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PREFACE

The problem of computer linkage of different mathematical
models into a whole system in order to investigate their joint
behavior with common criterion and constraints seems to be taken
more and more into consideration.

This paper presents a description of a particular approach
which might be referred to as 'distributed modeling'. The main

part of this paper was written by the author during his stay at
ITASA in 1978.
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SUMMARY

Many works on analyzing the behavior of complex systems
are based on building large-scale integrated models and sequen-
tials using decomposition and aggregation procedures. In this
paper an approach is described which permits to investigate a
set of linked subsystems without explicitly building any in-
tegrated model.

This approach based on the 'smooth' version of the Sequen-
tial Unconstrained Minimization Techniques (SUMT) can be con-
sidered from a mathematical point of view as a realization of
the 'general decomposition scheme' (Orchard-Hays 1968).

Section 1 describes the statement of the problem; Section 2
gives a general description of the idea of the SUMT; Section 3
contains the conditions of applicability of the approach; and
in Section 4 we give a short description of the practical real-
ization and computer testing of this method for a case of linking
two submodels of a health care systemn.






AN APPROACH TO DISTRIBUTED MODELING

A. Umnov

INTRODUCTION

Investigating an object of a complex structure, it is
reasonable at the first stage of systems analysis to consider
this object as a set of its independent parts. This way we can
build mathematical models of all these parts at a sufficiently
high level of detail. At the second stage, we have to take into
consideration all interactions between the subsystem when they

operate under common criteria and constraints.

All this raises the necessity of developing procedures,
both methodological and computational, which give us the possi-
bility of linking independent submodels into a whole system.
There are two main approaches for solving this problem: the
first is to design a large-scale integrated mathematical model
describing the behavior of the system as a whole and consequent
decomposition of the model. This method is very convenient from
a computer point of view, as far as it needs comparatively low
hard- and software resources. On the other hand, appropriate
transformations of all files of the submodels into a common form
are to be made in this approach. Besides, it is sometimes dif-
ficult to trace the process of optimization which can give in-

formation of a significant practical value.
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The second approach consists of using one or several
analysts or decision makers to organize in;eractions between
submodels. This method permits us to link mathematical models
without any file transformations, but it is practically im-
possible to use optimization procedures due to large time re-
quired per one iteration. Therefore it seems very desirable
to develop an approach permitting linkage of different submodels
in a direct way, without building a large-scale model which is
to be partitioned later. We would also like this approach to
enable linkage of submodels prepared independently by different
groups of specialists and to give us the possibility of using
different mathematical methods for solving the subproblems,
perhaps on different computers. Briefly speaking, this approach
must consider all submodels to be linked as 'black boxes' and
assumes the possibility of using only their input and output
data. The discussion of the approaches to the linkage of models
and different economic applications are given in Bagrinovskii
(1977). It should be noted that the second approach (which is
generally more adequate to the 'linkage' problem) has been in-
vestigated in less detail than the first approach (usually

associated with the decomposition of the problem.)

The purpose of this paper is to describe a scheme of real-
ization of the second approach and to discuss some experience

of its application.

Statement of the Problem

The easiest way to link different submodels into a whole
system consists of using special variables to formalize inter-
relations between submodels. These variables called further
'common variables' or 'coupling variables' will be denoted as
V in contrast to 'inner variables' of the submodels which are

denoted as X.

There are different ways of introducing these 'common var-
iables' but we will now consider the general case omitting some
details which will be discussed in other sections. Let us
assume that each of the submodels can be formulated in terms of

'inner' variables as following



minimize with respect to Xk Fk(xk) '
. x _.nK X, .k X
subject to X € & GS(X ) >0, s =1,m
k=1,N ,

where N is the number of submodels to be linked.

. k k
It is important to emphasize that all functions F~ and Gg

are not known since we decided to consider the submodels as

'black boxes.'

After introducing 'common variables' in an appropriate way,

we have the following statement for each subproblem

minimize with respect to Xk Fk(xk,V) ’

k
subject to Xkez &h Gg(xk,v) >0, s=1,m;

where V is a vector of 'common variables', V & &L, and is fixed

in (1).

The second step of linking these submodels consists in form-
alizing relations between them. Let these relations be given as

a set of constraints on 'common variables'

R,(V) >0 , s =1,M ,

where M is the number of these constraints.

