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Abstract 

 

Volunteered Geographical Information (VGI) is the assembly of spatial information based on 

public input.  While VGI has proliferated in recent years, assessing the quality of volunteer-

contributed data has proven challenging, leading some to question the efficiency of such 

programs.  In this paper, we compare several quality metrics for individual volunteers’ 

contributions. The data was the product of the ‘Cropland Capture’ game, in which several 

thousand volunteers assessed 165,000 images for the presence of cropland over the course of 

six months.  We compared agreement between volunteer ratings and an image’s majority 

classification with volunteer self-agreement on repeated images and expert evaluations.  We 

also examined the impact of experience and learning on performance.  Volunteer self-

agreement was nearly always higher than agreement with majority classifications, and much 

greater than agreement with expert validations, although these metrics were all positively 

correlated.  Volunteer quality showed a broad trend toward improvement with experience, but 

the highest accuracies were achieved by a handful of moderately active contributors, not the 

most active volunteers.  Our results emphasize the importance of a universal set of expert-

validated tasks as a gold standard for evaluating VGI quality. 

 

Keywords: crowdsourcing; volunteered geographic information; cropland; data quality; image 

classification; Geo-Wiki 

 

Introduction 

 

Citizen involvement in natural and social science data collection and processing has 

grown quickly over the last decade. Although citizens have been involved in scientific research 

and conservation activities for a considerable time now (Miller-Rushing, Primack and Bonney 



2012), the recent widespread participation has been facilitated through the interactivity of Web 

2.0, open access to high resolution satellite imagery and the proliferation of mobile devices which 

can record photographic and location-based information.  Citizen science has benefitted from 

Digital Earth innovations which provide geographical context and base data for citizen tasks.  

Citizen science can in turn enhance Digital Earth products, for instance by refining maps with 

tasks that machine learning algorithms struggle to perform.  However, accompanying the growth 

of citizen science has been a growth in the need for tools to evaluate it and in the need for 

potentially costly expert validations as an external standard for evaluating the quality of such data.  

In this paper, we address several pressing questions about citizen science data evaluation and 

provide guidance not just on how best to evaluate data after collection, but also on how to guide 

its collection so that eventual analysis can be carried out more effectively. 

 

There are many terms in the literature to refer to this citizen involvement in science.  These 

including ‘crowdsourcing’ (Howe 2006) which is often used for commercial micro tasks, 

‘volunteered geographic information’ (VGI; Goodchild 2007) for the collection of georeferenced 

information, and ‘citizen science’ (Bonney et al. 2009) which is the broader involvement of citizens 

in a range of scientific activities from data collection to data analysis and research design. 

However, regardless of the specific terminology, all of these activities share in common the 

distributed completion of small, clearly-defined tasks. 

 

Citizen science projects have successfully contributed to many fields of research such as 

the classification and discovery of new galaxies via Galaxy Zoo (Clery 2011), the identification of 

bird species via eBird (Sullivan et al. 2014), understanding the three-dimensional structures of 

proteins through the Fold-It game (Khatib et al. 2011) and land-cover classification of satellite 

imagery in Geo-Wiki, an application built using the Google Earth API (Fritz et al. 2009, 2012).  Yet 

the quality of data collected by non-specialists remains an overarching concern (Flanagin and 



Metzger 2008), especially given the desire to integrate citizen-collected data with more 

authoritative sources (Coleman 2013) and the expected growth in this source of data in the future 

(See, Fritz and de Leeuw 2013). Data quality considerations depend on the specific goal of the 

assigned task, such as whether they are from a commercial crowdsourcing platform such as 

Amazon Turk, for species identification and environmental monitoring, or for the collection of VGI, 

where the emphasis is on the spatial aspects of data and the mapping of objects. In this paper, 

we focus on quality considerations in a simple VGI task, although the results presented here are 

relevant to many other types of simple crowdsourced tasks.   

 

Data quality of VGI can be assessed via a number of different attributes. These include 

credibility of the data based on the existence of metadata or past performance of the contributors, 

the positional accuracy of data, the thematic quality or the tags associated with georeferenced 

objects, the spatial and attribute completeness of the data, how up-to-date the data is, and the 

logical consistency of data (Fonte et al. Submitted). Many recent studies have focussed on quality 

assessment of OpenStreetMap, a very successful VGI initiative to map many different types of 

features such as roads and points of interest around the world (Ramm, Topf and Chilton 2011). 

