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Abstract 
 
Currently, Brazilian land use data comes from the national agricultural census and 
land cover data comes from global data sets with sparse temporal coverage. This no 
longer meets the needs of the earth system modeling community. Long-term satellite 
image datasets with high temporal frequency yield a sequence of data points in a 
time series that can be used to detect and monitor land use and land cover changes. 
The vegetation phenological cycles are reflected in the satellite time series, allowing 
the classification of land cover types in time segments. This research aims at 
developing an automatic methodology to yield information about land use and land 
cover trajectories. To construct land use/cover trajectories maps, Dynamic Time 
Warping (DTW) is used to extract information from the MODIS 2-band Enhanced 
Vegetation Index (EVI2) time series. Validation tests were made in the areas of Mato 
Grosso state, Brazil. The preliminary results for the proposed methods are promising 
when compared with the official TerraClass land use maps in the Amazon Biome, 
finding 78.2% and 85.0% global accuracy for 2008 and 2010, respectively. 
Exploratory DTW results show significant potential to detect land use and cover 
changes. 
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Satellite time series analysis for land use/cover change detection 
 

Victor Maus 

Introduction 
 
In the 1960s and 1970s government policies and subsidies to develop, populate and 
integrate the Brazilian Amazon region into the rest of the county, induced extensive and 
predatory use of natural resources in that region (ARAUÚJO and LEÉNA, 2011). The 
Brazilian Amazonian rain forest originally occupied an area of 4,100,000 km2, from which 
734,298 km2 have been deforested since the 1970s. Recently, the annual deforestation is 
decreasing and last year reached the lowest value since the beginning of monitoring, 4,571 
km2 (INPE, 2013). 
 
Understanding the dynamics of land use and land cover change even after deforestation 
can help us to understand the drivers of deforestation, and could be helpful to design 
better policies to stop deforestation and accompany local actors towards more sustainable 
land management. The time series of land use and land cover maps can be useful, to 
answer related questions like: What are the main land use trajectories after deforestation? 
What land use trajectories can lead to land abandonment or land degradation? What is the 
effectiveness of efforts to deforestation reduction? 
 
Currently, there is a lack of time series maps which would demonstrate the land use and 
land cover dynamics in Brazil. Brazilian land use data comes from the national agricultural 
census and land cover data comes from global data sets with sparse temporal coverage. 
The Brazilian Institute of Geography and Statistics (IBGE) conducts the agricultural census 
which provides information about areas under cultivation in the national territory for 
each municipality (IBGE, 2006). For the Amazon rain forest the Brazilian National Institute 
for Space Research (INPE), through the PRODES Project, monitors the forest area and 
estimates the annual rate of deforestation since 1989, but without information about land 
use after deforestation. INPE also develops the TerraClass Project. This Project provides 
detailed land use information in the Amazon but is only for two years, 2008 and 2010, 
which is insufficient to evaluate issues related to different land trajectories. 
 
Potentially, we can use long-term satellite images with high temporal frequency to extract 
land use and land cover trajectories. The sequence of images allow us to compose time 
series for each pixel that show the time variation of surface attributes such as the 
reflectance of a specific band of the electromagnetic spectrum or derived indexes (Figure 
1). Vegetation cover studies typically use time series of vegetation indexes e.g., Normalized 
Differences Vegetation Index (NDVI) computed through the reflectance in red and near 
infrared bands (ROUSE et al., 1973, 1974); Enhanced Vegetation Index (EVI) computed 
through the reflectance in blue, red and near infrared bands (JUSTICE et al., 1998;); and 
recently the 2-band EVI (EVI2), an adaptation of EVI without the blue band (JIANG et al., 
2008). 
 
This vegetation index reflects the seasonal cycles of land cover and its changes over time 
that are typically correlated with land use changes. The Figure 2 shows a sample of land 
use changes reflected in the vegetation index time series. In this sample, the area initially 
was covered by forest that was removed in 2005 and converted to pasture until 2010. 
After that a land use change occurred, to single cropping in 2011 and to double cropping in 
2012, i.e. it is two crops in the same space during a single growing season. 
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Figure 1. Satellite time series composition. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Phenological vegetation cycles reflected in vegetation index time series. 

