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ABSTRACT

It has become more and more important for some industries
to have an efficient program for their long range activities.
Such a program usually means a production, distribution, and
inventory plan of multicommodity over a multiperiod range. The
network flow model is a standard way to represent the problem.
Recent advances in the computational aspect of the generalized
network (Glover et al. 1978:24, 1209-1220) gives us an indication
of broader areas of application. However, the real world imposes
complicated constraints upon us which can not be represented
in the network models, not even in generalized network models.

In a previous paper (Tone 1977a:20, 77-93), the author
tried a decomposition of network type constraints and non-
network type constraints (called pattern constraints) by
using Benders' partitioning procedure (Benders 1962:4,
238-252) . The computational experiments show that the de-
composition technique works well.

In this paper, the author develops a method to handle the
multiperiod problem, where the problems in each period are
coupled with the succeeding one by the existence of the inventory
activities. Our system is doubly decomposable; by the existence
of the pattern constraints and by inventory activities. The
algorithm consists of two parts, one for solving the network
flow problem in each period and the other for solving the
pattern and coupling constraints which may be called a master
problem. Finite convergence is guaranteed.
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MULTISTAGE BENDERS' DECOMPOSITION
APPLIED TO MULTIPERIOD, MULTICOMMODITY
PRODUCTION, DISTRIBUTION AND

INVENTORY SYSTEM

K. Tone

NETWORK REPRESENTATION OF THE MODEL

The general diagram os the model is shown in Figure 1.1,
which has n period horizons, connected by the inventory activities.
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Figure 1.1 . General model.



In each period, the flow of materials is represented by
the network model which .includes supply of raw materials, produc-
tion, and distribution of products. There are seasonal variations
in the supply of raw materials and the demands for final products.
We should take into account the variety of products and the
mutual dependency between different products due to the ingredients
ratio of raw materials and the characteristics of the processing
units. Also, the safety stock level and the maximum and minimum
level of production are important matters to be considered.

The objective of our model is the minimization of the total
cost which includes the costs of raw materials, operation of
processing units, distribution of products, and inventory.

Separation of the Network Flow Ccnstraints

In addition to the usual network flow constraints, there
exist several "pattern flow" constraints which destroy the net-
work flow structure of the system and make it difficult to
solve the whole system by the usual network flow algorithms.
Some examples are as follows.

"And" constraint. In Figure 2.1, the ratio of amounts of
product 1 and product 2 is determined by the characteristics
of the processing units and raw materials. We cannot have one
product independent of the other.

material

Figure 2.1 Pattern flow.

In the network model including such processing units, the
flow on the arc (1, 2) must be divided into the flows on its
succeeding arcs (2, 3) and (2, 4) in proportion to the given
ratio, for example, 0.7:0.3. Then we have the pattern constraint

0.3x2’3 = 0.7x2,u .



"Either Or" constraint. Either product 1 or product 2
must be processed in the unit. 1In the corresponding network
model, the flow x1a? cannot be divided and must go through the

arc (2, 3) or (2, as a whole. This is an example of combina-
torial pattern flows.

Multicommodity case. There are situations where a multi-
commodity flow model is different from a single-commodity one
only in the existence of several arcs whose capacities are
shared by the multicommodity flows. In such cases, it may

be possible to transform the former into the latter with pattern
constraints.

For example, in Figure 2.2, if the sum of inventories of
product 1 and product 2 is limited by the capacity of the
warehouse, we introduce a constraint such as

+ <
X, X, < ¢

where x, and xp are inventory of product 1 and 2, and c is the
warehouse capacity.
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Figure 2.2 1Inventory.

Most of the multicommodity constraints can be transformed

into a single-commodity flow madel which obeys pattern constraints,

by a technique similar to the above and by the skillful intro-
duction of artificial arcs. The above mentioned are rather
simple examples of pattern constraints. It should be noted
that if all the pattern constraints and cost structures are
linear, our method is a dual version of the Dantzig-Wolfe
decomposition method.



FORMULATION

Notations used:

t: period t =1, 2,..., n,

Xt: the vector of flows on the ordinary arcs in the
period t, i.e., concerning only flow conservation
and capacity constraints,

Vi the vector of flows concerning the pattern con-
straints in period t,

2.t the vector of the inventory flows from period t
to period t + 1. 2zg and zp,q are given,

Ny, Fr, G¢: the node-arc incidence matrices with respect to
Xts Ytr and z¢ in that order
Ct: the cost vector of xg,
fr(yg): the cost of yy,
gg(z¢): the cost of z¢, in many cases, linear with respect
to the elements of zy,

bg: the supply and demand vector corresponding to the
nodes, in period t. The elements of by are
positive, negative, or zero in accordance with
the supply node, demand node or intermediate node,

St: the set of yt, satisfying given pattern constraints,

Ty: the set of z;, satisfying given pattern constraints,

if any.
We can now formulate the problem as follows:

(p1]

Minimize

I~

{ctxt + ft(yt) + gt(zt)} ' (3.1)

t=1

subject to:

node equations

N,x, + F

£X¢ e *

Gt—1zt—1 + Gtzt = bt ’ (3.2)
capacity constraints

0< x <a, |, (3.3)



pattern constraints

Y. €85, o+ 2z, €T, . (3.4)

Figure 3.1 shows the structure of the node equations (3.2)
which have the feature of decomposition.