Finally, we have to formulate the common criterion of oper-
ating the whole system of submodels to be linked. There are
several reasons why we should use this criterion as a linear
combination of criteria from different submodels, subject to
all weight coefficients of this combination which are nonnegative.
Some of the foundations of this choice will be discussed later

on.

Therefore, we have the following system of relations to find
optimal values of 'inner variables' Xk and 'common variables' V:
k=N

k
minimize with respect to xk and V AkF (Xk,V)
k=1



(2)
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subject to GE(Xk,V) >0 , s

RS(V) iO ? s = 1,M 7

where A, are nonnegative weight coefficients.

Theoretically, a solution of this problem gives us all the
desired data. But in the first place, it seems to be impossible
to solve it, since Fk and Gg are not anwn to us and, second
this problem is a very large one. In order to overcome these
difficulties it is advisable to employ the software of the sub-
models which provides us with optimal values of 'inner variables

for fixed and perhaps nonoptimal values of 'common variables'.

Let X*k(V) be a solution of problem (1), subject to the
vector of 'common variables' being fixed. Substituting this
solution for each of the subproblems (1) to replacexk in (2),

we get a new problem

k=N Kk k
minimize with respect to V. ] A F (X*¥(V),V)
k=1
subject to V € D and (3)
R,(V) >0 , s =1,M ,

where D is the domain of definition of functions X*k(V)

Two explanations are necessary for the statement of problem
(3) because it is the basic problem in our consideration. First,
we have to take into account the domain of definition D, as the
subproblems (1) do not have a feasible solution for any vector
of 'common variables'. Secondly, 'inner constraints’ Gz > 0 of
(1) are omitted in (3) because they are satisfied by X*k(V) by
definition. We shall further call problem (3) a 'master problem'.

By some natural assumptions on conditions of the subproblems

) * * * _
we can find the optimal wvalues of Xk as X k(V ), where V is the
solution of the 'master problem' (3). This gives us the possi-

k of the submodels independently

*
bility of finding solutions X
after solving (3), which is a more preferable problem than (2)

because of its less dimension. But from another point of view,
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there are two difficulties peculiar to the 'master problem': to
solve (3) we have to know the domain of the definition D and the
explicit form of the functions X*k(V). It is unlikely that this
sort of data will be found in most practical cases and we have

to find an indirect way of solving the 'master problem'.

To surmount the difficulties mentioned above, we can take
into account the fact that any numerical algorithm for solving
a mathematical programming problem needs only some numerical data
associated with the current approximation of the solution, but
not the explicit form of the condition of the problem. In other
words, for operating these algorithms we must be able to calculate
only some numerical characteristics of functions X*k(V) such as

their values and maybe their derivatives, at some points V.

As to the domain of definition D, we can avoid the necessity
of explicitly building this set by using special procedures
checking the existence of X*k(V) at any given point V, or by
such kinds of algorithms which give the pseudo-solution of the
problem when it has no feasible points. Therefore, the scheme

of solving the whole problem can be formulated as following.

For some current point V in the space of 'common variables',
we find all the data needed for solving the 'master problem'.
It is likely that all the subproblems have to be solved for this

fixed V. We then change the values of the 'common variables'

according to the procedure of minimizing the common criterion
of the whole problem. Repeating these two steps we eventually
receive the optimal value of V. It is necessary to emphasize
that this scheme is also considered as a variant of a 'general

decomposition approach' described by W. Orchard-Hays (1968).

General Description of the Approach

There are many works in which 'master problems' are used
in different decompositional schemes (see, for example Fiacco
and McCormick 1968 and Geoffrion 1970). In these works problems
(1) and (3) are considered directly and that is the reason why
we can't apply the standard algorithms of 'smooth' optimization

to solve (3). The main difficulty preventing this is that
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functions X*k(V) are not differentiable with respect to V. It
makes us use special delicate methods of analyzing their proper-
ties if only problems (1) and (3) are considered in the form
given in the previous section, and provides the idea of using
nondifferentiable procedures of optimization to solve (3)

(Lemarechal 1978).

But there is a way in which we can make computer linkage of
different submodels on the basis of 'smooth' algorithms. The
idea consists of a preliminary transformation of the problems
(1) and (3) providing them with some desirable properties. This
transformation is offered to be made according to the Sequential
Unconstrained Minimization Techniques (SUMT), sometimes called

the Pénalty Functions Method as well.