These studies have mainly examined the positional accuracy (Haklay 2010, Haklay et al. 2010, 

Neis, Zielstra and Zipf 2011, Canavosio-Zuzelski, Agouris and Doucette 2013), the completeness 

(Haklay 2010, Neis, Zielstra and Zipf 2011, Hecht, Kunze and Hahmann 2013) and the currency 

(Jokar Arsanjani et al. 2013) of OpenStreetMap, with the study by Girres and Touya (2010) 

covering a broader range of accuracy assessment measures of French OpenStreetMap data. 

Other studies have examined the thematic quality of image classifications in Geo-Wiki (Comber 

et al. 2013, Foody et al. 2013, See, Comber, et al. 2013) and shown varying levels of performance 

across contributors and across land cover types. However, one of the issues with this dataset 

was not having sufficient data from multiple contributors at individual locations to develop 

statistically robust relationships between contributor performance, land cover type and other 



factors such as image resolution, location, etc. For this reason, we developed a simplified game 

version of Geo-Wiki called ‘Cropland Capture’ in which many images were rated by multiple 

contributors over a 6 month period.  

 

 There are many approaches to quality control for volunteer-contributed data.  

Allahbakhsh et al. (2013) group these into eight classes.     Some of these categories involve 

managing tasks to reduce the risk of poor-quality work (e.g. ‘real-time support’ and ‘workflow 

management’).  Others, like ‘contributor evaluation’ assess the quality of a reviewer and assign 

this rating to all of their work.  However, if no information other than the reviewer’s work is 

available for this assessment, then this quickly becomes a chicken and egg problem.   The 

remaining five approaches directly assess data quality, rather than managing it or using proxies.  

However, some of these approaches are essentially the same, at least in the context of land-

cover validation.  ‘Expert review’ is necessarily the source of gold standards for ‘ground truth’.  

‘Output agreement’ is simply ‘majority consensus’ between two workers.  The final category, 

‘input agreement,’ is defined as ‘Independent workers receive an input and describe it to each 

other.  If they all decided its’ a same input, it’s accepted as a quality answer’ (Allahbakhsh et al., 

2013).  In our view, this approach is not relevant to land-cover classification.  If two workers are 

independently given images and rate them as cropland, they could be analysing the same 

image, but this certainly doesn’t prove it.  Thus, the list of Allahbakhsh et al. (2013) contains two 

approaches, ‘expert review’ and ‘majority consensus’ that are relevant to land-cover validation.  

To this, we add a third measure: the consistency of a volunteer with their previous ratings when 

an image is rated additional times.     

 

 In this paper, we use a simple binary crowdsourcing task to assess how best to evaluate 

volunteer quality and accuracy and use these results to provide guidance on the design of online 

games for VGI and other types of tasks.  While schemes have long been sought for evaluation of 



task accuracy in the absence of external/expert validation (Dawid and Skene, 1979; Bachrach et 

al., 2012, Digital Globe, 2014), it is thought that, at least in some cases, reference data is required 

for true standardization of volunteer-contributed data (Bird et al., 2014).  We show that the latter 

view is true, at least in our example of land-cover validation, by turning the approaches outlined 

in the previous paragraph into quantitative metrics and comparing their performance.  Before we 

address these questions, we begin with an overview of the Cropland Capture game and the data 

that were collected during the game and the methods by which we analyse it.  

 

The Cropland Capture game 

 

Because games are now the most common smartphone application type (dotMobi 2014), 

and serious games (games with a purpose) and gamification of existing applications are becoming 

more common (Michael and Chen 2005, Deterding et al. 2011), Geo-Wiki was moved into a 

gaming environment in an attempt to increase participant numbers and to collect more data. As 

with previous Geo-Wiki crowdsourcing projects (Perger et al. 2012, Fritz et al. 2013), the goal of 

this game is to provide data that can improve global land cover maps, in this case focusing on 

cropland. Although cropland cover is available globally from remotely-sensed global land cover 

products such as GLC-2000 (Fritz et al. 2003), MODIS (Friedl et al. 2010), GlobCover (Defourny 

et al. 2006) and the recent 30m Chinese land cover product (Yu et al. 2013), these products are 

not accurate enough for many applications. The ultimate goal of the game was to improve global 

cropland mapping by gathering data for training and validation, something that will be a part of 

future research.  