 
 
Some studies have shown success in extracting land use/cover information from 
vegetation time series. Jakubauskas et al., (2002), successfully used 1 km NDVI time series 
from National Oceanic and Atmospheric Administration (NOAA) - Advanced Very High 
Resolution Radiometer (AVHRR) to classify corn, wheat, milo and alfalfa. To map rice 
areas in South and Southeast Asia, Xiao et al., (2005), combine 500 m NDVI, EVI and Land 
Surface Water Index (LSWI) from Moderate Resolution Imaging Spectroradiometer 
(MODIS). Sakamoto et al., (2009), used the 250 m MODIS EVI product to analyze 
expansion of inland aquaculture and triple rice-cropping areas in a coastal area of the 
Vietnamese Mekong Delta. Conrad et al., (2011) used 250 m MODIS NDVI to differ cotton, 
rice, winter wheat and rotations with fallow and rice. Wardlow et al., (2007) used 250 m 
MODIS NDVI and EVI to classify winter wheat and rotations with corn, soybeans, sorghum 
and fallow. 
 
The cited works evaluate time series in yearly time segments i.e. breaking the sequence 
into segments of one year, from which they extract phenological parameters (e.g. dates of 
beginning and end, standard deviation, mean, number of peaks, etc). This segmentation 
can aid in extraction of important information due to variability of phenological cycles, e.g. 
in the case of plants that require cycles longer than one year. Furthermore, the weather 
and/or human interventions can change the dates and other features of phenological 
events. The classification methods based on parameter extraction do not use all 
information about the shape of cycles which can help to improve the results. Some 
techniques of dynamic programming based on the ability to approximately match 
sequences of values can be used to find patterns in a data stream even considering the 
time variability, as shown in phenological cycles.  
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The main contribution of this research was to develop an automatic method based on 
dynamic programming to yield sequences of land use and land cover maps without time 
segmentation and using shape information from the entire cycle. We used the classical 
data mining method Dynamic Time Warping (DTW) to match typical vegetation patterns 
in long-term EVI2 time series. 
 
Originally, the DTW was successfully applied to automate speech recognition in spite of 
wide variations in timing and pronunciation (VELICHKO and ZAGORUYKO, 1970; SAKOE 
and CHIBA, 1978) and in problems of finding patterns in time series data (BERNDT and 
Clifford, 1994). The DTW algorithm compares two sequences of temporally dependent 
data, computes the dissimilarity (dtw distance), and finds an optimal alignment between 
both, under certain restrictions. It also warps the data sequences to match each other 
(RABINER and JUANG, 1993). Some adaptations in the DTW algorithm have allowed 
researchers to find all subsequences within a long data stream that are similar to one or 
more given queries sequences, Figure 3 (MÜLLER, 2007). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time 
 

Figure 3. Optimal alignment between data sequences. 

Methods 
In this study we used the 2-band Enhanced Vegetation Index (EVI2) that enhances the 
vegetation variation and corrects noise and saturation problems shown in NDIV and EVI 
(FREITAS et al., 2011). We first download the EVI2 computed by Laboratory of Remote 
Sensing in Agriculture and Forestry (LAF/INPE) which is based on MODIS MOD13 Q1 
product 250 m 16-day composite images. Below, the flowchart summarizes the proposed 
method, Figure 4. 
 
 

 Patterns  Land Use/cover 
 

 library  maps 
 

EVI2 

 
 

DTW Patterns Aggregation  

Analysis similarity  

Time Series  
 

   
 

 Figure 4. Methodology flowchart.  
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The second step was build a pattern library. As showed in Figure 5, each vegetation land 
cover has a related temporal pattern, which was included in the patterns library. The 
classes considered in this work were: forest, clearcut, pasture, single cropping, double 
cropping, and fallow (Figure 5). Forest has slight changes in greenness between the wet 
and dry seasons. Clearcut has a fast decrease in vegetation index value. Pasture outline has 
higher standard deviation than forest and lower standard deviation than single and double 
cropping, which differ to each other by the number of annual peaks.  

