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PREFACE 

I n  r e c e n t  y e a r s ,  t h e r e  h a s  been c o n s i d e r a b l e  i n t e r e s t  i n  
t h e  development o f  models  f o r  t h e  d e s c r i p t i o n  o f  r i v e r ,  l a k e ,  
and r e s e r v o i r  water q u a l i t y .  Much of  t h i s  i n t e r e s t  h a s  been 
d i r e c t e d  towards  t h e  c o n s t r u c t i o n  o f  p r o g r e s s i v e l y  l a r g e r  and 
more complex d e t e r m i n i s t i c  s i m u l a t i o n  models .  C o n s i d e r a b l y  
less a t t e n t i o n  h a s  been p a i d  t o  t h e  problems o f  u n c e r t a i n t y  
i n  f i e l d  d a t a ,  i n  model d e s c r i p t i o n  and i n  pa ramete r  estimates 
and t h e i r  consequences  when f o r e c a s t i n g  t h e  f u t u r e  behav iour  
o f  a water body. T h i s  r e p o r t  i s  t h e  f i r s t  i n  a series of  f o r t h -  
coming p u b l i c a t i o n s  o f  IIASA's Resources  and Environment A r e a  
t a s k  on  Models d e a l i n g  w i t h  t h e s e  problems.  I t  h a s  been p r e -  
p a r e d  d u r i n g  a three-month summer v i s i t  o f  t h e  f i r s t  a u t h o r  
t o  t h e  I n s t i t u t e .  The d i s c u s s i o n s  h e l d  d u r i n g  t h e  work have 
c o n t r i b u t e d  c o n s i d e r a b l y  t o  t h e  r e c o g n i t i o n  o f  t h e  problem 
o f  how t o  cope w i t h  u n c e r t a i n t y  i n  e c o l o g i c a l  modeling as an 
i m p o r t a n t  and c h a l l e n g i n g  i s s u e  f o r  f u r t h e r  development  o f  
t h e  f i e l d .  Should t h e  r e a d e r  have any remark,  comment o r  
cr i t ic ism t h a t  c o u l d  h e l p  t o  improve t h e  methodology p r o v i d e d ,  
o r  c o u l d  l e a d  t o  new d i r e c t i o n s ,  he  shou ld  n o t  h e s i t a t e  i n  
communicating h i s  i d e a s  t o  t h e  a u t h o r s .  H i s  c o n t r i b u t i o n  would 
be g r a t e f u l l y  a p p r e c i a t e d .  



ABSTRACT 

A methodology i s  developed t o  e v a l u a t e  i n  q u a n t i t a t i v e  
terms t h e  e f f e c t  of  u n c e r t a i n t y  i n  t h e  d a t a  and t h e  model on 
t h e  r e l i a b i l i t y  of parameter  e s t i m a t e s  i n  phytoplankton models, 
and t o  a s s e s s  t h e  e f f e c t  of  t h e  r e s u l t i n g  parameter u n c e r t a i n t y  
on model p r e d i c t i o n s .  The method of  maximum l i k e l i h o o d  i s  
adopted a s  t h e  b a s i s  of  t h e  a n a l y s i s ,  r e s u l t i n g  i n  a  weighted 
l e a s t  squa re s  e s t i m a t i o n  problem. The a n a l y s i s  p rov ides  an 
e s t ima te  f o r  bo th  t h e  weights  and t h e  model e r r o r s ,  where t h e  
weights  appear  t o  be determined by t h e  d a t a  e r r o r s  and t h e  
model e r r o r s  s imul taneously .  