 

In Cropland Capture, volunteer players (hereafter called ‘volunteers’) labeled imagery 

(either from satellites or ground-based photographs) to gain points and to become eligible for a 

prize drawing at the end of the game. The game ran for a period of six months from mid-November 



2013 until early May 2014. Incentives for participation were prizes awarded at the end of the 

game, which included smartphones and tablets. To become part of the final draw, a volunteer had 

to rank among a week’s top three scorers; scores were reset to 0 on a weekly basis at midnight 

each Friday. Some individuals made it into the top three in many different weeks so they increased 

their chances of winning the prizes at the end. Special weekly prizes were added in the last five 

weeks of the game to motivate additional participation. Although prizes are no longer offered, the 

game can still be played online at www.geo-wiki.org/games/croplandcapture.  The data analyzed 

in this paper comes only from the six month period noted above.  

 

Figure 1 shows the game interface with an example image. The user is asked ‘Is there 

cropland in the red box?’ and chooses from three choices: ‘cropland’, ‘not cropland’ and ‘maybe 

cropland’. If even a small fraction of the image contains cropland then it should be rated as 

‘cropland.’ Cropland is defined as arable land and permanent crops based on the FAO definition 

(http://faostat.fao.org/site/375/default.aspx). Arable land consists of temporary agricultural crops, 

land under market and kitchen gardening and land temporarily fallow (less than five years) while 

permanent crops include cocoa and coffee but not forest plantations. Permanent meadows and 

pastures for grazing are not included in this definition, but land regularly mowed for hay is 

included. Volunteers were provided with a gallery of images to illustrate different types of cropland 

that they might see and to emphasize that the presence of any cropland at all, no matter how 

small, should result in a rating of ‘cropland.’ 

 

 



 

 

Figure 1. An example of the Cropland Capture user interface.  Users swipe the image toward 

‘yes’, ‘no’ or ‘maybe’, or click on one of these options, depending on the type of device they are 

using. 

 



The bulk of the images came from locations in the global validation data set of Zhao et al.  

(2014).  These images were satellite-derived and roughly square, ranging from 100 m to 1 km on 

a side. Regardless of the scale of the presented scene, all images showed up as about the same 

size on the volunteer’s device. Most of these images were high resolution, but some Landsat 

images were included where better resolution was not available. In addition to these satellite-

based images, we used ground-based photos from the Degree Confluence Project 

(http://confluence.org). The dates associated with the imagery were recorded separately.  

 

In this paper we take the term ‘majority classification’ to mean a decision made about the 

content of an image.  For our purposes, this can be based either on expert validation, or on the 

majority of volunteer responses (excluding ratings of ‘maybe’). For clarity, we use the term ‘rating’ 

to refer to a single decision by a single volunteer about a single image, in contrast to the collective, 

majority classification.  We recognize that the majority classification is not necessarily correct and 

that in extreme cases some images may not even be classifiable, for example because of 

insufficient resolution or clouds obscuring the landscape.  We address these issues of external 

validity using expert validations in the following section.   

 

For each correct rating, the volunteer receives a single point. In this paper, we use the 

word ‘rating’ to mean the decision made by an individual volunteer about whether an image is 

cropland or not. For incorrect answers, the volunteer loses one point. If a volunteer answers 

‘maybe’ they do not gain or lose any points. For the purpose of awarding points, correct answers 

were defined solely by the game’s participants and gave some benefit of the doubt when there 

was not a strong majority classification. If ≥80% of an image’s ratings (excluding responses of 

‘maybe’) were cropland, only responses of ‘yes’ were considered correct.  Similarly, if ≤20% of all 

non-maybe answers were ‘cropland’, then ‘no’ was the only correct answer.  However, if the 

proportion of cropland ratings was between 20-80%, or if the image had never previously been 

http://confluence.org/


rated, either ‘yes’ or ‘no’ was credited as a correct response.  While not having an explicit empirical 

basis, the values of 20% and 80% represent a tradeoff between identifying correct answers and 

penalizing wrong answers.  Had these values been looser (i.e. closer to 0% and 100%), a few 

careless ratings of an easy image would result in all ratings being considered correct.  On the 

other hand, if the values had been more stringent (i.e. closer to 50%), many potentially correct 

ratings of confusing and controversial images would be penalized.   

 We took several steps to reduce the possibility of playing the game in a way that 

provided little useful information.  First, the proportion of images with and without cropland was 

approximately balanced (Table 2).  This reduced the possibility for point accrual from random 

guessing.  However, since both cropland and non-cropland were rewarded as correct answers 

for certain images (see previous paragraph), this problem could not be ruled out completely.  To 

ensure that random play did not bias our results, we manually examined patterns of agreement 

with majority classifications for the most active participants (those rating at least 1000 images), 

and found no evidence of insincere participation.  All participants took breaks and worked at 

uneven rates, so it is unlikely that any were bots.  It is also possible that volunteers would over-

use the ‘maybe’ rating, providing information only on the easiest images.  This did not happen.  