 Forest  Clear cut  Fallow  

    

 
 
 
 
 
 
 

 Pasture 
 
 
 
 
 
 
 
 

Single Crop  
Double crop 

 
 
 
 
 
 
 

Figure 5. Classes and EVI2 temporal patterns. 
 
Then, we used the DTW algorithm to compute the dissimilarity (dtw distance), and find an 
optimal alignment between EVI2 time series. The queries to DTW method were all 
sequences stored in the patterns library. The algorithm returns the DTW distance from all 
subsequences in the long-term time series to all patterns stored in the pattern library. This 
way more than one pattern can be aligned to one subsequence, but with different DTW 
distances that allow to find what is the most similar pattern to one subsequence. To 
compare DTW classification with other maps, we aggregated the results by agricultural 
year from August to July. Then, we picked out the pattern with the lowest dtw distance for 
each agricultural year i.e the pattern with the best alignment during the period was the 
class used to build the final land use and cover maps. 
 
We performed simulations in a test area of 8.325 ha in Mato Grosso state, Brazil (Figure 6). 
This state had a lot of land use changes over the last decade and also has the largest 
deforested area of Amazon rain forest (INPE, 2012). Results were then, compared to the 
TerraClass maps (CRA/INPE, 2012) for 2008 and 2010 for the following classes: forest, 
pasture, and cropland. TerraClass does not differentiate single and double cropping but it 
encompasses four classes of pasture. Therefore, to do the accuracy calculations we made 
some class aggregation (Table 1). Single and double cropping are combined into cropland, 
pasture includes the four pasture classes from TerraClass and pasture and fallow classes 
from the DTW simulations. TerraClass has 30 m spatial resolution, 
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therefore to compare the maps generated in this work, TerraClass maps were aggregated 
to 250 m spatial resolution. 
 
 
 
 
 

Xingu 
National Park 

 
 
 

Querência - MT 
 
 
 
 
 
 
 
 

Figure 6. Study area Mato Grosso, Brazil. 
 

Table 1. Equivalence among classes to accuracy calculations.  
Aggregated classes TerraClass DTW Classification 

 

    

Forest Forest Forest 
 

    

Cropland Annual agriculture 
Single cropping 

 

Double cropping  

  
 

    

 Clear pasture  
 

Pasture 
Dirty pasture Pasture 

 

Degraded pasture Fallow  

 
 

 Pasture with regeneration  
 

    

 
The algorithms were written in R language, using the packages: “aRT” that provide an 
environment to work with spatial data stored in TerraLib database; “dtw” that provide the 
classical DTW algorithm and some variations; “multicore” that provide optimized 
functions to parallel computing; and “pastecs” to find local minimums in a data stream. 
The Geographical Information System (GIS) TerraView was used to compose and visualize 
maps. 
 

Results and discussions 
According to PRODES Project (INPE, 2013), in the studied area the first deforestation 
event occurred in 2002, that agreed with the clear cut identified by the automatic method 
developed in this work. The Figure 7 shows the DTW classification, a Landsat image and a 
EVI2 time series from a sample pixel inside this area. Before 2002 the EVI2 index is 
greater than 0.5 with low standard deviation, after that, occurred the clear cut and the 
biomass burning (see Landsat image, Figure 7), EVI2 where then reduced to about 0 
(zero). In the following years the EVI2 index shows a biomass regrowth similar to a fallow 
temporal shape from 2003 to 2004. We observed that fallow is common after clear cut 
events in the study area.
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DTW classification Landsat image 
 
 
 
 
 
 
 
 
 
 
 

 Forest  Clear cut  Single crop  Double crop  Pasture 
 
 
 
 
 
 
 
 
 
 

Figure 7. Clear cut detection. 
 
In many places in Mato Grosso, Brazil, the single cropping is being replaced by double 
cropping. The Figure 8 shows a sample of this transition from 2007 to 2008. The EVI2 
index indicates a single cropping from 2005 to 2007 and a switch to double cropping in 
2008.  