A p re l imina ry  a p p l i c a t i o n  of t h e  method i s  p re sen ted  f o r  
a  16 s t a t e  v a r i a b l e ,  20 parameter phytoplankton model f o r  
Lake Ontar io .  Extensive  d a t a  f o r  14 of  t h e  36 s t a t e  v a r i a b l e s  
i s  used t o  c a l c u l a t e  t h e  parameter u n c e r t a i n t y  covar iance  
ma t r ix  and model e r r o r  va r i ances .  The degree  of  u n c e r t a i n t y  
of  parameters  and t h e i r  mutual c r o s s - c o r r e l a t i o n s  a r e  a s se s sed  
i n  terms of t h e  s u b j e c t i v e  o p t i o n s  he ld  by workers i n  t h e  f i e l d .  
Also a  p re l imina ry  e s t ima te  of t h e  e f f e c t s  of t h e  q u a n t i t y  of  
d a t a  a v a i l a b l e  i s  presen ted .  F i n a l l y ,  t h e  consequences of 
parameter u n c e r t a i n t y  on t h e  p r e d i c t i o n  e r r o r  a r e  i n d i c a t e d .  
It fo l lows  t h a t  t h e  presence  of  c r o s s - c o r r e l a t i o n  i n  t h e  para-  
meter s e t  r e s u l t i n g  from t h e  c a l i b r a t i o n  cons iderab ly  m i t i g a t e s  
t h e  e r r o r  of  p r e d i c t i o n .  
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1.  INTRODUCTION 

The construction of phytoplankton models, or indeed any 

model, is aimed at increasing one's understanding of the par- 

ticular system being considered and helping one to make predic- 

tions about the consequences of alterations to that system. 

Since most models of natural phenomena have little a priori 

content--hence the word "model" rather than "theoryw--it is 

necessary that a detailed calibration be carried out in order 

to establish the degree of validity of the model computations. 

In the final analysis it is the comparison of computation to 

observed data that qives a model whatever credibility it has 

prior to validation on different data sets. Since the objec- 

tives of a modelling study, to increase understanding and allow 

predictions, both depend on the calibration (the former since 

the quantitative values of the parameters are an important part 

of the understanding and insight gained, and these are a direct 

result of the adjustments to fit data, and the latter since the 

credibility of the predictions is at least partly judged by 

the adequacy of the fit), it is clear that the quality of the 

calibration is an important issue. 

The quantitative methods that are available for judging 

the quality of a model's fit to data tend to concentrate on 



the statistical character of the residual sequences which are 

analyzed for randomness, constant variance, etc., in order to 

highlight any persistent model weakness. These types of inves- 

tigations should be made in modelling studies for which the 

data is extensive enough to permit analysis. Such procedures 

have recently been applies to a number of different phytoplank- 

ton models of Lake Ontario [Thomann et al, 19791. Less formal 

comparisons, e.g. a judgement of the adequacy of the fit, are 

always made, but their basis is uncertain. 

It is common [e.g. Draper & Smith, 19661, in the case of 

linear regression models, to calculate the errors in the regres- 

sion coefficients and the error of predictions for the regres- 

sion in addition to the residuals' analysis. The purpose of 

this investigation is to adapt these methods, where possible, 

in order to make quantitative statements about the reliability 

of the model parameters and model errors in phytoplankton models. 

The estimate of model error variance and parameter covariance 

matrix follows from an application of the method of maximum 

likelihood to an hypothesized error structure. The results are 

valid to the extent that the assumed error structure (Gaussian, 

independent, etc.) is correct and that the asymptotic properties 

of maximum likelihood estimators and their covariances apply 

for the number of observations available. For the application 

presented below, the quantity of available data is quite large 

and it is expected that the large sample results apply. 

The estimation of model prediction error relies on a linear- 

ization of the model equations in order to calculate the model 

uncertainty due to parameter uncertainty. If the model response 

to parameter variation is reasonably linear, then the computa- 

tion is reasonable. If jump discontinuities in model state 

variables are suspected, then these linearized methods are of 

little value. There is really no substitute for an intuitive 

understanding of the situation and the model in order to decide 

whether any set of methods is applicable. For phytoplankton 

models of the type considered in this investigation the states 

are certainly smooth functions of the parameters. Hence the 

methods to be discussed are believed to be applicable to the 

quantification of the parameter and prediction uncertainty. 