This method (exactly speaking, its 'smooth exterior point'
version (Fiacco and McCormick 1968) consists of unconstrained
minimizations of some auxiliary function associated with the

mathematical programming problem to be solved.

Let Ek(xk,V,T) be this auxiliary function for the kth problem
(1), and ﬁk(V,T) be an extremal point of this function. Then,
under some natural assumptions, the following relation between
2% (v,T) and x*X(v) takes place

lim Rk(v,T) = X*k(V) , (4)
T++0

where T is a positive fixed parameter defining the degree of
penalty for violations of constraints. This means that the ex-
tremal point of this auxiliary function is the solution of the
problem (1) with perhaps some small error.

In the approach under consideration there are two reasons
why it is convenient to use the 'exterior point' version of the
SUMT. First, auxiliary functions for problem (1) will always
have an extremal point independent on whether the problem has a
feasible solution or not. Second, the 'smooth' version-of the
SUMT gives us the possibility to find all necessary data aésoci-
ated with ik(V,T) by using a well known implicit function theorem

(if, of course, all required derivatives exist.)



Let us choose the auxiliary function Ek in the following

form
k

S=m
Ek(Xk,V,T) = )\KFk(Xk,V) + ) P(G]s((xk,v),T) (5)

s=1

where the used penalty function P(A,T) is defined and has con-

tinuous partial derivatives of the second order for any T > 0

and any A, and it satisfies the following relation as well

lim P(A,T)
T>++0

0, for any A > 0
= (6)

+o, otherwise

An auxiliary function associated with the 'master problem'

{(3) can be chosen as

. k=N k ~k s=M
E(X(V,T),V,T) = [ A F (X (V,T),V) + } P(R_(V),T)
k=1 s=1
7
k=N s=mk k ~k )
+ I 1 P(e (XT(V,T),V),T) .
k=1 s=1

The double sum in this formula presents the penalty term
for violations of the domain of definition D.

After obvious transformations we see that

k=N

E(®(V,T),V,T) = wv,7) + | EX@Sv,7),v,T)  (8)
k=1
where
s=M
W(v,T) = 21P(Rs(v),T) .
Ss=

Expression (8) is of great importance as it presents the auxili-
ary function (7) as a sum of the auxiliary functions associated

with the problems (1) and a function W given in the explicit form.

Let V(T) be an extremal point of (7); then approximate values

of the 'inner variables' can be given as 0, .



Our first problem is to give the procedure of finding ¥V (T)
and, second, to consider the problem of evaluating V* and X*k.
The problem of accuracy will be discussed later, and the main
attention will now be paid to describing the data needed for
solving the 'master problem' (3) by minimizing the auxiliary

function (7).

By virtue of assumptions stated above, any standard scheme
of unconstrained optimization may be used for finding V. As a
rule, these schemes consist of building a sequence of points in
(1)
\%

the space of the 'common variables' , which converges to V

and is defined by the following recurrent eqguation

(1)

L DI € ) B , i=0,1,2,... (9)

where Z(l) is a direction of minimizing (7), and s is an appro-

priate stepsize along this direction. Hence, there are two
(i)

problems to be solved: how to find 2 and how to evaluate s.

In the first place, we shall consider the problem of building
the direction of minimization for the auxiliary function (7).
Doing this, we have to know the value, the gradient and perhaps
the hessian matrix of the function to be minimized. We shall
consider the case when all these data are needed in the chosen

scheme of optimization.

Let GRAD and Ve denote conventional gradient operators in the
spaces of 'common' and 'inner' variables respectivelv. In the same
2 . . . .

way, HESSIAN and Vx will be the hessian matrix with respect to

'common' and 'inner' variables.

It is very important to notice that all derivatives with
respect to V have to take into account both explicit and implicit
dependence of the function to be differentiated on 'common var-

iables.'

By the chain rule

k=N
+ ) H,_V E ,
k=1

—_ L
GRAD E = EV



where E' is a vector of the partial derivatives of E with respect

to V and Hiv is the conventional matrix of sensitivity of Xk by V.

Analogously,
k=N k=N
HESSIAN E = E! + ) g gXr 4 ) g v X
v XV XV Xvv X
k=1 k=1
k=N
k 2 _k, .k . t nk
* k£1Hxv(vxE (Hxv) + Exv) !

where E; is the matrix of second partial derivatives of E with

respect to V, and

E&i is L><nk - dimensional matrix of partial derivatives

of Ek with respect to Xk and V and, finally,
k

Hyvv is the matrix of sensitivity of the second order.