2007 2008    

 
 
 
 
 
 
 
 
 
 
 
 
 

 Forest  Clear cut  Single crop  Double crop  Pasture 
 
 
 
 
 
 
 
 
 
 

Figure 8. Transition from single cropping to double cropping. 
 
Preliminary tests of DTW classification shows a satisfactory agreement with official 
TerraClass maps from 2008 and 2010 with global accuracy of 78.2% and 85.0%, and 
Kappa coefficients of 0.62 and 0.72, for each year. The main classification error occurs 
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in boundaries between different land covers (Figure 9) i.e. where MODIS pixels contain a 
mixture in surface reflectance. Furthermore we can see a land cover class appearing in 
some pixels isolated within large homogenous areas that are probably mistakes in the 
automatic classification. 
 
 

DTW TerraClass 
 
 
 
 
 
 
 
 

2008 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2010 
 
 
 
 
 
 
 
 
 

 Forest  Clear cut  Crop + Double crop  Pasture + Fallow  Not observed 

   
 

Figure 9. TerraClass and DTW maps from 2008 and 2010.   
 
The maps yielded by DTW also show some impossible transitions, such as the transition to 
forest after a clearcut event: forest→clear cut→ forest. A sample of this mistake can be 
visualized from 2004 to 2006 in the area pointed in Figure 10. The EVI2 in that area shows 
a clearcut pattern from 2005 followed by a biomass regrowth. The EVI2 value reaches 
about 0.5 which is about the value of the EVI in the forest pattern (Figure 5). This leads to 
classify the pixel as forest in 2006 while it is in fact a different type of vegetation. 
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2004 - Forest 2005 - Clear cut 2006 - Forest 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Forest  Clear cut  Single crop  Double crop  Pasture  Fallow 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Transitions from clear cut to forest. 
 
 
 

Conclusions 
High levels of uncertainty surrounding past, current and future trajectories of land use, in 
particular in tropical forest regions, are seen as a major stumbling block in terms of 
reducing deforestation and the associated carbon emissions and increasing food and 
energy security. Currently, Brazilian land use data comes from the national agricultural 
census and land cover data comes from global data sets with sparse temporal coverage. 
This no longer meets the needs of the earth system modeling community. Long-term 
satellite image datasets with high temporal frequency yield a sequence of data points in a 
time series that can be used to detect and monitor land use and land cover changes. The 
vegetation phenological cycles are reflected in the satellite time series, allowing the 
classification of land cover types in time segments, leading to the extraction of land use 
change. 
 
This study has resulted in a novel approach to create spatial and temporal datasets of land 
use through a data mining technique known as Exploratory Dynamic Time Warping 
(DTW). DTW results show significant potential to detect land use and land cover changes, 
which is useful not only to provide land use and land cover maps but also to understand 
land cover changes potentially leading to the establishment of more informed policies. The 
methodology was able to accurately identify forest, clear cut events, pasture, single and 
double cropping. 
 
Validation tests were made in the areas of Mato Grosso state, Brazil. The preliminary 
results for the proposed methods are promising when compared with the official
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TerraClass land use maps in the Amazon Biome, finding 78.2% and 85.0% overall accuracy 
for 2008 and 2010, respectively. This is not only an improvement in terms of overall 
accuracy, but this method provides us with a continuous measure of land use change (not 
limited to the periodic campaigns of official data). To improve the results of the DTW 
classifications, it is essential to include post- processing steps with rules for land use and 
cover transitions and spatial filtering, in addition to improving the algorithm for the 
detection of fallow fields. 
 
The findings of this approach have large potential for radically changing the way land use 
is monitored currently, having wide ranging policy implications. This method offers a 
methodology for tapping into the ever expanding archive of terrestrial satellite imagery, 
offering potentially a huge return on investment. 
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Appendix A. Main functions used to time series analysis 
 

R packages dependencies: aRT; dtw; multicore; pastecs. 

