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We derive functional responses under the assumption that predators and prey are

engaged in a space race in which prey avoid patches with many predators and

predators avoid patches with few or no prey. The resulting functional response

models have a simple structure and include functions describing how the emigra-

tion of prey and predators depend on interspecific densities. As such, they provide

a link between dispersal behaviours and community dynamics. The derived func-

tional response is general but is here modelled in accordance with empirically

documented emigration responses. We find that the prey emigration response to

predators has stabilizing effects similar to that of the DeAngelis-Beddington func-

tional response, and that the predator emigration response to prey has destabilizing

effects similar to that of the Holling type II response. A stability criterion describ-

ing the net effect of the two emigration responses on a Lotka-Volterra predator-

prey system is presented. The winner of the space race, i.e., whether predators

or prey are favoured, is determined by the relationship between the slopes of the

species’ emigration responses. It is predicted that predators win the space race in

poor habitats, where predator and prey densities are low, and that prey are more

successful in richer habitats.
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dynamics
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INTRODUCTION

Functional responses are essential components of dynamic food-web models, de-

scribing the rates at which prey are consumed by predators. Classical functional

responses describe the population-level consumption rates emerging from the be-

haviours of randomly moving predators foraging in evenly or randomly distributed

prey populations [1, 2]. These assumptions are rarely fulfilled in natural systems

because predators and prey typically have clumped spatial distributions [3, 4, 5]

that are spatially correlated as as a consequence of density-dependent processes

such as birth, death and dispersal and exogenous features such as physical habi-

tat structures [4]. To better describe predator-prey interactions, it is important to

elucidate relationships between spatial geometries of food-webs, underlying pro-

cesses and corresponding non-linearities in birth and death rates [6, 7, 8].

A common observation among mobile organisms which select habitats in re-

sponse to the densities of predators, competitors and prey is that prey avoid predator-

rich areas while predators prefer prey-rich areas [9, 10, 11, 12]. This conflict of

interest leads to a spatial game that has been termed a space race [13]. Space

races between predators and prey are dominant drivers of small scale spatial dis-

tributions [14], and have significant effects on predator-prey encounter rates [15].

Although the importance of space races are widely recognized, it remains unclear

how they affect functional responses. Studies on how functional responses change

in spatial settings have investigated specific non-random spatial distributions of

predators or prey [e.g., 16, 17] or the effects of other movement behaviours such

as refuge use by prey [18, 19, 20], central-place foraging [3, 21], or aggrega-

tion of predators in areas of high resource density [17, 22, 23]. Many of these

mechanisms produce non-linearities in consumption rates similar to those of the

well-known Holling and DeAngelis-Beddington responses.

In this paper we investigate the relationship between consumption rates and

the densities of predators and prey that are engaged in a space race. This relation-

ship is governed by the “within-community” spatial structure generated by space

race processes. The space race considered here is fairly simple in the sense that

it concerns only movements in response to densities of heterospecifics, and do

not involve reactions to conspecifics, the prey’s resources, or other environmen-

tal factors. Our analyses are based on an approximation of the spatial covariance

between predators and prey, which was derived in [15]. We show how empirically-

documented emigration responses give rise to a new non-linear functional re-

sponse which we compare with the Holling type II and DeAngelis-Beddington

responses. Furthermore, we give analytical conditions under which the stabilis-
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ing/destabilising influences of these classical functional responses coincide with

our new functional response. Additionally, we derive a simple criterion which

determines the winner of the space race between prey and predator.

MODEL DESCRIPTION

We consider a predatory species and a prey species which are distributed among

and moving between a large number of patches that are equal in all features except

for the numbers of predators and prey. To account for the intrinsically random

nature of ecological interactions, we assume that the number of individuals in

each patch is small and finite. Here and throughout, we write Xn and Xp for the

actual numbers of prey and predators in a patch, and N = 〈Xn〉 and P = 〈Xp〉 for

the corresponding average (expected) numbers. The former are random variables,

taking any integer values (xn and xp, respectively), while the latter are customary

population densities (i.e., the number of individuals averaged over all patches).

The number of individuals in a patch changes over time due to births, deaths and

interpatch dispersal.