Because image acquisition was automated, and it was impossible to check the quality of 

165,000 images, some images entered rotation that were later decided by expert review to be 

unclassifiable.  Examples include clouds, extremely low resolution and a few that were blank 

due to failed downloads.  Even in these extreme cases, the proportion of ‘maybe’ ratings almost 

never exceeded 50%, suggesting that most volunteers erred toward guessing on hard images 

rather than toward caution, in spite of the risk of losing points.   

 We also took measures to reduce other sources of bias in our findings.  It is possible that 

volunteers would perform better in evaluating images from familiar landscapes, particularly from 

regions where they live or have lived.  While a ‘home field advantage’ cannot be ruled out, it 

should have little or no impact on our findings as all participants were given randomly-selected 



images from all regions of the world; thus, all volunteers enjoyed this advantage occasionally, 

unless they came from a place with absolutely no agriculture.  Similarly, variation in the difficulty 

of images is unlikely to affect outcomes of this research.  While we show that such variation 

certainly exists, the random assignment of images again prevents systematic bias.  It is possible 

that chance drawing of particularly easy or difficult sets of images could bias the metrics for a 

volunteer who contributed only a small number of ratings.  However, our results were quite 

robust to inclusion of only contributors with >1000 images rated, suggesting that task difficulty 

does not bias our findings. 

 

Analytical Methods 

 

To compute volunteer quality metrics, it was first necessary to compute some image-

specific metrics.  We summed the number of times each image was rated in each of the three 

categories, and computed the proportion of responses in each category.  Each image was then 

classified either as cropland or non-cropland based on which of these two possibilities received 

the most ratings from the volunteers.  Note that these classifications were on the basis of a 

simple majority vote, and that this is different from the procedure described above for awarding 

points. Some images had an equal number of ratings in the cropland and no cropland 

categories so were classified as ties and not used in subsequent analyses.  In determining the 

majority classification of an image, ratings of ‘maybe’ were omitted, no matter how frequently 

they were used. 

 

 For each volunteer, we computed several performance measures which form the basis 

for these analyses.  A summary of these metrics is seen in Table 1.  Total output was measured 

with the number of images rated (including repeats) or the number of images receiving a non-

maybe (i.e. cropland or non-cropland) rating.  The quality of volunteer output was assessed in 



several ways.  Each contributor’s rate of agreement with majority-based classifications (see 

above) was calculated. For images rated more than once by a volunteer, a self-agreement rate 

was computed as the proportion of subsequent ratings agreeing with initial ratings.  Ratings of 

‘maybe’ were not counted in either the majority-agreement or self-agreement ratings. However, 

the ratio of ‘maybe’ ratings to all ratings was computed as a metric of caution.  Ability to detect 

the two different cover types was assessed by separately calculating the proportion of cropland 

and non-cropland ratings that were correct.   

 

Variable Description 

Maybe rate The proportion of a volunteer’s ratings that are ‘maybe’ rather 

than cropland or not cropland.  All images were included in this 

variable, regardless of the majority classification. 

Self-agreement rate The proportion of a volunteer’s ratings of a previously seen 

image that agree with his/her initial rating of that image.   

Majority-agreement rate The proportion of a volunteer’s ratings that agree with the 

volunteers’ majority-based classification of an image.   

Expert-agreement rate The proportion of a volunteer’s ratings of images validated by 

experts that agree with the expert ratings. 

Cropland identification 

rate 

The proportion of images with a majority classification of 

‘cropland’ that a volunteer rated as ‘cropland.’   

Non-cropland 

identification rate 

The proportion of images with a majority classification of ‘non-

cropland’ that a volunteer also rated as ‘non-cropland.’   



Images rated The total number of images a volunteer has rated.  Ratings of 

‘maybe’ and ratings of images for which the majority 

classification was tied between cropland and non-cropland are 

included in this metric. 

 

Table 1.  The volunteer-specific metrics used in this article.  Unless otherwise mentioned, these 

metrics exclude ratings of ‘maybe’ and all ratings of images for which the majority classification 

was a tied vote.  Ratings of ‘maybe’ were excluded so that these metrics include only ‘hard’ 

errors (i.e. cropland classified as non-cropland or vice versa).  Soft errors (classification 

changes from ‘maybe’ to ‘cropland’ or ‘non-cropland’) could be considered errors when they 

result from repeated rating of a single image by the same volunteer, but were not included to 

make self-agreement and majority-agreement rates more comparable. 

