝑖 = 1, … ,𝑛𝑛16. Furthermore, we assume 
that the probability distributions 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛 are independent, i.e., the probability of the fact 
that models 1, … ,𝑛𝑛 view, respectively, objects 𝑧𝑧1, … , 𝑧𝑧𝑛𝑛 as the true one, equals 
𝑝𝑝1(𝑧𝑧1) … 𝑝𝑝𝑛𝑛(𝑧𝑧𝑛𝑛). 

To integrate the models, we argue as follows. Let us consider combinations of 
independent individual observations carried out with the use of methods (models) 
1, … ,𝑛𝑛 as independent random tests. Combinations of individual observation results, 
𝑧𝑧1, … , 𝑧𝑧𝑛𝑛, provided by methods (models) 1, … ,𝑛𝑛, respectively, are elementary events 
generated in those random tests. Clearly, an elementary event (𝑧𝑧1, … , 𝑧𝑧𝑛𝑛) is true 
(realized actually) if each of the objects 𝑧𝑧1, … , 𝑧𝑧𝑛𝑛 is the true one; the latter property 
implies 𝑧𝑧1 = ⋯ =  𝑧𝑧𝑛𝑛. Therefore, the event that comprises all (𝑧𝑧1, … , 𝑧𝑧𝑛𝑛) satisfying 𝑧𝑧1 =
⋯ =  𝑧𝑧𝑛𝑛 is realized with a guarantee. We call it the posterior event. Note that any 
smaller event cannot be said to be realized with a guarantee, since it misses (𝑧𝑧, … , 𝑧𝑧) 
for some 𝑧𝑧 ∈ 𝑍𝑍 which may turn out be the true object.  

Since the posterior event is realized with a guarantee, a conditional probability 
distribution of the elementary events, conditioned to the posterior event gives us a 
posterior probability distribution of the elementary events, 𝑃𝑃. The posterior probability 
distribution is concentrated on the elementary events of form (𝑧𝑧, … , 𝑧𝑧) and is given by 
the Bayes formula 

 

𝑃𝑃(𝑧𝑧) = 𝑃𝑃(𝑧𝑧, … , 𝑧𝑧) =
𝑝𝑝1(𝑧𝑧) …𝑝𝑝𝑛𝑛(𝑧𝑧)

∑ 𝑝𝑝1(𝑤𝑤) …𝑝𝑝𝑛𝑛(𝑤𝑤)𝑤𝑤∈𝑍𝑍
 . 

 

We view 𝑃𝑃 as the result of posterior integration of models 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛. 

We use an appropriate measure of concentration to compare 𝑃𝑃 with  𝑝𝑝1, … ,𝑝𝑝𝑛𝑛 in 
informativeness. We understand a measure of concentration of probability distributions 
on 𝑍𝑍 to be a function evaluating every probability distribution on 𝑍𝑍 with a real number 
and reaching its minimum value at the point-concentrated probability distributions only. 
A simple measure of concentration is the one-minus-max-measure evaluating every 
probability distribution, 𝑝𝑝, on 𝑍𝑍 with 1 −  𝑚𝑚𝑚𝑚𝑚𝑚𝑧𝑧∈𝑍𝑍𝑝𝑝(𝑧𝑧). If all 𝑧𝑧 ∈ 𝑍𝑍 are numbers, every 
probability distribution, 𝑝𝑝, on 𝑍𝑍 determines a random variable on 𝑍𝑍, which we call the 
one associated with 𝑝𝑝; in that case an obvious measure of concentration is the 

16 If some model, 𝑖𝑖, assigns a zero probability to a certain 𝑧𝑧 ∈ 𝑍𝑍, it becomes questionable if we should 
anyway allow 𝑧𝑧 to be the true object. If we allow 𝑧𝑧 to be the true object, a next question would be whether 
we should believe in model 𝑖𝑖 at all – without believing in its assessment of 𝑧𝑧. This brings us back to the 
question of prioritizing the models, which we want to avoid in this subsection. If we decide that model 𝑖𝑖 
assesses 𝑧𝑧 correctly, i.e., 𝑧𝑧 cannot be the true object indeed, we simply reduce 𝑍𝑍 by removing 𝑧𝑧 from it. 
Doing so for every model, we come to 𝑝𝑝𝑖𝑖(𝑧𝑧) > 0 for every 𝑧𝑧 ∈ 𝑍𝑍 and every  𝑖𝑖 = 1, … ,𝑛𝑛 (unless the models 
are totally inconsistent, i.e., every 𝑧𝑧 ∈ 𝑍𝑍 is viewed as not probable by some model).  
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variance – the function evaluating every probability distribution, 𝑝𝑝, on 𝑍𝑍 with the 
variance of the random variable associated with 𝑝𝑝. 