Both these formulas are valid for any Xk and V, but ﬁk(V,T)
are the minimum points of the auxiliary functions Ek. Therefore,

by virtue of the fact that Xk satisfies the following equation

vxEk(ik,v,T) = 0 , . (10)
we simply have

—_ ]
GRAD E = EV

Taking into consideration (10) and that the full derivative of

this equation with respect to V is

k 2.k nk o _
Hyy VB + ERo = 0 , (11)
we find
k=N "
HESSIAN E = E" + ) H_ _ E" > . (12)
v k=1 Xv Xv

To evaluate the quantity of information which is needed to

transmit from each of the submodels to the 'master problem',
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rewrite the expressions for GRAD and HESSIAN in new form

k=N
—_ ] ]
GRAD E = we o+ kz1 E,

and

k=N ¥ kK _.k

—_ n n n

HESSIAN E = W + k£1 (Ex” + H EX )

by substituting (8).
It i to verify that the matrices E“k + Hk' E“k' are

S easy y i v XV XV
symmetrical. Actually, if we multiply both sides of (11) by
k
Hxv we get

k .k _ _ _k 2 _k ,.k .t
HevEBxv = Hev Y% E (Hxv)

2_k

and, by virtue of the symmetry of VXE and E;k, we find the

desirable result.

Therefore, the vector Et' and the upper right half of the

. . k k k
" "
symmetrical matrix EV + Hvaxv

culated and transmitted by the submodels to the higher level of

are those which are to be cal-

the whole system. Besides, there is no necessity of operating
with any details of inner structure of the submodels to build
the recurrent term of minimizing a sequence at the level of the

'master problem.'

Let the number of components for the vector of 'common
variables' be used for joining the kth submodel and equal lk.
Then, considering that nk is the dimension of this very submodel,
we can show the calculation procedure of the matrix E;k +

Hk E"k

xv Exy @S following
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k .-k ' ' lk
/2 N /// RN \ //’ ™
‘ sz//

It means that using the considered approach is only worthwhile
if the dimensions of the subproblems are much greater than the
numbers of components of V, belonging to the same subproblems,

i.e.

It seems that this inequality may take place for many
practical problems and, hence, the approach given above can be

successfully used.

To complete the general description of this method it is
necessary to note that the procedure of choosing the length of
the step along the direction of minimization in the space of the
'common variables' s may be done according to any standard scheme

of one-dimensional optimization or searching.

Some foundations of the method are given in the Appendix.

Practical Realization and Computer Testing of the Approach

The approach described in the previous sections was imple-
mented by the author on IIASA's PDP/11 to investigate the inter-

actions of two small submodels of the Health Care Systems.

These submodels stated in the framework of DLP (Propoi 1976)
present the development of manpower and technical capacity of
the HCS. The first submodel describes the development of man-
power and consists of two groups of state variables: ‘'number of
specialists' and 'number of students'. The 'number of entered

students' (enrollments) and the 'number of invited specialists'
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(recruitments) are the control variables. The block-scheme for
a fixed time period and one for the specialization of this sub-

model is shown in Figure 1.

The second submodel describing the development of technical
capacity consists of three groups of 'state variables': 'hospital
capacitieS', 'dispensary capacities' and 'drug production's
capacities.' The 'increase of hospital capacities,' 'increase
of dispensary capacities,' 'increase of drug production's capac-
ities' and 'volume of drug import' are control variables. The
block-scheme of this model is given in Figure 2.

The problem was to find a common resource allocation between
these two submodels which is to be optimal in the sense of best
satisfaction of demands of the population in the medical care.

It means the criteria of operating these two submodels is to
minimize the absolute values of differences between demands and
current levels of supplying the population with all kinds of

medical care.

Following the approach described in the previous sections
we have to consider the common criterion of these submodels as
a sum of their independent criteria, subject to the constraint
which is the sum of common resources (limited and fixed for each
of the time periods.) This means that we have a two-component
vector of 'common variables', V4 equals the volume of resources
allocated for the 'manpower' submodel and V, equals the volume
of resources allocated for the submodel of 'technical capacities’'.
Both state and control variables are considered as 'inner vari-

ables' for these submodels.