 

We used regression analysis to test the relationship between different aspects of 

contributors’ performance.  For certain variable pairs, we have reasons to hypothesize a causal 

relationship, for instance, the hypothesis that accuracy increases with experience.  Because the 

independent variable (total images rated) is measured without error, it is appropriate to use 

standard ordinary least squares (OLS) regression in this case.  However, for other variable 

pairs, there is no theoretical reason to expect most metrics to be more accurately measured 

than others as we believe that all such metrics are reflections of an underlying (and unobserved) 

quality variable.  Thus, it is inappropriate to use OLS regression because assumes that all error 

is contained in the dependent variable.  Instead, we employ major axis regression (also known 

as type II regression) as implemented in the R package lmodel2.  This method does not assume 

any underlying differences between the variables being analyzed, and unlike OLS regression, 

returns the same result when the identity of the variables is switched (Legendre and Legendre, 



1988).  For some variables, log transformations were used to improve homoscedasticity. A side 

effect of this fix is that it eliminates values of zero.  To circumvent this problem, we added one-

half of the smallest non-zero value to variables containing values of zero before log 

transformation.   Because neither of these methods is perfectly suited to our data, we report 

both as complementary outcomes.   

 

In some cases we were interested to uncover not just patterns among typical volunteers, 

but also patterns among top volunteers as they contribute disproportionately to the eventual 

land cover classification goals of Cropland Capture.  For this purpose we used quantile 

regressions (Cade and Noon, 2003), implemented in the R package quantreg.  Quantile 

regression does not rely on the distributional assumptions of OLS regression so is particularly 

suited to the heteroskedastic patterns seen between many of the quality metrics.  However, 

quantile regression still assumes error only in the dependent variable, so is best suited to 

relationships where one variable is precisely known.  Another limitation of quantile regression is 

that it is not possible to compute an R2 value in the classical sense, so instead we compute a 

pseudo-R2, known as ‘ρ’, as an estimate of goodness of fit (Koenker and Machado, 1999). 

To analyze patterns of learning we plotted learning curves based on the proportion of 

each 100 ratings that agreed with the majority classification (ratings of ‘maybe’ and images for 

which the classification was a tie vote between ‘cropland’ and ‘non-cropland’ were omitted).  

While a few participants showed visibly recognizable learning curves, most did not, either 

showing consistent performance or occasional valleys of very poor performance.  Because 

these curves were so heterogeneous, they do not lend themselves to quantitative analysis and 

we do not report further on them.   

As a more quantitative approach to the question of contributor learning, we examined 

the direction of change (relative to the majority classification) when a participant changed their 

rating from ‘cropland’ to ‘non-cropland’ or vice versa between the first and second viewing of the 



same image.  In total, this happened 38,344 times (ratings of ‘maybe’ were omitted).  To assess 

possible learning over time, we evaluated whether switches toward agreement with the majority 

classification were more common than changes away from the majority classification.  This was 

evaluated statistically with a binomial test with an expected probability of 50% (i.e. that changes 

were random).   

 In addition to volunteer ratings, 342 images were selected at the end of the game for 

expert validation to provide a baseline for evaluation of volunteers.  These were not selected at 

random, but rather chosen to include different types of easy and difficult images.  Easy images 

were roughly split between those where the majority classification overwhelmingly agreed on 

‘cropland’ and ‘non-cropland.’  Difficult images came from several categories: images with many 

ratings in both the non-cropland and cropland categories, images with many ‘maybe’ ratings, 

images for which top volunteers (as assessed by majority-agreement rate) did not  agree with 

the majority classification, and images where top raters disagreed with one another.   

 In the expert validation process, two remote sensing specialists (authors LS and SF) 

independently evaluated the 342 selected images in the same way as game volunteers, i.e. 

giving a response of ‘yes’, ‘no’ or ‘maybe’.  Images for which the two specialists disagreed in 

their rating, or for which they both responded ‘maybe’, were reviewed in a group to determine 

whether one of them failed to notice some feature on the landscape.  In some cases, input from 

regional experts was sought to interpret unexplained landscape features or additional local 

imagery was viewed either to provide landscape context or view questionable features in more 

detail.  However, the ultimate determination for each image was made based on whether a 

skilled viewer could reasonably be expected to rate that image with no external information, and 

if so, what the correct rating would be.   