Kthbacktrack: Backtrack the steps taken. This function was adapted from dtw package. Functions called in this function are 
described in dtw package documentation. 

kthbacktrack2 <- function(gcm) { 
 dir<-gcm$stepPattern; 
 npat <- attr(dir,"npat"); 
 n <- nrow(gcm$costMatrix); 
 m <- ncol(gcm$costMatrix); 
 i <- n; 
 j <- gcm$jmin 
 ## drop rows with (0,0) deltas 
 nullrows <- dir[,2]==0 & dir[,3] ==0 ; 
 tmp <- dir[!nullrows,]; 
 ## Pre-compute steps 
 stepsCache <- list();   
 for(k in 1:npat) { 
  stepsCache[[k]] <- .extractpattern(tmp,k); 
 } 
 ## mapping lists 
 ii<-c(i); 
 jj<-c(j); 
 repeat { 
  ## cross fingers for termination 
  if(i==1){# && j==1) { 
   break;   
  } 
  ## direction taken 
  s<-gcm$directionMatrix[i,j]; 
  if(is.na(s)) { 
   break; 
  } 
  ## undo the steps 
  steps<-stepsCache[[s]]; 
  ns<-nrow(steps); 
  ## In some rare cases (eg symmetricP0), ns will be 1 
  ## R indexing rules make k==0 a no-op anyway 
  for(k in 1:ns) { 
   ## take note of current cell, prepending to mapping lists 
   if(i-steps[k,1] > 0) {              # Modified from original function 
    ii <- c(i-steps[k,1],ii);  # Modified from original function 
    jj <- c(j-steps[k,2],jj);  # Modified from original function 
   }                                   # Modified from original function 
   ## All sub-steps are visited & appended; we have dropped (0,0) deltas 
  } 
  i <- ii[1]#i-steps[ns,1]; # Modified from original function 
  j <- jj[1]#j-steps[ns,2]; # Modified from original function 
 } 
 out<-list(); 
 out$index1<-ii; 
 out$index2<-jj; 
 return(out); 
} 

RecruitLocalmins: Find the first point of subsequences candidates to align a pattern. 

RecruitLocalmins <- function(x,span,threshold){ 
 #     x – a vector with last line DTW CostMatrix. 
 #     span – Neighborhood of minimum point in the CostMatrix. Default: span = 10. 
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 #     threshold – maximum acceptable DTW distance to similarity. Default: threshold = 2. 
 # Find turning ponints 
 turnp <- turnpoints(x)$tppo 
 # Find local minimum 
 dfturnp <- diff(x[turnp]) 
 localmins <- turnp[dfturnp > 0] 
 index <- array(NA) 
 k <- 1 
 repeat{ 
  kmin <- localmins[which.min(x[localmins])] 
  if ( (x[kmin] > threshold) || (k > length(localmins)) ) break 
  index[k] <- kmin 
  k <- k + 1 
  if( (kmin-10) < 1 ) x[1:(kmin+10)] <- 9999 
  else x[(kmin-10):(kmin+10)] <- 9999 
 } 
 if( ((x[length(x)] - x[length(x)-1]) <= 0) && (x[length(x)] < threshold) ) 
  index[k] <- length(x) 
 return(index) 
} 

FindPattern: Function to compute DTW distance and align all subsequences within long-term data stream, that are similar 
to the patterns in the library. 