The scheme of linking the submodels under consideration into

the whole system is shown in Figure 3.



-13-

DEMAND I(POPULATTION)

WASTAGE J

WASTAGE

‘WASTAGE

N

N

| FOREIGN

s ple

— T L

cialils t s

LOCAL F__LGRADUATED

PROCESS J

s tudenlt s

RESOURCES

(BUDGET)

Figure 1.

DEMAND (POPULATTI ON)

WASTAGE | WASTAGE
nosprr. | | ENCEE DISPEN. CREASE | DRUG INCREAS;
F HOSPIT. DISPEN. IMPORT | |PRODUCT. Kt{DRUG P,
ACITIES
ACIT. CAPRCIT. ACIT. | CAPACIT.| | DUCTION|
‘ i
_______ . ]‘

RESOURCES (BUDGET)

Figure 2.




-14-~

COMMON DEMANDS

1 / 2
* *
X* (V) X*°(V,)
MANPOWER SUBMODEL TECH. CAPACITIES SUBMODEL
N
Vi T v,

COMMON RESOURCES

Figure 3.

The computer implementation of this problem was made on
the 'smooth' version of the SUMT and the Newton-Raphson procedure.
In this method the direction of minimization of the auxiliary
function (7) is calculated by the following formula

21 - _(uess1an EY)) " GraD gt |

Considering the relatively small volume of the memory of the
computer PDP/11 being available, the compact scheme of combination
of the Newton-Raphson method and the conjugate gradient approach
was used for finding Z(i). This scheme was developed and tested
by A.G. Birukov at the Moscow Physical Technical Institute in
1974 (Birukov 1975).

Because it takes a lot of computational efforts to evaluate
the optimal stepsize along the direction of minimization, the
specific structure of the problem was taken into account to find
s. It was the minimum of the length of the Newton vector and s .
was used as a stepsize, where s was the length of the step when

only one nonactive constraint became active.

Two variants of the problem were solved for different initial
data. One was the initial level of satisfaction of the population
consisting of ten per cent of the demand and the other the level
equalling to 90 percent. The optimal resources allocation is
shown graphically in Figure 4.
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The difference in the results can be explained by the fact
that the delay time in the manpower subsystem is twice as much
than in another one. This means that we have to invest money
in the first place in the manpower subsystem if only the initial

level of the HCS is comparatively low.

Conclusions and Some Further Developments of the Approach

The presented approach permits us to link different models
into the whole system without explicitly building a large-scale
mathematical programming model. This approach is opposed, in a
methodological sense, to usual decomposition schemes, but is

rather close to them from a mathematical viewpoint.

The main advantage of the approach is that all submodels are
considered as 'black boxes' and therefore can be built by dif-
ferent groups of specialists on the base of different soft- and

hardware.

The solution which may be found in this scheme is optimal
in the sense of a new criterion which is a linear combination of
the submodel's criteria with some nonnegative weight coefficients.
It means that this approach can also be interpreted as a version
of the multi-criteria optimization when a point of the Pareto

set is a solution.

The approach allows different extensions and generalizations.
We mention only two of them. It would be of interest to explore
connections between linkage problems and multicriteria optimiza-
tion because in both cases a man-machine procedure is appropriate.
Second it is interesting to apply this approach to analysis of
dynamic multistage optimization problems considering each stage
as some local static optimization problems which are to be linked

when the whole planning horizon is considered.
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APPENDIX

In this appendix we shall study the conditions under which

the considered scheme can be used.

Foundation of the Approach

Let functions Fk, Gg, and R, be 'smooth' enough and that

problem (2) has an isolated local solution.

More accurately speaking, let functions Fk, Gg and Rs have
continuous partial derivatives of the second order and let there
be a system of points V* and X*k(k = 1,N) so that

Kvey>0 , s=Tm ; k=TN

k
Gg (X*

(13)
RS(V*) Z 0 14 s = 1IM 14

there is a system of nonnegative numbers pz and dq satisfying

the following relations

Pk x#%, vy = o ana X > o

. . k k

if and only if GS(X* LX) =0, (14)
q R (V¥) =0 and g > 0

if and only if RS(V*) = 0 for all s and k.
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Let U be the usual Lagrange function associated with the

problem (2), i.e.