2. FRAMEWORK 

The phytoplankton model considered in this investigation is 

constructed from the basic mass balance equations for a natural 

water system. These have the form of classical continuity equa- 

tions with source and sink terms that represent the physical- 

chemical-biological reactions that transform the materials of 

concern. If the water body is divided into volume elements, 

Vi, then for each concentration cil of material 1, 1 = 1,2, ..., Nc 
within that volume a mass balance equation of the form: 

applies. The hydrodynamic transport is specified by the disper- 

sion coefficients Eik, and the advective flows, Qik, between ad- 

jacent volume segments. The kinetic sources and sinks, 

S1(~;1,~~2,...:$;:8), are a function of the concentrations 

within the volume elements, the exogenous variables $i that ad- 

ditionally characterize the elements, and the parameters of the 

kinetics, 8. The mass inputs, Wilt to that volume element com- 

plete the specification of the mass balance requirements. The 

transport coefficients are obtained either by hydrodynamic cal- 

culation or from the analysis of suitable tracer behaviour. 

The mass inputs and exogenous variables are measured. The values 

of the parameters, 8, are the object of the calibration analysis. 

The solution of these equations, c' (t), is obtained by 
kl 

numerical integration so that the concentrations at any time t' 
j 

are available. Let: 

denote a solution for any particular set of parameters, 8. The 

observations of variable k are denoted by c (t.,ri) for time 
kl 3 

t. at location ri which is assumed to be within volume segment 
3 
k. A formal statement of the calibration objective is the 

minimization of some measure of data and computed values' devi- 

ation by choosing parameter values, 8, within a set of accept- 



able values. For example, a simple least squares criterion: 

min 
Nc N~ Nt Njkl 2 

3 2 2 2 2 [ckl(tjrri) - f (t';e)l , 
kl 3 

( 3 )  
acceptable 1=1 k=l j=l i=l 

where Nc is the number of variables, NV is the number of volume 

elements, Nt is the number of times at which data are available, 

and N jkl is the number of observations within volume k at time 

j for concentration 1. An immediate difficulty is apparent with 

this criterion: the results are influenced by the units chosen 

for the variables, since the sum is over all concentration vari- 

ables as well. It is clear, therefore, that a weighting proce- 

dure is required. The method employed below supplies these 

weights. 

3. METHODOLOGY 

Since the observation ckl (tj ,ri) is subject to errors, it 

is necessary to take these into account explicitly. That is, 

a statistical model of the errors is required in order to pro- 

ceed with an analysis. Assume that the observed concentrations 

have the form: 

where f (.t. ;O) is the computed model mean of the lth variable 
kl 3 

in segment k at time tj; njkl is the random model error which 

accounts for the deviations between the computed and the true 

mean ; 'ijkl is the random measurement error and spatial devia- 

tions within the volume element k of the repeated measurements 

made within that volume element at t which accounts for the 
jt 

difference between the observations and the true mean. The 

measurement error and the spatial heterogeneity within the 

volume segments are associated with this variable. 

To simplify the notation, let k represent a variable 1 within 

a volume segment k', ordered in any convenient way so that k 

denotes a compartment, i.e., a concentration for a volume seg- 

ment, and k - 1, ..., N N c V' Thus the concentration at position i, 



at time j ,  for compartment k, is assumed to have the form: 

C = f (t + rljk + E ijk * ( 5 )  
ijk k j 

The random variables, qjk and cijk are assumed to be inde- 

pendent random variables with zero means and variances a 2 

2 rlk' respectively aEjk. That is: 

E 
2 

ijk =N(OloEjk) 

The purpose of the estimation procedure is to make the "best" 
2 2 estimate of the unknowns: B,onk,o Ejk. 

The assumption of Gaussian, independent random variables is 

the simplest and leads to familiar formulas. However, it is 

not necessary. The structure of the spatial variations, E ijk' 
can be analyzed directly. In particular, the covariance matrix, 

which is quite large, can have significant off-diagonal elements. 

The assumption that spatial heterogeneity has no structure 

across compartments assumes that: 

cov (cijk,& ) = 6  2 
ii16jj16kklaEjk I 

where 6ii, = 0 for i # if and 6ii = 1 for i = i t ,  etc; 6iil 
implies no structure within segments; implies no time cor- 

J J 

relations, and 6kkl implies no compartment interaction, that is, 

no cross variable or cross segment interaction for the spatial 

heterogeneity. 