X1 Y‘] ZO Z1
=|b
Mol B ox, v, Goq | G1 | 22 1
=|b
N2 F2J Gz G2 2
S -
\ —
N G23 b3
N Z__ .
N \ _‘n__'l_j .
N x Y \ Gn—1 Zn .
n n A
G G_|=|b
Nn F n-1n| n n

Figure 3.1 Structure of the model.

Algorithm Based on Benders' Decomposition

Step 0. Initialization. For a given set of (y., zi)
(t = 1,..., n) satisfying pattern constraints i.e. ¥ € S¢

and Et € Ty (t = 1,...,n), we consider the following network
flow problem.

[P2]
Minimize

n — —

tz1{ctxt + fe(ye) + g (z)) (4.1)
subject to

Nxg = by = Fe¥e = Gpoq,e2e-1 = SeZ¢ v (4.2)

(t=1,..., n)



0 < X, < ag . (t =1,...,n) . (4.3)

The dual problem of [P2] is as follows:

[P3]
Maximize
n T _ T
-Fy - z - 4
t£1 fug by = Fe¥e = Gpoq,¢2e-1 7~ Ge2e) ¥ Vede) o (801
subject to
uiN, + v, > c (t = 1 n) (4.5)
t't t - "t et '
ve 20, (4.6)

where u_, and v, are the dual variables corresponding to (4.2)
and (U.E), respectively. Note that [P3] is decomposed with
respect to t (t = 1,..., n). We denote the decomposed problem
by [P3]¢.

Step 1. Solving the decomposed problems. Solve [P3]. The
dual of [P3] is the Mimimum cost network flow problem [P2].
Therefore, we can solve it quickly.

(1) TIf [P3] is infeasible, then the original problem [P1]
is unbounded below or infeasible. Stop.

Otherwise,
(2) if [P3] has an optimal solution (Et, ve) (k= 1,..., n),
let the sets V and W be
V={(Et, ‘—’—t)}(t=1’...’ n) ’
W=4g

Go to Step 2.

(3) If [P3] is unbounded upper, then some of the [P3]
must also be unbounded upper. Let them be [P3]k1""’ [PB]kQ

and let the direction vector of the unboundedness be (1

VL)
(L=1,..., m) where 2 + m = n. ki' ki



Let

<
]

el
<

and
W = {(ﬁk_, Vi VI, ).
i i
Go to Step 2.

Step 2. Solving the master problem. Solve the following
minimizing problem with respect to {y.f, {z .} and to:

[P4]
Minimize t0

subject to

Gz (by = Fe¥y = GeqeZeq ~ GeZy)
- (4.7)
~T — —
1 1 1
ar (b, - F v, = G z -Gz ) + 9T a, < 0
t, ‘ot tit t-1t%t-1 tt t. %% =
t 1 (4.8)

(v@, , 9, ) €W,
i i
t‘0 > -M (M is a sufficiently large positive number) (4.9)

Y € St ' Zy S T, - (4.10)

(1) If [PU4] is infeasible, then the original problem [P1]
is infeasible. Stop.

(2) Otherwise, let an optimal solution be (EO, §t’ z.) ,
(t=1,..., n). The element of V whose corresponding consEraints
do not contribute to determine ﬁo, is to be removed from set V.
Go to Step 3.




[P5]
Maximize
n T . R
Yo T t£1{(ut(bt R ¥R = P PR R
(4.11)
~ T ~ Fa)
Gezy - voag + f(yy) + gt(zt)} /
subject to
Tn, + > - = 1
u Ny ve > ¢ (t=1,..., n) , (4.12)
Vt > 0 ’ (t=1,..., n). (4.13)

[P5] is again composed of the separable problem [P5]
(t=1,..., n).

' (1) If [P5] has an optimal solution (Gt, Gt), (t=1,...,n)
with the objective function value QO’ then check the equality:

t,. =@ . (4.714)

(1la) If equality (4.14) holds, then {y Zy} is an optimal
solution of the origianl problem [P1], and we can have the optimal
{8} as the dual solution of [P5]¢. Stop.

(1b) Otherwise, if

~

£g > Wy (4.15)

then add the vertices (G¢, ¥¢) (£ =1, ..
back to Step 2.

., n) to set V. Go

(2) If [P5] is unbounded upper, some of [P5]t must also

be unbounded upper. Let them be [P5] .oy [PS]k2 and let
the direction vector of the unboundedness be (Qp; ., Oh )
(i=1,..., 2). The remaining [P5]{, if any, have thelr optimal

solution ﬁhl hl) i=1,..., m) where £ + m = n.



Let

V=vVU (@, v}
1 1

and

W W U {(ﬁk., Ok,)}
1 1

Go back to Step 2.
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