_k
k=N X STk k..k

k
U= ] (AF X ,V) - ] p G (X",V)) -
k=1 K s=1 ° S

s=M |
L agR(v) . (15)

and at the point V¥, X*k we have VXU = 0 and VVU = 0,

For any nonzero vectors Av and Axk(k = 1,N) such that

t k _k,t k . k
(Av) "V Gy + ) (4xT) ViGs = 0, if pg > 0

and €
(AV) Vv RS =0 , 1if dg > 0 at the same point,

the following unequality takes place

k=N k=N

) 2uav+ 2 7 @antel uvaxX + 7 @ Eviuaxk s o
v Xv X
k=1 k=1
(16)
where
Vit] is the hessian matrix of U with respect to V,
2 . . . . k
thJ is the hessian matrix of U with respect to X',
and 2
2 . . 9°U
val] is the matrix, elements of which equal to ——
Bxkavi

then, by virtue of Theorem 4 [3] the point V* and X*k

(k = 1,N) is an isolated local solution of the problem (2).

Under assumptions given above the following theorems will
be valid.

THEOREM 1. X*k 18 an isolated local solution of the problem
(1) for fizxed V = V¥,

PROOF. We have to show that all conditions analogous to (13- 16)
are valid for the problem (1) at the point X~.

At first, we have by virtue of (13)
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Gz(x*k,v*) >0 , s =T,m .

It is possible to use the numbers pg defined in (14) as
Lagrange-multipliers associated with the problem (1), then
prel ¥, vy = 0
and

k

pk > 0 if and only if Gf (x+F

/V¥) = 0, for all s,k.

By virtue of the separability of U with respect to Xk we

have

where _k
Kk s=m

o = AP v - ] p

k
s=1 S

k ,Jk
Gs(X V)
1 2 N
Let Av and all Ax ,Ax",...,AXx Dbe equal to the zero vector
except Axk, and for any nonzero Axk from (16) we get that by

k . . .
(Axk)thGs = 0 when pg > 0, the following unequality is valid

(Axk)tViUkAxk = (Axk)tviumk >0 ,

and then all sufficient conditions of the optimality of X*k are
proved. Q.E.D.

By virtue of the assumptions given above and a new assump-
tion that all gradients of active constraints at X*k are line-
arly independent, we find from Theorem 6 [3] that functions x*k(V)
exist within nonempty vicinity of V¥ and have at this point
partial derivatives. It is necessary to notice that the exis-
tence of the matrix of sensitivity Hiv does not ensure the dif-
ferentiability of Xk*(V) at V*.

Now we are able to prove

THEOREM 2. The point V¥ is an isolated local solution of the
problem (3).
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PROOF. By (13) and Theorem 1 we have

Gk (x*¥ (v¥) ,v#) = S (x*F,v0) > 0,

and

Rg(V¥) >0 , s =1,M .
Further, ptGg(X*k(V*),V*)
GZ(X*k(V*),V*) = 0 and qSR(V*)
RS(V*) = 0.

0, pz > 0 if and only if

I

0, g4 > 0 if and only if

It means that nonnegative numbers pz and gy can be used as
Lagrange-multipliers associated with the problem (3).

Let
k

k=N s=m s=m
= k k
0= § O F @& w,v - ] pefex+Xv),v) - § qgr (V)

s s s's
k=1 s=1 s=1
be the Lagrange function for problem (3). By the chain rule and

Theorem 1 we have

_ k=N

v,U =V, U+ ) Ho VU
k=1

but granting (15), we find V,U = 0 at the point V*.

Finally, let Av be any vector satisfying the following

relations

(Av)tVVGg(X*k(V*),V*) = 0 if only pg >0

and

t _ .
(Av) VVRS(V*) =0 1if only qg > 0

at the point V¥*.

Then, by virtue of the chain rule
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2 — 2 - 2 k .
(Av)thUAv - (AV)tVVUAv + 2 k; (Av)thvUHvav
K=N
K £, .t 2. .k
+ k£1 (Hxv) (AV) V UH AV

Denoting Axk = HivAv we get

t_2 — t_2 t k
(Av) Vo UAV = (Av) Vo UAV + 2 kZ1 (Av) "V, UAx
k=N
+ 1 @ iua® .
k=1

. . k
From another hand, new vector of local variations Ax

satisfies the following relations

(Xk,V) =0 if only pz > 0

n =

kyt
(Ax™) VXG

Really,

kyto ok o_ togk yty <K _ ty <k _
(A7) "V, Gy = (av) "(Hy ) 'V .Go = (Av) V. GO =0 ,

by virtue of our assumption.