Similarly, the model errors are assumed to be uncorrelated 

in time and across compartments, that is: 

cov 

and, in addition, they are assumed to be stationary: 



and t he r eby  independent  of  t i m e ,  t 
j *  

I t  shou ld  b e  p o i n t e d  o u t  

t h a t  t h e s e  assumpt ions  can be  checked e i t h e r  b e f o r e  t h e  es t ima-  

t i o n  i s  made, f o r  t h e  s p a t i a l  h e t e r o g e n e i t y  v a r i a t i o n ,  o r  a f t e r  

t h e  e s t i m a t i o n ,  by examining t h e  r e s i d u a l s .  

The e s t i m a t i o n  problem i s  n o n l i n e a r  i n  t h e  pa r ame te r s  and 

t h e r e f o r e  q u i t e  d i f f i c u l t .  I t  t a k e s  t h e  form of  a n o n l i n e a r  

a n a l y s i s  o f  v a r i a n c e  o f  a mixed model ( t h a t  i s ,  bo th  f i x e d  and 

random e f f e c t s )  [ S e a r l e ,  19711, which appea r s  t o  be  r a t h e r  

complex i n  g e n e r a l  t e r m s .  However, i n  t h i s  a p p l i c a t i o n  t h e r e  

i s  a r e a sonab l e  approximat ion a v a i l a b l e .  The number of  obse r -  

v a t i o n s ,  N j k '  f o r  each  v a r i a b l e ,  w i t h i n  each  volume a t  t i m e  t 
j 

i s  l a r g e  r e l a t i v e  t o  t h e  number o f  t i m e s  ( s h i p  c r u i s e s ) ,  N t ,  

and t h e  number o f  compartments NcNV. The re fo r e ,  f i x i n g  j  and 

k and ana lyz ing  c i jk  f o r  t h e  s p a t i a l  v a r i a b i l i t y  independen t ly  

o f  t h e  model v a r i a b i l i t y  seems a r ea sonab l e  approach.  
A 

Le t  c be  t h e  e s t i m a t e  o f  t h e  t r u e  s p a t i a l l y  averaged con- 
j k  - 

c e n t r a t i o n ,  'jk' a t  t i m e  j  f o r  t h e  compartment k and assume 
' A  

t h a t  can be  computed a s  t h e  sample mean o f  t h e  w i t h i n  seg-  
j k  

ment obse rva t i ons :  

The t r u e  s p a t i a l l y  averaged c o n c e n t r a t i o n  i s  exp re s sed  by 

where y deno t e s  t h e  d e v i a t i o n  from t h e  t r u e  s p a t i a l  average  
j k  

due  t o  t h e  f i n i t e  number o f  w i t h i n  volume samples ,  and q i s  
j k  

t h e  model e r r o r .  The v a r i a n c e  o f  p can be  e s t i m a t e d  from t h e  
j k  

sample v a r i a n c e  o f  t h e  i n d i v i d u a l  cijk: 

s o  t h a t  t h e  v a r i a n c e  o f  t h e  s p a t i a l  average  is:  



from the properties of the sample mean. Consequently, the 

observed segment mean concentrations c have mean f (t ;0) and 
jk k j 

variance: 

and, being the sum of independent Gaussian random variables, 
- 
cjk is also Gaussian: 

The method of maximum likelihood provides the estimation 

equations for O and a The log likelihood function is: 
rlk' 

1 1 2 2 
log L = 1 { -  log (2n) - 2 log (arlk + OEjk/Njk) 

jk 

To estimate Oaf set a log L/aO, = 0, i.e.: 

a log L [ C  - f (t. ;o)] af (t ;o) 
jk = L  2 k I k j = o  , 

2 (18) 
aoa jk a + aEjk/Njk 

nk 
aoa 

which is equivalent to a weighted nonlinear least squares prob- 

lem [Draper & Smith, 19661 with weights: 

Note that the weights are functions of the unknown model error 
2 variances, a,,k- If there is no model error the weight is the 

reciprocal of the standard error of c jk' The model error vari- 

ances are estimated by maximizing log L with respect to a 2 
rlk ' 



Since w is a function of a 
2 

jk nk ' 
the equation is nonlinear. 