We assume that individuals in any given patch have information about the

number of predators or prey within that patch, and that they use this information

to varying degrees when deciding whether to leave or stay. The rate at which

a predator (prey) individual leaves a patch is thus a function of the number of

prey (predators) in that patch (figure 1). We denote by Ep (Xn) and En (Xp) the

predator’s and prey’s respective emigration-rate functions.

Movements associated with predator avoidance and prey search are daily ac-

tivities for most mobile organisms. We can therefore assume that dispersal events

take place much more often than births and deaths, which enables separation of

timescales. That is to say, we can assume that a steady state distribution of preda-

tors and prey is reached in the time period between successive birth or mortality

events. Reactive movement thus generates a distribution of individuals among

patches, D(xn, xp, t), in which all features except the average numbers of preda-

tors and prey depend exclusively on dispersal processes.

We assume that the rate at which predators encounter prey within a patch is

governed by the law of mass action, G(Xn,Xp) = αeXnXp, where αe is the

corresponding per capita encounter rate. If prey and predators are randomly dis-

tributed among patches, the population-level encounter rate would be αeNP . In

the following section we show how density-dependent movements and the result-

ing spatial correlations between predator and prey alter the rate of predator-prey
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encounters and thus the functional response.

EMERGENT POPULATION-LEVEL ENCOUNTER RATES

The density-dependent (state-dependent) emigration processes given by En (Xp)
and Ep (Xn) give rise to a population-level encounter rate

g(N ,P ) = αeNP (1 + C(N ,P )) , (1)

where C(N ,P ) = cov(Xn,Xp)/(NP ) is a standardised covariance that we refer

to as the per capita covariance and which corrects the “well-mixed” encounter rate

for density-dependent movements [electronic supplementary material; see also

24, 25, 15]. Dividing equation (1) by P gives the rate at which individual predators

encounter prey, which is conventionally referred to as the “encounter rate”.

We can hope to find an exact analytical expression for C(N ,P ) only in cases

where an analytical expression for the distribution D(xn, xp, t) is achievable. An

approximation of the per capita covariance in the form

C(N ,P ) ≈ −E ′
n (P ) + E ′

p (N)

En (P ) + Ep (N)
, (2)

was derived by [15], where En (P ) and Ep (N) are the contributions to the population-

level covariance from the microscopic emigration processes En (Xp) and Ep (Xn),
and where prime denotes the derivative with respect to the corresponding depen-

dent variable. This approximation becomes accurate when the degree of density

dependence, θ, in En (P ) and Ep (N) is weak and the densities are not very small.

Technically, the approximation becomes exact as θ tends to zero provided that N
or P do not approach zero [see 15].

We adopt this approximation and substitute it into equation (1) to investigate

the functional responses that emerge from density-dependent movements.

EMIGRATION RESPONSES AND THEIR RELATIONSHIP WITH SPACE RACES

Empirical data show that predators have decreasing and decelerating emigration

responses to prey, whereas prey typically have increasing and accelerating emi-

gration responses to predators [figure 1b; electronic supplementary material, fig-

ure S6; 15].
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Figure 1: A representation of the link between reaction efficiencies and the out-

come of the space race. (a) The space race sign S, given by eq. (3), determines

the outcome of the game. The thick line at S = 0 divides the plane into a posi-

tive region (bright) where the predator wins, and a negative region (dark) where

the prey wins. As an example, the open circle marks a point where the preda-

tor wins (N1,P1), and the closed circle a point where the prey wins (N2,P2).
The positions of these points along the emigration responses are shown in (b). In

the (N1,P1) case, the predator wins because it has a higher reaction efficiency,

i.e. the predator’s emigration response is steeper. The opposite is true in the

second case (N2,P2). The emigration responses are En (P ) = 1 + eθP and

Ep (N) = 1 + 20e−θN , where θ = 0.5.
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The slope of the emigration rate function determines an individual’s ability to

respond to differences in the local densities of the species it reacts to. The steep-

ness of the response functions can thus be interpreted as a measure of how strongly

prey react to differences in predator densities, and how strongly predators react to

variation in prey densities. We refer to this as the species’ reaction efficiency. If

the prey has a higher reaction efficiency than the predator, the covariance will be

negative and the average predator individual will experience fewer prey than ex-

pected based on the overall mean density of prey. In this sense, the prey wins the

space race. If it is the other way around, the average predator will encounter more

prey individuals than would be expected based on the mean prey density and so

the predator becomes the winner of the space race [15].