 

Results   



 A total of 2,783 volunteers contributed ratings to Cropland Capture between November 

2013 and May 2014.  The game included 165,439 different images.  Of these, 50.3% were 

satellite images, and 49.7% were ground-based photographs. Combining all volunteers and 

images, a grand total of 4,547,038 ratings were delivered.  This total figure includes images that 

were seen more than once by a particular user to test repeatability of their ratings.  For a typical 

contributor the percentage of repeat images was small, although the total value was inflated to 

38.3% of ratings due to a small number of volunteers who contributed more ratings than the 

number of available images. The number of ratings performed by individual volunteers is log-

normally distributed and ranges from 2 to 593,572.  Volunteers came from all regions of the 

world, but with a bias toward wealthier countries. 

 Overall, volunteers disagreed with the majority classification of images 5.6 % of the time 

(Table 2).  Majority-agreement rate for contributors with more than 1000 ratings ranged from 

83.4% to 98.8%.  When volunteers rated an image more than once, they agreed with their initial 

rating 96.5% of the time.  Among those who rated more than 1000 images, self-agreement with 

previous ratings ranged from 88.8% to 100%.  The average user gave a response of ‘maybe’ on 

4.3% of ratings.  For those rating >1000 images, this rate ranged from 0.0 % to 15.4 %.   

  



  Majority classification  

  Cropland Not cropland Accuracy 

Vo
lu

nt
ee

r r
at

in
g 

Cropland 2,059,002 

(46.8 %) 

123,841 

(2.8 %) 

94.3 % 

Not cropland 121,677 

(2.7 %) 

2,094,747 

(47.6 %) 

94.5 % 

Accuracy 94.4 % 94.4 % 94.4 % 

 

Table 2.  Error matrix for agreement of individual volunteer ratings with the majority 

classification of all volunteers for images in the Cropland Capture game.  This matrix does not 

include individual ratings of ‘maybe’ or images for which the vote was tied between ‘cropland’ 

and ‘non-cropland.’ 

 

 Across contributors, ratings showed very little bias toward either cropland or non-

cropland (Figure 2, Table 2).  The rates of correctly identifying cropland and non-cropland were 

nearly identical (Table 2).  User’s and producer’s accuracies were virtually identical for both 

image types; all values fell between 94.3 and 94.5 % (Table 2).  However, many individual 

volunteers showed some bias toward cropland or non-cropland. Those with very many images 

rated showed both lower bias and higher overall accuracy (Figure 2; note the concentration of 

large circles in the upper right corner of the figure).  Among volunteers who rated fewer images, 

biases were more strongly exhibited (Figure 2).   

 



 

Figure 2.  The relationship between volunteers’ rates of correct identification of cropland and 

non-cropland.  The axes represent the proportion of images identified as ‘cropland’ that the 

majority classified as ‘cropland’ (x) and the same metric for ‘non-cropland’ ratings (y).  Each 

circle corresponds to an individual volunteer and its diameter indicates the total number of 

images rated.  The diagonal line is a 1:1 line indicating equal rates of cropland and non-

cropland identification. 
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 Nearly all volunteers showed greater self-agreement than majority-agreement (Figure 3).    

Even so, there was a strong positive relationship between these variables, with volunteers who 

are more self-consistent showing greater majority-agreement (Figure 3; major-axis regression; 

p<.0001; R2=.634).  Volunteer self-agreement increased with use of the ‘maybe’ response 

(Figure 4).  This trend was seen regardless of whether we used the raw variables (p<.0001, 

R2=.0864) or log-transformations of the variables (p<.0001, R2=.0362).   

 

  

Figure 3.  The relationship between volunteers’ self-agreement rate as a function of their 

majority-agreement rate in the Cropland Capture game.  Each point corresponds to a single 

volunteer.  Only volunteers who have rated more than 1000 images are included in this figure.  

The solid line is a major axis regression which treats variables equally, rather than assuming all 

error is in the dependent variable.  Circle size is proportional to number of images rated by a 
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volunteer.  The 1:1 line shows where self-agreement rate equals majority-agreement rate. 

 

  

Figure 4.  Volunteer agreement with their own previous ratings of the same image as a function 

of their willingness to admit uncertainty about presence of cropland in an image (maybe rate) in 

the Cropland Capture game.  Each point corresponds to a single volunteer and circle size is 

proportional to the total number of images rated.  Only those who rated more than 1000 images 

are included in this figure.  The straight line is a major axis regression which treats variables 

equally, rather than assuming all error is in the dependent variable.  The curved line is a major 

axis regression with the maybe rate log transformed.  Because it was difficult to meet the 

assumptions of regression, both methods were applied, giving qualitatively similar results that 

were statistically significant in both cases (see main text).   