The above form is useful for a numerical solution as shown sub- 

sequently. Note, however, that if N is large it is likely 
2 2 jk that a > >  oEjk/Njk SO that w is independent of j and eq (21) 
nk jk 

becomes : 

so that the model error variance is the residual variance less 

the average of the spatial heterogeneity and measurement error 

contributions. Also from eq (22) it is clear that if a 2 EjklNjk 
is large then the equation for u2 gives negative results. 

qk 2 This is due to the assumption that oEjk can be computed inde- 

pendently of a The role of large N is clear in this con- 
rlk' jk 

text. Eqs. (18) and (21) form a set of nonlinear simultaneous 

equations for the estimation of 0 and a 2 
rlk ' 

The asymptotic covariance matrix of the maximum likelihood 

estimates is [Kendall & Stuart, 19631 :  

where: 

A =  I E  I a log f a log 
aoa aog f l ~  I (24 

and A is the aB minor determinant of the Fisher matrix. That 
aB 

is: 



A a 10 f  a l o g  f  -1 
n  cov ( 0 1  = [E { aoz aoB 1 1 I ( 2 5 )  

where f  i s  t h e  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  o f  t h e  o b s e r v a t i o n s  

and n  = t h e  number o f  o b s e r v a t i o n s .  For  l i n e a r  r e g r e s s i o n ,  t h e  
- 

problem is c a s t  a s  o n e  o b s e r v a t i o n  o f  t h e  v e c t o r  ( ~ 1 1 1 ~ 1 2 1 . . . )  

i n  which c a s e  t h e  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  o f  t h e  o b s e r v a -  

t i o n s  i s  e q u i v a l e n t  t o  t h e  l i k e l i h o o d  f u n c t i o n  f o r  Cik; t h a t  is 

f  = L and: 

a l o g  f  a 10s f )  = I 2 2 
af  ( t .  , o )  a f k l  

k J  
( t j t  ,el 

{ aou a o B  1 W j k  W j l k l  ao, j k  j l k '  ao B 

L L 
But F - f  ( t . ; B )  = N(OfoQk + c r E j k / N j k )  and i n d e p e n d e n t  f o r  

j k  k~  
a l l  jk  s o  t h a t  t h e  e x p e c t a t i o n  i s  j u s t :  

s o  t h a t :  

which i s  t h e  c o n v e n t i o n a l  n o n l i n e a r  l e a s t  s q u a r e s  e x p r e s s i o n  f o r  

t h e  v a r i a n c e - c o v a r i a n c e  m a t r i x  e l e m e n t s  w i t h  t h e  w e i g h t s  g i v e n  

by e q .  (19 )  e v a l u a t e d  a t  t h e  maximum l i k e l i h o o d  e s t i m a t e s  o f  0  

and cr 2 
rlk' 



3.1. Comparison to Nonlinear Least Sauares 

The formulas which result from the maximum likelihood method 

for the estimation of 0 and its covariance matrix VCO) are: 

where the equation within the square bracket is for the alf3 ele- 

ment of matrix. These are equivalent to equations obtained from 

conventional nonlinear least squares [Draper & Smith, 19661 with 

weighting coefficients: 

Of interest is the fact that the maximum likelihood equa- 

tions prescribe the proper weighting for the aggregations of dif- 

fering concentration variables. The result of the proper rela- 

tive weight for the Nc different concentrations is a direct con- 

sequence of the method of maximum likelihood. The weight is 

the reciprocal of a standard error, which includes both model 

error and spatial heterogeneity and measurement error variance. 

The result is quite appealing since large variances for a par- 

ticular Cj k, whether it is due to a large spatial heterogeneity 
measurement error or a large model error, causes that observa- 

tion to be less heavily weighted in the computation. 

The estimation formula [eq. (21)l for the model variances, 

u is not classical in the sense of least squares since it 
rlk' 

balances the residual variance with the weights and the spatial 

heterogeneity and measurement error variance to make an estimate 

of the total variance due to the model error. 

3 % .  Numerical Solution Techniaues 

The simultaneous solution of eqs. (38) for 0 and eq. (23) 
2 for unk is a rather formidable numerical task. The approach 



adopted is to make an initial estimate of the system variances 

at the starting values of the parameters, QO, and then solve the 

nonlinear least squares problems with fixed weights using avail- 

able numerical routines [Reid, 19721. This procedure is iterated 

until convergence is achieved. 