Consequently, it is the difference between the reaction efficiencies of the prey

and the predator that determines which of the two species wins the space race.

This can be expressed by the simple formula

S = −E ′
n (P )− E ′

p (N) , (3)

which is derived from eq. (2). S is thus approximative. However, a numeri-

cal analysis of the underpinning master equation [15] indicates that S is in good

agreement with the exact relationship even for relatively large values of θ (elec-

tronic supplementary material, figure S1).

The interplay of the “space race sign” S and the emigration responses is de-

picted in figure 1. If S is positive, the predator is the winner and if it is negative

the prey is the winner (figure 1a). When S = 0, which is indicated by the diagonal

line in figure 1a, neither species wins and the spatial correlation between the two

species remains zero. This line thus represents the situation described by classical

functional response models, which assume density independent and unlimited dis-

persal. As shown in figure 1b, the space race sign originates from the relationship

between the steepness of the two species’ emigration responses.

Figure 1 also shows that predators win the space race when both species are

rare and that instead prey win when both species are abundant. Stated differently,

we can expect positive spatial correlations between predators and prey in poor

habitats and negative correlations in rich habitats.

Since the emigration responses have direct effects on the likelihood of encoun-

ters between predators and prey, they necessarily affect consumption rates. This

link is analyzed in the following section.
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SPACE RACE FUNCTIONAL RESPONSES

By defining the attack rate α = αeαcαs, where αc is the rate at which a predator

tries to capture a prey individual upon encounter and αs is the rate at which it

succeeds and consumes the prey, we find that the space race functional response

is equal to the encounter rate (eq. 1) multiplied by αcαs/P , i.e.,

f(N ,P ) = αN (1 + C(N ,P )) . (4)

The space race functional response, where C(N ,P ) is substituted by equation (2),

is illustrated in figure 2. The predator emigration rate response Ep (N) to prey

affects the functional response in the prey dimension, whereas the prey emigration

rate response En (P ) affects the functional response in the predator dimension

(figure 2).

Given density-independent emigration responses we recover the typical linear

Holling type I functional response (figure 2a). However, if either of the species

emigrates in response to the other, non-linearities emerge.

If we limit the analysis to emigration responses of the types observed in em-

pirical studies, we can identify three non-linear cases: (i) Decelerating predator

emigration and density-independent prey emigration produce a non-linear prey-

dependent functional response (figure 2b). The consumption rate is initially de-

celerating but converges back towards linearity at higher prey densities. This type

of density dependence has destabilising effects [e.g., 5, 15]. Also, the consump-

tion rate is higher than expected if movements are random, which reflects that

the predator is winning the space race. (ii) If instead the prey has an accelerating

response and predator emigration is density independent, the result is a predator-

dependent type of functional response where the non-linearity occurs in the preda-

tor dimension (figure 2c). The consumption rate decreases with increasing preda-

tor density, which tends to stabilise predator-prey dynamics [e.g., 5, 15]. Also, the

consumption rate is lower than predicted if movements are random, which reflects

that the prey is winning the space race.. (iii) When there is a predator-prey space

race where both species move dependently of each other, the functional response

is non-linear in both species dimensions (figure 2d). This has either stabilising

or destabilising effects on predator-prey dynamics depending on which of the two

dynamical effects is strongest, i.e., mainly on the magnitudes of reaction efficien-

cies and the changes in reaction efficiencies with densities.

The convergence towards a linear consumption rate at high prey densities (fig-

ures 2b, 2d) corresponds to a decelerating predator emigration response to prey

7



co
ns

um
pt

io
n

ra
te

co
ns

um
pt

io
n

ra
te

prey densityprey density

P = 5

P
=
5

P
=
1

P
=
1

predator emigration:
independent

predator emigration:
decelerating

prey
em

igration:
independent

prey
em

igration:
accelerating

0
0

0
0

0
0

0
0

2

2

2

2

2

2

2

2

4

4

4

4

4

4

4

4

6

6

6

6

6

6

6

6

8

8

8

8

8

8

8

8

10

10

10

10

10

10

10

10

Figure 2: Space race functional responses. Dashed lines indicate the Holling type

I functional response. (a) The consumption rate when both species move indepen-

dently of each other. (b) The consumption rate when the predator species has a

decelerating emigration response to prey. (c) The consumption rate when the prey

species has an accelerating emigration response to predators. (d) The consumption

rate when the prey species has an accelerating emigration response to predators

and the predator species has a decelerating emigration response to prey; these are

the emigration responses typically observed in nature. The attack rate is set to

α = 1 and the emigration responses of prey and predators are En (P ) = 1 + eθP

and Ep (N) = 1+20e−θN , respectively, where θ = 0.5. The functional responses

are in qualitative agreement with the exact functional responses obtained from

numerical analysis (electronic supplementary material, figure S2).