 

 The total number of images rated by a volunteer shows a complex relationship with 
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rating quality.  Volunteers’ median rate of majority-agreement increases significantly with total 

images rated in the game (quantile regression with τ=.5; p<.0001, ρ=.65; Figure 5; note that ‘τ’ is 

the quantile level of the regression and that ‘ρ’ is a measure of goodness of fit, analogous to R2 

in ordinary least squares regression).  However, among top performing volunteers, this 

relationship is reversed (quantile regression with τ=.9; p=.0005, ρ=.93; Figure 5).  When only 

contributors with substantial experience (>1000 images rated) were considered, some of these 

relationships changed considerably.  Median volunteers still showed improved majority-

agreement rate as images rated increased (p<.0001, ρ=.05), but the slope of 90th percentile 

volunteers became significantly positive (p=.0002; ρ=.09).   

 

  

Figure 5.  Volunteer agreement with the majority-based classification of images as a function of 

total images rated in the Cropland Capture game.  Each point corresponds to a single volunteer.  

The upward-sloping line is a median (50th percentile) quantile regression, and the downward-
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sloping line a 90th percentile quantile regression. Both slopes differ significantly from zero (see 

main text). 

 

 Volunteer self-agreement rate showed similar patterns to majority-agreement rate with 

increasing experience (Figure 6).  Because volunteers received only occasional repeat images 

(to reduce the likelihood of them remembering having seen it before), this calculation was only 

possible for contributors who performed large numbers of ratings.  As above, we used a 

minimum of 1000 ratings as the cutoff.  In contrast to majority-agreement rate, the median 

user’s self-agreement rate decreased slightly but non-significantly with experience (p=.728). 

The top volunteers (90th percentile of self-agreement rate) showed a more strongly negative 

trend toward  less self-agreement with increasing experience (p=.018, ρ=.019). Only the lowest 

ranking contributors (10th percentile of self-agreement rate) showed an increase in self-

agreement rate with experience (p=.0015, ρ=.014). More direct evidence for volunteer learning 

was provided by the directional analysis of self-contradictions.  Overall, 54.7% of changed 

ratings between the first and second viewing of an image were in the direction of agreement 

with the majority classification and 45.3% were in the opposite direction.  This trend is 

statistically strong (binomial test, p<.0001).   

 



 

Figure 6.  Volunteer rate of self-agreement on repeatedly rated images as a function of total 

number of images rated in the Cropland Capture game.  Each point corresponds to a single 

volunteer.  Only volunteers who have rated more than 1000 images are included in this figure. 

The lines represent regressions through different quantiles of the distribution. The slopes of the 

90th and 10th percentile lines, but not the 50th percentile line, differ significantly from zero (see 

main text).  

 

 Among volunteers who rated more than 15 images that were validated by experts, 

expert-agreement rate ranged from 5% to 93%.  This value was consistently less than the 

majority-agreement rate.  Each volunteer disagreed with the experts more than with the majority 

classification, typically by a very wide margin (Figure 7).  However, there was still a positive 

association between volunteers’ majority-- and expert-agreement rates, although with little 
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predictive power (logit-transformed major axis regression, p=.001, R2=.113).  The rate of 

disagreeing with one’s previous ratings of the same image also underestimated expert-validated 

accuracy rates; all volunteers disagreed with experts more than with themselves, and in nearly 

all cases this discrepancy was large. 

 

 

Figure 7.  The relationship between the majority-agreement rate and expert-agreement rate of 

volunteers in the Cropland Capture game.  Each point represents a single volunteer who rated 

at >15 images that were also classified by experts. The solid line is a 1:1 line, showing that all 

volunteers agreed with the majority classification more often than with experts.  The dashed line 

shows the correlation between the two variables using major axis regression.  The line is not 

straight because expert agreement rate was logit transformed before regression to avoid 

predictions beyond the possible range of [0,1].   
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Discussion 

This paper has compared agreement with experts, agreement the majority of other 

volunteers and consistency in repeated ratings of an image as metrics to compare the quality of 

performance on a simple land-cover identification task.  While all of these metrics are somewhat 

correlated with one another, they give insight into different facets of volunteers’ performance, a 

subject elaborated on below.  We have shown that many volunteers exhibit a clear and 

quantifiable bias in their ratings, and are more likely to correctly identify ‘cropland’ than ‘non-

cropland’ or vice-versa.  We have also demonstrated limited effects of improved quality of 

responses with increased game play.  Finally, this work has shown that majority-agreement and 

self-agreement are not fully able to substitute for experts to validate the quality of crowdsourced 

tasks.  In the process, we have uncovered certain design habits that promote easier 

downstream extraction of information from games for the solicitation of VGI.  All of this 

information has important implications for the design of serious games and the choice of metrics 

used to evaluate and compensate their volunteers. 