The model error variance eq. (21) is solved by successive 

substitution: 

2 with an initial value a (0) = 0. This procedure has been found 
rlk 

to converge rapidly. 

The solution of the nonlinear least squares problem requires 

both f (t. ;O)  and af (t ;@)/a@, at the observation times t 
k I k j 1. 

Numerical integration of the differential eqs. (1) yields the 

values of all concentrations in all volume elements. The 

Jacobians are calculated initially using a numerical approxima- 

tion to the derivative: 

This requires Ne additional integrations, one with each param- 

eter perturbed. Subsequent Jacobians are estimated using a 

rank one updating formula at each new set of parameter values 

during the search. Occasionally the routine will reevaluate 

the entire Jacobian using a central difference approximation if 

inaccuracies are suspected [Reid, 19721. 

This method of using differences to evaluate the Jacobian, 

instead of an integration of the sensitivity equations, is 

essentially a trade-off between computer time and convenience 

associated with the numerical method using differences, and 

accuracy associated with the method of direct integration. The 

convenience of the numerical difference approximations was 

judged to be the overriding factor for these preliminary calcu- 

lations. 



Scaling for the problem is accomplished by defining a 

unitless parameter vector, $, where the actual parameter value 

is a multiple of the nominal parameter values O O .  That is 

and 4 is the vector of parameters that is adjusted. This keeps 

the metric of the search space roughly the same in each param- 

eter axis. 



4. PRELIllINARY APPLICATION--LAKE ONTARIO 

The seasonal phytoplankton model developed for Lake Ontario 

[Thomann et al, 19741 is one of a series of essentially similar 

models that have been applied to the three lower Great Lakes 

[Di Toro et al, 19771, estuaries, and streams [Di Toro et al, 

19711. These model characteristics are well understood and a 

large amount of experience has been accumulated during these 

applications. The availability of a compactly coded version 

[Simons, 19761 and a data set with computed spatial heterogeneity 

variances as well as the concentration means made Lake Ontario 

the ideal test case for the methodology: 

The seasonal phytoplankton model state variables are: chloro- 

phyll-a; herbivorous and carnivorous zooplankton; non-living 

organic nitrogen, ammonia, and nitrate; unavailable and soluble 

reactive phosphorus. These are computed for two layers, the 

epilimnion and hypolimnion, for a span of one year. The verti- 

cal transport has been calibrated using a temperature balance. 

The inputs of all variables have been estimated. The exogenous 

variables: temperature, solar radiation, photoperiod, and non- 

algae extinction coefficient have been specified. A complete 

and detailed description of the model is available [Thomann et 

al, 3 9751 . 
The data set used for the calculations described below are 

the 3972 International Field Year observations. They comprise 

eight survey cruises during which chlorophyll-a, herbivorous 

and carnivorous zooplankton biomass, total Kjeldahl nitrogen, 

ammonia, nitrate, total and soluble reactive phosphorus were 

measured in both layers. The eight variables in the two layers 

comprise the sixteen compartments considered. Suitable linear 

combinations of the computed model variables are compared to 

these observations. 

A calibration based on an aggregate of data from previous 

surveys (3967-1970) has been made [Thomann et al, 19781 and 

this is used as the starting-point for the parameter estimate 

calculation. These calculations are in progress. The initial 

experience with the numerical solution method shows that it is 

not straightforward, even for small dimensional parameter 



searches. However, since the principle interest is in the 

parameter uncertainty and prediction error evaluation, it is 

possible to proceed with these computations using the nominal 

parameter values rather than the maximum likelihood estimates. 

An effect of this approximation is investigated subsequently. 

4.1 Estimation of Parameter Variance 

The calculations of parameter covariances presented below 

are based on the nominal parameter values of the original cali- 

bration which are listed in Table 1. The exogenous variables 

are also representative of 1967-1970, rather than the 1972 data 

set being used. As a result, the model errors, as shown in 

Table 2, are larger than would be expected from a direct cali- 

bration to the data. This will inflate the parameter covariances 

somewhat but should not affect the general conclusions. 

There are 20 parameters in the model that specify the kinet- 

ics of the phytoplankton, zooplankton, and nutrient cycles. 