Intuitively, it is clear that the smaller is the value of a measure of concentration of a 
probability distribution 𝑝𝑝, the more informative is 𝑝𝑝. In the limit case where 𝑝𝑝 provides 
the minimum value to some measure of concentration, this holds for any measure of 
concentration as well, since 𝑝𝑝 is then point-concentrated, being maximally informative. 
Conversely, if 𝑝𝑝 does not provide the minimum value to some measure of 
concentration, this holds for any measure of concentration either, and 𝑝𝑝 is not point-
concentrated. In such intermediate (typical) case the result of comparison of probability 
distributions in informativeness through the use of a measure of concentration depends 
on the choice of the latter. In this context, we call a probability distribution 𝑝𝑝′ more 
(less) informative than a probability distribution 𝑝𝑝′′ with respect to a chosen measure of 
concentration. 

Suppose a measure of concentration, 𝜇𝜇, is chosen. If 𝑃𝑃, the result of posterior 
integration of models 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛, is more informative than each of those with respect to 𝜇𝜇, 
posterior integration increases our knowledge about the true object; 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛 are not in 
contradiction and complement each other – from the viewpoint of the chosen measure 
of concentration, 𝜇𝜇.  

If 𝑃𝑃 is less informative than any of 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛, posterior integration reduces our prior 
knowledge about the true object; 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛 contradict each other – from the viewpoint of 
𝜇𝜇. In this situation at least one of models 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛is misleading; identifying a misleading 
model and understanding in what sense it is misleading is a special task, which we do 
not discuss here. Although the situation itself is of a negative character, a new 
knowledge about contradiction between the models can form a basis for planning 
further research.      

Finally, if 𝑃𝑃 is more informative than part of 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛 and less informative than the other 
part of 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛, we can view the latter part of the models as an instrument for 
improving knowledge provided by the former part of the models. 

2.5   Posterior integration of probability distributions. A manual 
Here, we provide a ‘manual’ that may help researchers use the posterior integration 
technique (see Kryazhimskiy et al., 2014, for an example).  

Initial conditions 

You are given an object set, 𝑍𝑍, containing a deterministic true object; 𝑍𝑍 is either a finite 
set or an infinite, closed and bounded subset of a finite-dimensional Euclidean space 
(see footnote 15). The location of the true object within the object set is not known to 
you. 

You are given 𝑛𝑛 probability distributions on the object set, 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛, which act as 
models for the location of the true object within the object set. If the object set is an 
infinite subset of an Euclidean space, every probability distribution has a density.  

If the object set is finite, every model assigns a non-zero probability to every object in 
the object set, i.e., 𝑝𝑝𝑖𝑖(𝑧𝑧) > 0 for every 𝑧𝑧 ∈ 𝑍𝑍 and every  𝑖𝑖 = 1, … ,𝑛𝑛. 

The probability distributions are mutually independent in the sense that the probability 
of a combination of any 𝑛𝑛 objects to appear in a combination of 𝑛𝑛 random tests 
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corresponding to the given probability distributions equals the product of the 
probabilities of those objects to appear in the individual random tests17.  

Step 0: Approximation 
This step applies only if the object set is an infinite subset of a finite-dimensional 
Euclidean space (and the probability distributions have densities). A goal is to construct 
an approximate finite object set and approximate probability distributions. 

Put a grid on the object set and take the set of the centers of the grid cells for the 
approximate object set (the latter is necessarily finite). 

For every originally given probability distribution, define its approximation to be the 
probability distribution on the centers of the grid cells, which equips the center of each 
grid cell with the probability given by the original probability distribution to that grid cell.  

Make sure that 𝑝𝑝𝑖𝑖(𝑧𝑧) > 0 for every 𝑧𝑧 ∈ 𝑍𝑍 and every  𝑖𝑖 = 1, … ,𝑛𝑛. 

From now on, deal with the approximate object set (denoted further, again, as 𝑍𝑍) and 
approximate probability distributions on it (denoted further, again, as 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛). 