 

The independence of volunteers’ true positive and true negative rates has 

consequences for devising schemes for volunteer scoring and compensation.  We don’t provide 

specific guidance here as this is a decision that depends on the goals of a game and the relative 

benefit of correct answers and cost of incorrect answers.  However, it is worth keeping in mind 

that because individuals can show very different patterns of these errors, not taking into account 

their strengths and weaknesses may inadvertently lead to less efficient accrual of the 

information that game managers seek.  This would waste the time of volunteers, expert 

validators and game managers. 

 

That the direction of the relationship between the number of images rated to majority-

agreement rate changes with quantile suggests that more than one process governs this 



relationship.  Our interpretation is that volunteers do learn to better identify cropland with 

experience, as shown by the analysis of switched responses when re-rating images.  However 

in order to rate a really big number of images, it is not possible to spend much time on individual 

images.  Therefore, the most active raters can be expected to have a somewhat higher error 

rate than the best intermediate-experience volunteers.  However, this conclusion should be 

drawn with caution as these patterns seem to weaken when only contributors who have rated 

>1000 images are included.   

 

At first glance, the comparison of the different metrics of volunteer quality suggests that 

volunteers are highly effective at rating photographs and satellite imagery for the presence of 

cropland.  Consistency was high relative both individual volunteers’ previous ratings of the same 

images, and with other volunteers’ ratings of those images.  Further, self-agreement rate and 

majority-agreement rate are positively correlated.  The subtle differences between these two 

metrics seem to indicate that volunteers are generating meaningful data. Self-agreement rate 

can be interpreted in two ways.  It could be seen as a direct indicator of undesirable sloppiness, 

or at least indecisiveness.  It could also be an indicator of learning; in reality, it is likely a 

combination of both.  As an indicator of learning, we found direct evidence – disagreement with 

one’s previous ratings of an image shows a significant tendency toward agreement with the 

majority classification.  In spite of the statistical strength of this relationship, the split between 

switching to and from agreement with the majority classification was less than 10 percentage 

points (54.7% vs. 45.3%). That there is much more noise than signal in this shift, suggest that 

self-contradiction can be useful as a measurement of sloppiness or indecisiveness, in spite of 

the toward-crowd bias.  Self-agreement is an assessment of volunteer quality that can be made 

independently of any knowledge of the correctness of responses, but the rate of agreement with 

the majority classification is not a judgment made in a vacuum; it depends on the responses of 

many other volunteers.  Taken together, the correlation among these two metrics shows that 



volunteers who are careful (i.e. rarely contradict their previous answers to repeated images) are 

also more likely to agree with the majority classification. That volunteers who are unequivocally 

better in one respect (they are self-consistent) are also in greater agreement with the majority 

classification suggests that the crowd is providing useful information. 

 

Unfortunately, results from expert validation temper this apparent good news.  In spite of 

self-consistent volunteers’ also agreeing better with majority classifications of images, few 

volunteers exhibited anything close to the level of agreement with experts that they shared with 

the other volunteers in the game (Figure 7).  This shows that there is a collective behavior of the 

crowd that, in spite of being shared among many volunteers, is at odds with the explicit goal of 

the game.  The incoherence of results derived in these two ways suggests that extracting a 

reliable signal from crowdsourced data without guidance from expert validations is not possible 

for this type of task.  This is not a difficult problem to surmount, but it does mean that a certain 

degree of effort is required to plan campaigns so that the crowd is channeled into the desired 

way of rating images. 

 

The need for expert validations calls to attention another problem that arises when many 

raters evaluate a huge number of tasks.  The problem is that in some situations, it is impossible 

to choose validation images at the end of a competition such that most volunteers have looked 

at enough of them for volunteer-specific comparison with expert ratings.  In our study, only 194 

of the 2,783 participants performed at least 15 ratings of images that were chosen for validation 

by experts (shown in Figure 7).  While these images were selected to include a range of 

difficulties rather than to maximize the number of expert-validated images rated by volunteers, 

selecting for the latter goal would not have greatly increased the overlap between expert- and 

volunteer-viewed images.  When tasks from a very large pool are more or less randomly 

assigned to a much smaller number of raters, it is inevitable that the number of validated tasks 



necessary to robustly compare volunteers is prohibitively large.  The solution is having a pre-

defined set of tasks that are assigned to most or all volunteers.  While it may seem pointless to 

have a group of individual images that are each rated by thousands of different people, this 

pattern of play is necessary to robustly evaluate contributor quality, and also simplifies 

implementing the other metrics discussed in this paper. 
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