Hence, (Av)tviffAv > 0 and V¥ is an isolated local solution
of the 'master problem' (3). Q.E.D.

To finish the foundation of the approach we have to con-

sider the properties of the penalty function P(A,T).

Except for the conditions stated above, this function will
satisfy the following relations at any point from its domain of
definition

oP 7P

a <0 and 3.2

Then Theorem 10 [3] takes place and we have
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lim Y(T) = v* . (17)
T>+0

The possibility of using some of classical optimizational
procedures for minimizing (7) arises from Theorem 2 and the
assumptions about the existence of continuous partial derivatives

of the second order for Fk, Gg, and Rs'

The Problem of Accuracy

Since the 'smooth' version of the 'exterior point uncon-
strained minimization techniques' gives us only the approximate
solution of the problem to be solved, we have to consider the
problem or find the exact solution or, at least, reduce the error
of the approximation.

There are two aspects of the problem of accuracy in the
given approach. First, we have no troubles because the solutions
of (1) are approximate during the minimizational process of the
auxiliary function (7), as this process is an iterative one.
Second, we have to study the problem of approximation at the
final point of the algorithm used.

The simplest way to evaluate the exact solution of the
'master problem' is to use the relation (17) and standard Taylor
approximation of the function V(T).

Granting that

v(r + A7) = ¥(T) + NPQ% + o(T) ,
where

lim o%@?) =0 .

AT>0

Going over to the limit when AT » -T, we find
vk = ¥(T) - TV + o(T) (18)

It means that to eliminate the linear part of the error we have
to find the derivative 9&.
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Before going into detail of this procedure it is necessary
to notice that the assumptions being made in the previous sec-
tion guarantee the existence of the trajectory of local minima
of the SUMT and the validation of (18). Moreover, in [9] it is
shown that if we choose the penalty function P(A,T) as a function
of the single argument A/T then 9% will have a bounded limit
value by T » +0.

Taking into consideration that the function V(T) is im-

plicitly defined by the equation
v,EX(T,T),0,T) =0 (19)

and by virtue of the implicit function theorem we get

]8" ’

I\' = -
VT (HESSIAN E) VT

where HESSIAN E is given by (12) and &cT is the derivative of
the left part of (19) with respect to T.

As far as there are dependencies of v,Eon T both in

explicit and implicit ways we have

K1 xv T L. TRV
k=N k
k 2 _k 93X K
+ k§1 Hyv (Ve B7 37 + Eyp)

where

E;T is a vector of partial derivatives of E with respect

to VvV and T,

E;¥ are vectors of partial derivatives of Ek with respect

to Xk and T.

This formula can be rewritten as
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k=N k=N
k k k k
&n - En + 2 H E 1] 2 H V
vT vT k=1 xXv  XT k=1 XvVv X
k=N ~k t
90X 2.k, .k \t aK
+ k£1 T (VxE (Hxv) .+Exv) ’

but, by virtue of (10) and (11), we finally can find

" — " n
8vT = Eyp + k£1Hvaxv .

It is followed by the fact that 8;T can be calculated separately
by different submodels. In fact, we have

k wk
vaxT

vT vT ) )

k=N I
au = Wll + z (E n + H
k=1 VT
Now we have to consider the problem of finding X*k. Since
this point is a limit one for ﬁk(V,T) when T » +0, we can use

the Taylor approximation again.

R k
ﬁk(v+Av,T+AT) = &k(v,T) + %%T AT + (Hiv)tAV + o(AV,AT) |,
ﬁk
where %Tﬁ can be found by means of the implicit function theorem

from the equation (10).

Taking into consideration that AV = VéAT and going over to
the limit when AT - -T, we get
sk
k 5 3
(v,T) - T 3T T TH

X* = gK

i + o(T) . (20)

+a
v T
This also means that the correction of the approximate solutions

can be made independently by different submodels, but only after
finding 9& in the 'master problem.'

It can happen sometimes that one step of the procedure
(18-20) doesn't provide us with the desirable level of accuracy.
It is possible in this case to repeat all these calculations.
The conditions of the convergence of the process which can be

called 'iterative linear extrapolation' are given in [9].
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