Step 1: Posterior integration 
Find the result of posterior integration of models 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛  -- the posterior probability 
distribution, 𝑃𝑃:  

 

𝑃𝑃(𝑧𝑧) =
𝑝𝑝1(𝑧𝑧) … 𝑝𝑝𝑛𝑛(𝑧𝑧)

∑ 𝑝𝑝1(𝑤𝑤) …𝑝𝑝𝑛𝑛(𝑤𝑤)𝑤𝑤∈𝑍𝑍
 . 

 

Step 2: Informativeness assessment 
Choose a measure of concentration, 𝜇𝜇, of probability distributions on 𝑍𝑍. If all 𝑧𝑧 ∈ 𝑍𝑍 are 
numbers, it is recommended to take the variance for a measure of concentration. The 
variance is the function evaluating every probability distribution, 𝑝𝑝, on 𝑍𝑍 with the 
variance of the random variable associated with 𝑝𝑝. 

Compute the values of the measure of concentration 𝜇𝜇 for all given probability 
distributions, 𝜇𝜇(𝑝𝑝1), … , 𝜇𝜇(𝑝𝑝𝑛𝑛), and for the posterior probability, 𝜇𝜇(𝑃𝑃). 

If 𝜇𝜇(𝑃𝑃) is greater than each of 𝜇𝜇(𝑝𝑝1), … , 𝜇𝜇(𝑝𝑝𝑛𝑛), state that 𝑃𝑃 is more informative (with 
respect to 𝜇𝜇) than each of the originally given probability distributions, 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛 and 
those are not in contradiction. 

If 𝜇𝜇(𝑃𝑃) is smaller than each of 𝜇𝜇(𝑝𝑝1), … , 𝜇𝜇(𝑝𝑝𝑛𝑛), state that 𝑃𝑃 is less informative (with 
respect to 𝜇𝜇) than each of the originally given probability distributions, 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛, 
implying that at least one of those is misleading.  

If 𝜇𝜇(𝑃𝑃) is smaller than part of 𝜇𝜇(𝑝𝑝1), … , 𝜇𝜇(𝑝𝑝𝑛𝑛) and bigger that the other part of 
𝜇𝜇(𝑝𝑝1), … , 𝜇𝜇(𝑝𝑝𝑛𝑛), state that, 𝑝𝑝1, … ,𝑝𝑝𝑛𝑛 are in contradiction – though part of those improve 
– through posterior integration – information provided by the other part of those. 

17 This formulation is applicable if the object set is finite. If the object set is an infinite subset of an 
Euclidean space 𝐸𝐸 (see the previous paragraph), the mutual independency condition needs to be 
formulated in terms of the probabilities of objects to fall into arbitrary boxes in 𝐸𝐸 (we omit further details).  

 18 

                                                 



2.6   Soft integration of ODE models. Background 
Often, models for the dynamics of social and environmental systems have the form of 
finite-dimensional ordinary differential equations (ODEs), 

𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡)),    𝑥𝑥(0) = 𝑥𝑥0; 

here 𝑥𝑥(𝑡𝑡) is a finite-dimensional vector characterizing the system’s state at time 𝑡𝑡; 𝑥𝑥0 is 
the initial state at a the initial time 0; 𝑥̇𝑥(𝑡𝑡) is the time derivative of 𝑥𝑥(𝑡𝑡) at time 𝑡𝑡, 
characterizing the instantaneous rate of change in the system’ state at time 𝑡𝑡; and 𝑦𝑦(𝑡𝑡) 
is a time-varying parameter representing an exogenous input scenario. For simplicity, 
assume that 𝑥𝑥(𝑡𝑡) represents the dynamics of the system’s economic components 
developing under an environmental input scenario 𝑦𝑦(𝑡𝑡); in this sense the above ODE 
acts as an ‘economic’ model. 

The environmental dynamics, 𝑦𝑦(𝑡𝑡), can, in turn, be modeled by an ‘environmental 
model’ – an ODE, in which the economic dynamics, 𝑥𝑥(𝑡𝑡), acts as an input scenario, 

𝑦̇𝑦(𝑡𝑡) = 𝑔𝑔(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡)),     𝑦𝑦(0) = 𝑦𝑦0. 

The coupled economic-environmental system is then described by the system of two 
ODEs given above – the ‘economic’ and ‘environmental’ ones. 