8



(figure 1b). As prey become more abundant, the predators’ reaction efficiency ap-

proaches zero and their dispersal behaviour becomes increasingly random, result-

ing in a negative and nearly constant per capita covariance in the prey dimension.

Decelerating predator emigration responses to prey are observed in experiments.

This is probably because predators gain little in these experiments when most sites

hold more prey than they can handle.

PREDATOR-PREY DYNAMICS WITH A SPACE RACE FUNCTIONAL RESPONSE

Whether the dynamics of a predator-prey system with a space race functional

response is stable or not, will in general depend also on other processes such as

prey growth and predator mortality. However, for a multi-patch system where

the dynamics within each patch are described by the Lotka-Volterra predator-prey

equation, the stability of the global dynamics (including all patches) is for a given

fixed point (N∗,P ∗) influenced only by the properties of the per capita covariance

and the conversion efficiency η. The fixed point is a stable attractor if

δ = 1 + C(N∗,P ∗) +N∗∂C(N ,P ∗)
∂N

∣∣∣
N=N∗

+ P ∗∂C(N∗,P )

∂P

∣∣∣
P=P ∗

and

τ =
∂C(N ,P ∗)

∂N

∣∣∣
N=N∗

− η
∂C(N∗,P )

∂P

∣∣∣
P=P ∗

are both greater than zero. When applying the approximation of the per capita

covariance (equation 2), δ > 0 is always true, which means that stability hinges

only on the sign of τ . If then τ < 0, the fixed point, typically at low equilibrium

densities, constitute an unstable equilibrium producing unstable dynamics which

tend to attract to limit cycles around the fixed point at an average distance that

depend on the shape of C(N ,P ) [electronic supplementary material, figure S3-

S5; 15].

RELATIONSHIPS WITH CLASSICAL FUNCTIONAL RESPONSES

The density dependencies produced by the exponential movement responses are

qualitatively equivalent to those in Holling’s type II and DeAngelis-Beddington’s

functional responses. The predators’ decelerating emigration response to prey

causes predation efficiency to decrease as prey density increases. This creates a
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positive and destabilising density dependence comparable to that described by the

Holling type II functional response, although the underlying mechanism is differ-

ent. In contrast, the prey’s accelerating emigration response leads to stabilising

density dependence, as the prey density experienced by the predators decreases

with increasing predator density. This mechanism is analogous to the one pro-

posed by [20] as a mechanistic underpinning for the DeAngelis-Beddington func-

tional response.

To investigate the generality of these findings we identify the conditions un-

der which the space race functional response produces the same types of density

dependencies as Holling’s and DeAngelis-Beddington’s responses. This occurs

if the expected per capita population-level attack rate, or predation efficiency,

f̂(N ,P ) = f(N ,P )/N decreases in parallel with the densities of the two species

such that ∂f̂
∂N

< 0 and ∂f̂
∂P

< 0. Since f̂(N ,P ) = α(1 + C(N ,P )), we can reduce

the problem to an examination of how C(N ,P ) changes with the two species’

densities. This reveals that if

C(N ,P ) < −E ′′
p (N)

E ′
p (N)

(5)

is true for positive values of N and P , the predators’ emigration behaviour pro-

duces a density dependence equivalent to that in the Holling type II functional

response, and if

C(N ,P ) > −E ′′
n (P )

E ′
n (P )

(6)

is true for positive values of N and P , then the prey emigration behaviour pro-

duces a density dependence equivalent to that in the predator-dependent processes

of the DeAngelis-Beddington functional response.