FindPattern <- function(TS.df, TS.dates, threshold = 2, span = 10){ 
 # Parameters: 
 #     TS.df: a data frame with all time series Y = {y(t)_1, y(t)_2, …, y(t)_n} t=1,2,...,m 
 #     where n and m are amount of time series and amount of measures, respectively. 
 #     TS.dates: a vector with the dates for each measures. 
 #     threshold – maximum acceptable DTW distance to similarity. Default: threshold = 2. 
 #     span – Neighborhood of minimum point in the CostMatrix. Default: span = 10. 
 ### Get patterns/signatures 
 TPFilelist <- dir(TPPATH,pattern=".csv") 
 TPatterns <- mclapply(paste(TPPATH,TPFilelist,sep=""), 
   read.table, as.is=TRUE, header=TRUE, sep=";") 
 # Set patterns/signatures names with file names 
 names(TPatterns) <- unlist(strsplit(TPFilelist, split="\\.csv")) 
 cat("\n  Finding for",length(TPFilelist), 
   "patterns in",dim(TS.df)[1],"time series\n  Please wait...") 
 # Loop for all time series 
 DTWDistance <- mclapply( 1:(dim(TS.df)[1]), function(j) { 
  # Get time serie j         
  y <- as.numeric(TS.df[j,]) 
  # Loop for all temporal signatures (X) 
  out.patterns.distance <- mclapply(seq_along(TPatterns), function(i){ 
   # Get pattern i 
   x <- as.numeric(TPatterns[[i]][,2]) 
   out <- list() 
   # Algorithm to compute all subsequences within 
   # the Time Series Y similar to Pattern/Signature X 
   # Step 1. Compute Accumulated Cost Matrix (Sequence Y against 
   # pattern/signature X with DTW Package) 
   alignment <- dtw(x,y,step=rabinerJuangStepPattern(6,"c"), 
      keep=TRUE,open.begin=TRUE,open.end=TRUE, 
      window.type=sakoeChibaWindow, window.size=5) 
   # Step 2. Determine the distances for k-th paths 
   d <- alignment$costMatrix[alignment$N,1:alignment$M] 
    [!is.na(alignment$costMatrix[alignment$N,1:alignment$M])] 
    Nna <- length(alignment$costMatrix[alignment$N,1:alignment$M] 
    [is.na(alignment$costMatrix[alignment$N,1:alignment$M])]) 
   # Step 3. Determine ranked list of indexes to minimal 
   # distances within a threshold (Index for last point of a 
   # Pattern on the Time Series) 
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   index_b <- RecruitLocalmins(d, span, threshold) 
   if ( is.na(index_b[1]) ) return(NULL) 
    index_b <- index_b + Nna 
   # Step 4. Compute the starting indexes 
   # Index for first point of a Pattern on the Time Serie) 
   index_a <- unlist(lapply(seq_along(index_b), function(k){ 
    alignment$jmin <- index_b[k] 
    mapping <- kthbacktrack(alignment) 
    return(mapping$index2[1]) 
   })) # End index_a loop 
   # Get distance (Paths cost) 
   distance <- unlist(lapply(index_b, function(b){ 
    return(d[b-Nna]) 
   })) 
   out$a <- index_a 
   out$b <- index_b 
   out$distance <- distance 
   return(out)     
  })# End all patterns 
  names(out.patterns.distance) <- names(TPatterns) 
  return(out.patterns.distance)  
 })# End all patterns 
 return(DTWDistance) 
}#End function 

GetTS: function to Download EVI2 data from LAF/INPE server. Given a pair of coordinates the function returns a list of: 
northeast and southwest coordinates, Dates, Raw EVI2 and Wavelet Fitted EVI2. 

GetTS <- function (lat, lon, I=1){ 
 # Parameters: 
 #     lat: latitude 
 #     lon: longitude 
 ### returns a list of: 
 ### northeast and southwest coordnates, 
 ### Dates, Raw EVI2 and Wavelet 
  ### Fitted EVI2. 
 out <- list(box=NULL,raw=NULL,filtered=NULL); 
 count = 0; 
 conAttempts = 10; 
 address <- paste("http://www.dsr.inpe.br/laf/download/getSeries.php?lat=",lat,"&lng=",lon,sep="") 
  