A straightforward way to represent the coupled system is to apply the hard integration 
technique (see Subsection 2.1) – to implement the system of the two ODEs as an 
integrated computer-based model. However, if both ODEs are complex and multi-
dimensional (which is often the case), such hard coupling can be extremely difficult in a 
technical aspect. A complex technical problem can be implementation of on-line 
transportation of the current outcomes (states) of each model to the other one. This 
task can be comparable in complexity with writing and testing a new code for the 
coupled system. Moreover, as argued earlier (see Subsection 2.1), hard coupling 
implies that the errors built in each model are multiplied, which reduces the reliability of 
the modeling results.  

Soft integration of the ‘economic’ and ‘environmental’ ODEs can be interpreted as their 
repeated ‘dialogue’. One chooses initial input scenarios for the ‘economic’ and 
‘environmental’ models, 𝑦𝑦0(𝑡𝑡) and 𝑥𝑥0(𝑡𝑡). One generates a response of the ‘economic’ 
model,  𝑥𝑥1(𝑡𝑡),  to scenario 𝑦𝑦0(𝑡𝑡) as the solution to  

𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑦𝑦0(𝑡𝑡)),    𝑥𝑥(0) = 𝑥𝑥0, 

and a response of the ‘environmental’ model,  𝑦𝑦1(𝑡𝑡),  to scenario 𝑥𝑥0(𝑡𝑡) as the solution to  

𝑦̇𝑦(𝑡𝑡) = 𝑔𝑔(𝑥𝑥0(𝑡𝑡),𝑦𝑦(𝑡𝑡)),    𝑦𝑦(0) = 𝑦𝑦0. 

Next, one generates a response of the ‘economic’ model,  𝑥𝑥2(𝑡𝑡),  to scenario 𝑦𝑦1(𝑡𝑡) as 
the solution to  

𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑦𝑦1(𝑡𝑡)),    𝑥𝑥(0) = 𝑥𝑥0, 

and a response of the ‘environmental’ model,  𝑦𝑦2(𝑡𝑡),  to scenario 𝑥𝑥1(𝑡𝑡) as the solution to  

𝑦̇𝑦(𝑡𝑡) = 𝑔𝑔(𝑥𝑥1(𝑡𝑡),𝑦𝑦(𝑡𝑡)),    𝑦𝑦(0) = 𝑦𝑦0. 

 

Generally, given 𝑘𝑘th responses of the ‘economic’ and ‘environmental’ models,  𝑥𝑥𝑘𝑘(𝑡𝑡) 
and  𝑦𝑦𝑘𝑘(𝑡𝑡), one generates a (𝑘𝑘 + 1)th response of the ‘economic’ model,  𝑥𝑥𝑘𝑘+1(𝑡𝑡),  as 
the solution to  

𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑦𝑦𝑘𝑘(𝑡𝑡)),    𝑥𝑥(0) = 𝑥𝑥0, 
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and a (𝑘𝑘 + 1)th response of the ‘environmental’ model,  𝑦𝑦𝑘𝑘+1(𝑡𝑡),  as the solution to  

𝑦̇𝑦(𝑡𝑡) = 𝑔𝑔(𝑥𝑥𝑘𝑘(𝑡𝑡),𝑦𝑦(𝑡𝑡)),    𝑦𝑦(0) = 𝑦𝑦0. 

It can be stated mathematically that under assumptions standard for the theory of 
ODEs18 the sequence of the models’ responses,  (𝑥𝑥𝑘𝑘(𝑡𝑡),  𝑦𝑦𝑘𝑘(𝑡𝑡)), converges to the 
solution of the system of the ‘economic’ and ‘environmental’ ODEs uniformly on any 
bounded time interval [0,𝑇𝑇]. Moreover, one can derive an analytic upper estimate for 
the convergence rate. The estimate tells us that the shorter is the time interval [0,𝑇𝑇], 
the faster is the convergence rate. For small  𝑇𝑇 the convergence rate is of type 𝑞𝑞𝑘𝑘 with 
𝑞𝑞 < 1, implying that an appropriate approximation accuracy can achieved in a few 
iterations in the above ‘dialogue’. A practical stopping criterion involves the distance 
between the subsequent responses,  (𝑥𝑥𝑘𝑘(𝑡𝑡),  𝑦𝑦𝑘𝑘(𝑡𝑡)) and  (𝑥𝑥𝑘𝑘−1(𝑡𝑡),  𝑦𝑦𝑘𝑘−1(𝑡𝑡)). Ones that 
distance is small enough,  (𝑥𝑥𝑘𝑘(𝑡𝑡),  𝑦𝑦𝑘𝑘(𝑡𝑡)) lies close to the solution of the system of the 
‘economic’ and ‘environmental’ ODEs. 