In general, these criteria are fulfilled if the accelerating prey response and the

decelerating predator response are represented by exponential functions or power

functions. The only exception is when the prey emigration response follows a

power function. In this case there is a parameter space for which low predator den-

sities produce the same type of density dependence as in DeAngelis-Beddington’s

response but higher prey densities generate a reversed density dependence.
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DISCUSSION

In a predator-prey system where the two species are engaged in a space race, the

functional response is a non-linear function of both prey and predator densities

and is conventionally described as being predator dependent. The shape of the

two-dimensional functional response reflects the emigration responses of preda-

tors and prey to heterospecific densities. The emigration responses can in theory

take many different shapes and thus produce different types of density dependen-

cies. However, empirical data suggest that prey emigration responses to predators

are increasing and accelerating functions, whereas predator emigration responses

to prey are decreasing and decelerating functions. These responses create a desta-

bilising density dependence in the prey dimension and, in most cases, a stabilising

density dependence in the predator dimension.

In equivalence with the Holling type II functional response, the destabilising

effect in the space race functional response occurs because the prey per capita

growth rate is an increasing function of prey density, i.e. it exhibits a positive

density dependence. In Holling’s type II model this positive density dependence

is due to the time required to handle and digest prey, which leads to saturation

and thus a decreased predation efficiency at high prey densities. In the space race

functional response this type of destabilising density dependence is instead a con-

sequence of the decelerating emigration response of predators, Ep (N). The pre-

dation efficiency decreases with increasing prey density because the predators put

less effort into finding the best foraging patches when prey is abundant. In con-

trast, when prey is scarce predators do differentiate between patches and therefore

become more efficient in locating prey.

In equivalence with the DeAngelis-Beddington functional response, the sta-

bilising effects in the space race functional response are caused by reduced pre-

dation efficiencies at high predator densities - i.e., predator growth exhibit a neg-

ative dependence of predator density. However, the mechanism in the space race

functional response is different from that proposed by [20] for the DeAngelis-

Beddington response, in the sense that predators do not induce increased refuge

use by prey but instead prey escape from predator-rich areas. While these mecha-

nisms are somewhat different, they can both be described as examples of predator

interference.

An intriguing result of our analysis is that the covariance between predator and

prey densities is expected to decrease with increasing densities of both species.

Stated differently, we should expect low spatial overlap between predators and

prey in rich habitats and high overlap in poor habitats; a prediction that should be
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testable in laboratory and field experiments. This finding has important implica-

tions for the stability and persistence of predator-prey systems. If some external

factor reduce the equilibrium densities of predators and prey, the space race will

cause increased predation rate, thereby further reducing prey equilibrium densi-

ties. For some models, like the Lotka-Volterra predator-prey model, also the equi-

lbrium densities of predators will be reduced. This suggests that the space race

increases extinction risk in poor habitats due to demographic and environmental

stochasticity. Perhaps more important is the finding that a Lotka-Volterra system

with space race functional response tend to show limit cycles when equilibrium

densities are low. This means that predator-prey systems in poor habitats, where

equilibrium densities are low, at times will reach very low densities and conse-

quently have greatly increased risk of stochastic extinctions. An implication of

this result is that models based on local scale functional responses, which neglect

the influence of density dependent movements, might underestimate the risk of

extinction for populations of conservation concern.

Density-dependent dispersal appears to be common among systems of mobile

organisms; empirical data suggest that prey typically have accelerating emigra-

tion responses to predator density whereas predators show decelerating responses

(without significant convex regions) to prey. The two types of density dependence

produced by these responses typically have opposing effects on stability [elec-

tronic supplementary material; 15]. It is therefore impossible to precisely predict

how space races affect stability based on this information alone. To make robust

predictions, we will need more specific information on the relationship between

the emigration responses of both species in coupled predator prey systems; to our

knowledge, such data are not currently available.

Future studies may extend the basic space race considered here to include ad-

ditional emigration cues and spatial heterogeneity in physical variables that influ-

ence predation risk and food intake [see e.g., 26, 13, 14]. It would also be valuable

to know how the strengths of the density dependencies produced by space races

relate to those generated by other mechanisms, such as handling time and refuge

use. Such studies will likely be valuable contributions to our understanding of the

mechanism controlling persistence of food webs in ecological systems.

ACKNOWLEDGEMENTS

We thank Per Lundberg, Frédéric Barraquand and one anonymous reviewer for

valuable comments on previous versions of this manuscript. HS thanks Lennart

12



Persson, Mats Bodin, and Etsuko Nonaka for helpful discussions during the early

stages of the work. GE and HS were supported by a grant from the Swedish

Research Council to GE.