 while( count <= conAttempts ) 
 { 
  count <- count + 1; 
  doc <- xmlRoot(xmlTreeParse(address)); 
  rootName <- xmlSApply(doc, xmlName); 
  if( class(doc)[1]!="XMLNode" || length(rootName) <= 1 ) 
  { 
   if( count > conAttempts ) 
   { 
    cat("\n ",conAttempts," connect attempts to dsr.inpe.br server failed..."); 
    cat("\n Can not getting EVI2 time series for lat:",lat," lon:",lon); 
    cat("\n Try to connect again (y/n)? "); 
    flag <- scan(what="character", nmax=1); 
    if( flag == "y" || flag == "Y") 
    { 
     count <- 0; 
    }else{ 
     return(out); 
    } 
   }else{ 
    errorValue <- xmlValue(doc); 
    warning(errorValue, ", lat: ",lat, " lon: ",lon, immediate. = TRUE, call. = FALSE); 
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    warning("\n",count,": Unable to access time series from 
http://www.dsr.inpe.br/laf/download/getSeries.php?lat=",lat,"&lng=",lon, immediate. = TRUE, call. = FALSE); 
    cat("\nTrying to reconnect dsr.inpe.br server..."); 
   } 
  }else{ 
   cat("\n",I,": Successful time series lat:",lat," lon:", lon, sep=""); 
   count <- conAttempts + 1; 
  } 
 }#End While 
 # Get box coordinate 
 boxCoord <- xmlSApply(doc[["box"]], function(b){ 
    xmlSApply(b, xmlValue); 
   }); 
 # Get raw data 
 rawEVI2 <- xmlSApply(doc[["data"]], function(b){ 
    xmlSApply(b[["raw"]], xmlValue); 
   }); 
 # Get filtered data 
 filEVI2 <- xmlSApply(doc[["data"]], function(b){ 
    xmlSApply(b[["filtered"]], xmlValue); 
   }); 
 # Get date data 
 date <- xmlSApply(doc[["data"]], function(b){ 
    xmlSApply(b[["date"]], xmlValue); 
   }); 
 Coords <- list(northeast=c(lat=as.numeric(boxCoord[1]),lon=as.numeric(boxCoord[2])), 
   southwest=c(lat=as.numeric(boxCoord[3]),lon=as.numeric(boxCoord[4]))) 
 out <- list(box=Coords, date=as.Date(date), raw=as.numeric(rawEVI2), filtered=as.numeric(filEVI2)); 
 return(out); 
} 

GetListTS: function to Download EVI2 data from LAF/INPE server for a list of points. Given a list of coordinates the function 
returns for each pixel a list of: northeast and southwest coordinates, Dates, Raw EVI2 and Wavelet Fitted EVI2. 

# 
# R function to Download EVI2 data from LAF/INPE server for a list of points 
# 
GetListTS <- function(PixelCoord, BASENAME="pto"){ 
 # Parameters: 
 #     lat: latitude 
 #     lon: longitude 
 ### returns for each a list of: 
 ### northeast and southwest coordinates, 
 ### Dates, Raw EVI2 and Wavelet 
  ### Fitted EVI2. 
 cat("\nGetting EVI2 time series from LAF/INPE\nPlease wait...\n") 
 t1 <- Sys.time() 
 date.df <- data.frame() 
 raw.df <- data.frame() 
 filtered.df <- data.frame() 
 Coord.df <- data.frame(northeast_lon=NA,northeast_lat=NA, 
   southwest_lon=NA,southwest_lat=NA) 
 SampleNames <- array(); 
  
 for(i in 1:length(PixelCoord)) 
 { 
  pto <- GetTS(PixelCoord[[i]]['lat'],PixelCoord[[i]]['lon'],i) 
  SampleNames[i] <- paste(BASENAME,i,sep="") 
  Coord.df[i,] <- cbind(pto$box$northeast["lon"], 
    pto$box$northeast["lat"], 
    pto$box$southwest["lon"], 
    pto$box$southwest["lat"] 
  ) 
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  date.df <- rbind(date.df, format(as.Date(pto$date, "%Y-%m-%d"), "%Y-%m-%d")) 
  raw.df <- rbind(raw.df, pto$raw) 
  filtered.df <- rbind(filtered.df, pto$filtered) 
 } 
 date.df <- format(as.Date(names(date.df), "X.%Y.%m.%d."), "%Y-%m-%d") 
 vec_names <- format(as.Date(date.df, "%Y-%m-%d"), "%Y_%m_%d") 
 names(date.df) <- as.character(vec_names); 
 names(raw.df) <- as.character(vec_names); 
 names(filtered.df) <- as.character(vec_names); 
 t2 <- Sys.time(); 
 cat(i,"time series downloaded in",as.double(difftime(t2,t1,tz,units="secs")),"secs\n") 
 return( list(coord=Coord.df, date=date.df, raw=raw.df, filtered=filtered.df) ) 
} 
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