The statements are generalizable for the case of several ODE models, each of which is 
fed back by the outcomes of the other ones.    

2.7   Soft integration of ODE models. A manual 
Here we summarize the above material in the form of a ‘manual’ (we restrict ourselves 
for the case of two ODE models). 

Initial conditions 

You are given a finite-dimensional ODE 

𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡)),    𝑥𝑥(0) = 𝑥𝑥0,   𝑡𝑡 ∈ [0,𝑇𝑇] 

call it ODE 1 – and a finite-dimensional ODE 

𝑦̇𝑦(𝑡𝑡) = 𝑔𝑔(𝑥𝑥(𝑡𝑡),𝑦𝑦(𝑡𝑡)),     𝑦𝑦(0) = 𝑦𝑦0,    𝑡𝑡 ∈ [0,𝑇𝑇] 

call it ODE 2. In ODE 1 𝑦𝑦(𝑡𝑡) is an input variable having the dimension of the state 
variable of ODE 2, and in ODE 2 𝑥𝑥(𝑡𝑡) is an input variable having the dimension of the 
state variable of ODE 1. 

Step 0: Choosing initial input scenarios 
Choose an initial input scenario for ODE 1, 𝑦𝑦0(𝑡𝑡), and an initial input scenario for ODE 
2, 𝑥𝑥0(𝑡𝑡).  

Step 1: Generation of first responses 
Generate a first response of ODE 1,  𝑥𝑥1(𝑡𝑡),  as the solution to  

𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑦𝑦0(𝑡𝑡)),    𝑥𝑥(0) = 𝑥𝑥0,   𝑡𝑡 ∈ [0,𝑇𝑇] 

and a first response of of ODE 2,  𝑦𝑦1(𝑡𝑡),  as the solution to  

𝑦̇𝑦(𝑡𝑡) = 𝑔𝑔(𝑥𝑥0(𝑡𝑡),𝑦𝑦(𝑡𝑡)),    𝑦𝑦(0) = 𝑦𝑦0,    𝑡𝑡 ∈ [0,𝑇𝑇]. 

… 

Step k: Generation of 𝒌𝒌th responses 
Given a 𝑘𝑘th response of ODE 1,  𝑥𝑥𝑘𝑘−1(𝑡𝑡), and a 𝑘𝑘th response of ODE 2,  𝑦𝑦𝑘𝑘−1(𝑡𝑡), 
generate a 𝑘𝑘th response of ODE1,  𝑥𝑥𝑘𝑘(𝑡𝑡),  as the solution to  

18 It is sufficient to assume 𝑓𝑓 and 𝑔𝑔 to be Lipschitz continuous. 
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𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓(𝑥𝑥(𝑡𝑡),𝑦𝑦𝑘𝑘−1(𝑡𝑡)),    𝑥𝑥(0) = 𝑥𝑥0,   𝑡𝑡 ∈ [0,𝑇𝑇] 

and a 𝑘𝑘th response of ODE 2,  𝑦𝑦𝑘𝑘(𝑡𝑡),  as the solution to  

𝑦̇𝑦(𝑡𝑡) = 𝑔𝑔(𝑥𝑥𝑘𝑘−1(𝑡𝑡),𝑦𝑦(𝑡𝑡)),    𝑦𝑦(0) = 𝑦𝑦0,   𝑡𝑡 ∈ [0,𝑇𝑇]. 

Compute the uniform distance between  (𝑥𝑥𝑘𝑘(𝑡𝑡),  𝑦𝑦𝑘𝑘(𝑡𝑡)) and  (𝑥𝑥𝑘𝑘−1(𝑡𝑡),  𝑦𝑦𝑘𝑘−1(𝑡𝑡)). If the 
distance is smaller than an accuracy parameter 𝜀𝜀 chosen in advance, take 
 (𝑥𝑥𝑘𝑘(𝑡𝑡),  𝑦𝑦𝑘𝑘(𝑡𝑡)) for the approximate solution of the system of ODE 1 and ODE 2. 
Otherwise go to step 𝑘𝑘 + 1. 
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