REFERENCES

1 Royama T. A comparative study of models for predation and parasitism. Res
Popul Ecol. 1971;1:1–91.

2 Rogers D. Random search and insect population models. J Anim Ecol.
1972;41(2):369–383. (doi:10.2307/3474)

3 Fryxell JM, Lundberg P. Individual Behavior and Community Dynamics. vol.

20. New York: Chapman & Hall; 1997.

4 Tilman D, Kareiva PM. Spatial Ecology: The Role of Space in Population
Dynamics and Interspecific Interactions. Princeton University Press; 1997.

5 Murdoch WW, Briggs CJ, Nisbet RM. Consumer-Resource Dynamics. New

Jersey: Princeton University Press; 2003.

6 Keitt TH, Johnson AR. Spatial heterogeneity and anomalous kinetics: emer-

gent patterns in diffusion-limited predatory-prey interaction. J Theor Biol.
1995;172(2):127–139.

7 Englund G, Leonerdsson K. Scaling up the functional response for spatially

heterogeneous systems. Ecol Lett. 2008;11(5):440–449. (doi:10.1111/j.1461-

0248.2008.01159.x)

8 Hunsicker ME, Ciannelli L, Bailey KM, Buckel JA, W White J, Link JS,

et al. Functional responses and scaling in predator-prey interactions of

marine fishes: contemporary issues and emerging concepts. Ecol Lett.
2011;14(12):1288–1299. (doi:10.1111/j.1461-0248.2011.01696.x)

9 Charnov EL. Optimal foraging, the marginal value theorem. Theor Popul Biol.
1976;9(2):129–136. (doi:10.1016/0040-5809(76)90040-X)

10 Milinski M, Parker GA. Competition for resources. In: Behavioural Ecology:
An Evolutionary Approach. Oxford: Blackwell; 1991. p. 137–168.

13



11 Englund G. Effects of density and food availability on habitat selection in a

net-spinning caddis larva, Hydropsyche siltalai. Oikos. 1993;68(3):473–480.

(doi:10.2307/3544915)

12 Englund G. Scale dependent effects of predatory fish on stream benthos.

Oikos. 2005;111(1):19–30. (doi:10.1111/j.0030-1299.2005.13937.x)

13 Sih A. Predator-prey space use as an emergent outcome of a behavioral re-

sponse race. In: Ecology of Predator-prey Interactions. New York: Oxford

University Press; 2005. p. 240–255.

14 Hammond JI, Luttbeg B, Brodin T, Sih A. Spatial scale influences the outcome

of the predator-prey space race between tadpoles and predatory dragonflies.

Funct Ecol. 2012;26(2):522–531. (doi:10.1111/j.1365-2435.2011.01949.x)

15 Sjödin H, Brännström Å, Söderquist M, Englund G. Population-level conse-

quences of heterospecific density-dependent movements in predator-prey sys-

tems. J Theor Biol. 2014;342:93–106. (doi:10.1016/j.jtbi.2013.09.019)

16 Ruxton GD, Gurney WSC. Deriving the functional-response without assum-

ing homogeneity. Am Nat. 1994;144(3):537–541. (doi:10.1086/285692)

17 Nachman G. A functional response model of a predator population foraging

in a patchy habitat. J Anim Ecol. 2006;75(4):948–958. (doi:10.1111/j.1365-

2656.2006.01114.x)

18 Abrams PA, Walters CJ. Invulnerable prey and the paradox of enrichment.

Ecology. 1996;77(4):1125–33.

19 Poggiale JC. Predator-prey models in heterogeneous environment: Emer-

gence of functional response. Math Comput Model. 1998;27(4):63–71.

(doi:10.1016/S0895-7177(98)00006-5)

20 Geritz S, Gyllenberg M. A mechanistic derivation of the DeAngelis-

Beddington functional response. J Theor Biol. 2012;314:106–108.

(doi:10.1016/j.jtbi.2012.08.030)

21 Barraquand F, Inchausti P, Bretagnolle V. Cognitive abilities of a central place

forager interact with prey spatial aggregation in their effect on intake rate.

Anim Behav. 2009;78(2):505–514.

14



22 Morozov AY. Emergence of Holling type III zooplankton functional response:

bringing together field evidence and mathematical modelling. J Theor Biol.
2010;265(1):45–54. (doi:10.1016/j.jtbi.2010.04.016)

23 Cordoleani F, Nerini D, Morozov A, Gauduchon M, Poggiale JC. Scal-

ing up the predator functional response in heterogeneous environment:

When Holling type III can emerge? J Theor Biol. 2013;336:200–208.

(doi:10.1016/j.jtbi.2013.07.011)

24 Murdoch WW, Stewart-Oaten A. Aggregation by parasitoids and preda-

tors: effects on equilibrium and stability. Am Nat. 1989;134(2):288–310.

(doi:10.1086/284981)

25 Barraquand F, Murrell DJ. Scaling up predator-prey dynamics us-

ing spatial moment equations. Methods Ecol Evol. 2013;4(3):276–289.

(doi:10.1111/2041-210X.12014)

26 Sih A. Game theory and predator-prey response races. In: Game Theory and
Animal Behavior. New York: Oxford University Press; 1998. p. 221–238.

15



Electronic supplementary material to "Space
race functional responses"

Henrik Sjödin1,2,∗, Åke Brännström2,3 and Göran Englund1

1Department of Ecology and Environmental Science, Umeå University, 90187 Umeå, Sweden
2Evolution and Ecology Program, International Institute for Applied Systems Analysis, 2361 Laxenburg,
Austria
3Department of Mathematics and Mathematical Statistics, Umeå University, 90187 Umeå, Sweden

1 POPULATION-LEVEL ENCOUNTER RATES

The population-level encounter rate g(N ,P ) is determined by taking the average over all local

encounter rates. This is obtained as usual by summing over the products of the states of the process

and the probabilities D that each state will occur. Hence,

g(N ,P ) = 〈G(Xn,Xp)〉

=
∞∑

xn=0

∞∑
xp=0

D(xn, xp, t)G(xn, xp)

= αe 〈XnXp〉 ,

(1)

and since cov(Xn,Xp) = 〈XnXp〉 −NP by definition, we find that

g(N ,P ) = αecov(Xn,Xp) + αeNP , (2)

which simplifies to

g(N ,P ) = αeNP

(
1 +

cov(Xn,Xp)

NP

)
, (3)

where cov(Xn,Xp)/NP is the per capita covariance C(N ,P ). Finally, we therefore write

g(N ,P ) = αeNP (1 + C(N ,P )) . (4)

∗Author for correspondence (sjodin.h@gmail.com)

1



0 2 4 6 8 10
0

2

4

6

8

10

Figure S1: The analytical relationship S = −E ′
n (P ) − E ′

p (N) (thin) is a good estimate of the

border between S > 0 and S < 0, except when mean densities of prey are low. This is verified by

comparison with results from a numerical analysis of a master equation (thick). Prey emigration

are given by θ in En (P ) = 1 + eθP and predator emigration by Ep (N) = 1 + 20e−θN .

2 ROBUSTNESS

2.1 Numerical analysis of the space race sign

The border between negative and positive space race signs, which determines whether predator

or prey wins the space race, is well estimated by the analytical relationship S = −E ′
n (P ) −

E ′
p (N). This is verified by comparison with results from a numerical analysis of a master equation

(figure S1).

2.2 Robustness of analytical responses

The functional responses graphically represented in the main text are, even for large θ, in qualitative

agreement with the exact functional responses obtained from numerical analysis of the correspond-

ing master equation (figure S2).

2.3 Dynamics of eight cases of the predator-prey system with a space-race functional response

Here we present a stability analysis of the specific system Ṅ = rN − αNP (1 + C(N ,P )); Ṗ =
αηNP (1 + C(N ,P )) − mP , with r = 1.5,α = 0.57, η = 1.0,m = 2.0, where C(N ,P ) =

−E′
n(P )+E′

p(N)

En(P )+Ep(N)
, En (P ) = 1 + eθnP and Ep (N) = 1 + 20e−θpN , with θn = 0.3 and for a number

2
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Figure S2: Normalised functional responses (f(N ,P ) − αN ; where then the Holling type I re-

sponse equals zero) corresponding to the functional responses f(N ,P ) in figure 2d in the main

text, show that the exact space race functional responses (thick) (obtained by numerical analysis

of a corresponding master equation) is in qualitative agreement with the corresponding analytical

responses (thin) even for high degrees (θ ∈ [0.1, 0.5]) of density dependence in emigration rates.
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Figure S3: Predator-prey isoclines of the system: Ṅ = rN−αNP (1+C(N ,P )); Ṗ = αηNP (1+
C(N ,P ))−mP , plotted with θn = 0.3 and for a range of values (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6) of

θp, where the different values θp are graphically represented by shades of gray from dark to bright

with increasing values of θp. The blue isoclines correspond to θn = 0.0, θp = 0.0 representing

the standard Lotka-Volterra isoclines. The fixed points for each respective case are given by the

intersection of the two isolines. Prey emigration are given by En (P ) = 1 + eθnP and predator

emigration by Ep (N) = 1 + 20e−θpN
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of cases θp = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6}. The system is predicted (given that θn and θp are

suffixciently small) to be stable if the species densities are within the basin of attraction of a fixed

point (N∗,P ∗) that satisfy

E ′′
p(N)− ηE ′′

n(P )− C(N ,P )(ηE ′
n(P )− E ′

p(N)) < 0, (5)

as was derived in [1].
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Figure S4: The contribution to stability of emigration responses: (a) shows the contribution of

the curvature of emigration responses, (b) shows the effects of the slopes of emigration responses

times the per capita covariance, for different values of θp. Figure (c) shows the combined effect.

The system is going from being stable (green) at low θp relative to θn to being unstable (red) as θp
increases. When θp exceeds some limit between 0.2 and 0.3, the stability criterion (equation 5) is

no longer met and the system becomes unstable.

As figure S3 shows, the fixed points at the intersection of each couple of isoclines depending

on the parametrization of θn and θp lies in the density range 2.0 to 3.6. Figure S4 illustrates in

this range how the two principal terms of equation (5) relate to each other. When the destabilising

decelerating curvature of the predator response (E ′′
p(N)) becomes large relative to the stabilising

accelerating curvature of the prey response, such that E ′′
p(N)− ηE ′′

n(P ) (figure S4a) outgrows the

stabilizing positive covariance term C(N ,P )(ηE ′
n(P ) − E ′

p(N)) (figure S4b) the criterion is not

satisfied and the system becomes unstable (figure S4c). Only when θp is less than 0.3 the system

is stable. This applies over the whole range (2.0 to 3.6) of considered equilibrium densities.

The phase-plane dynamics of the considered cases of θn and θp are depicted in figure S5.

Figure S5a shows the case where θn and θp are zero; constituting a standard Lotka-Volterra system

with neutral cycles. The stable fixed points (within green regions in figure S5 b-d) constitute

attractors at which the system is stable. In the neighborhood of unstable fixed points (within red

regions in figure S5 e-h) the system is attracted by limit cycles around the fixed points, where

the magnitude of the oscillations in the limit cycles increases with θp. Unstable dynamics are
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Figure S5: The dynamics in the phase plane, with initial conditions N = P = 10 (black points),

together with isoclines (black lines; identical to isoclines in figure S3). The intersection points

of the isoclines mark the fixed points corresponding to different values of θn and θp. The green

regions illustrate where the criterion (equation 5) is true, the red regions where it is false and the

blue region where the left-hand-side of equation 5 equals zero. (a) As θn = θp = 0 the covariance is

zero and we have a Lotka-Volterra system with neutral cycles; (b)-(h) as θn+θp �= 0 the covariance

is dependent on densities and in (b)-(d) the system is attracted by stable fixed points, and in (e)-(h)

the fixed points are repellors and the system is attracted to limit cycles around the fixed points.

5



predicted generally at low equilibrium densities (especially low prey densities) adding to the risk

of stochastic extinctions at small population sizes.

Figure S6: Examples of prey emigration responses to predator densities (a)-(c) and predator em-

igration responses to prey density (d)-(f ). Data are taken from (a) [2], Baetis; (b) [2], Paralep-

tophlebia; (c) [3]; (d) [4]; (e) [5]; (f ) [6], small Baetis. Negative values for emigration rate in (c)

occur because [3] reported residuals from a regression of emigration rate on the amount of plant

injury.

3 EMPIRICAL EMIGRATION RATES

Figure S6 shows examples of empirical emigration responses of predators and prey.
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