Their nominal values and descriptions are listed in Table 1. 

Originally, because of computer storage restrictions, it was 

not possible to compute the full 20-by-20 dimensional covariance 

matrix at one time. Therefore, a series of ten or less param- 

eter covariance estimates were computed and later completed with 

the full twenty parameter case. This can easily be done with 

the method employed in this investigation since the parameters 

which are fixed are simply left at their nominal values and 

treated as known constants rather than as estimated parameters 

which have an uncertainty. 

Table 3 presents the diagonal elements of the parameter co- 

variance matrix as coefficients of variation in percent, i.e. 

100/~(@~)/6~. The absent values in each column are held constant 

for that calculation and assumed to be exactly known as discussed 

above. As expected, comparison of the twenty parameter case 

with the various ten parameter cases shows that the percent of 

uncertainty is highest when all parameters are assumed to be 

estimated from the calibration, rather than known a priori. 

Certain general conclusions can be drawn immediately: with 

the exception of the Plichaelis constants, the phytoplankton 



p a r a m e t e r s  a r e  known w i t h i n  c o e f f i c i e n t  o f  v a r i a t i o n  - 5 0 % .  

The l a r g e  e r r o r s  i n  M i c h a e l i s '  c o n s t a n t s  a r e  n o t  unexpec ted  i n  

Lake O n t a r i o  s i n c e  t h e s e  c o e f f i c i e n t s  o n l y  i n f l u e n c e  b e h a v i o u r  

d u r i n g  a s h o r t  p e r i o d  o f  t i m e ,  and t h e  p r e c i s i o n  w i t h  which t h e y  

c a n  b e  e s t i m a t e d  f rom t h e  c a l i b r a t i o n  d a t a  i s  l i m i t e d .  S e t t l i n g  

v e l o c i t i e s  f o r  p h y t o p l a n k t o n  and  t h e  p a r t i c u l a t e  f r a c t i o n  o f  

n i t r o g e n  have  u n c e r t a i n t i e s  o f  - 8 0 % ,  whereas  phosphorus  s e t t l i n g  

i s  u n c e r t a i n  t o  - 200%. The c a u s e s  o f  t h i s  d i f f e r e n c e  a r e  un- 

known a t  p r e s e n t .  

P e r h a p s  t h e  mos t  s t r i k i n g  r e s u l t  i s  t h e  l a r g e  u n c e r t a i n t y  

a s s o c i a t e d  w i t h  t h e  z o o p l a n k t o n  k i n e t i c  c o e f f i c i e n t s .  Zooplank- 

t o n  g r a z i n g  r a t e s  a r e  u n c e r t a i n  by a p p r o x i m a t e l y  a  f a c t o r  o f  two,  

whereas  h e r b i v o r o u s  a s s i m i l a t i o n  e f f i c i e n c y  and r e s p i r a t i o n  

approach  o r  exceed  t e n f o l d  u n c e r t a i n t y .  Al though t h e  magn i tude  

o f  t h e  u n c e r t a i n t y  i s  somewhat m i s l e a d i n g ,  t h e  f a c t  t h a t  zoo- 

p l a n k t o n  k i n e t i c s  a r e  t h e  l e a s t  c e r t a i n ,  i n  t e r m s  o f  t h e  cer- 

t a i n t y  w i t h  which t h e i r  k i n e t i c  p a r a m e t e r s  a r e  known, i s  e x p e c t e d .  

The a b s o l u t e  magn i tude  o f  t h i s  zoop lank ton  u n c e r t a i n t y  s h o u l d  

n o t  b e  t a k e n  a s  h a v i n g  q u a n t i t a t i v e  s i g n i f i c a n c e  b e c a u s e  o f  t h e  

l a r g e  model e r r o r  a s s o c i a t e d  w i t h  t h e  m i s c a l i b r a t i o n  and  t h e  

s u b s t a n t i a l l y  f ewer  z o o p l a n k t o n  measurements  t h a t  a r e  a v a i l a b l e  

i n  t h e  1972 d a t a  s e t .  

4.2. P a r a m e t e r  C o v a r i a n c e  

The o f f d i a g o n a l  e l e m e n t s  o f  t h e  p a r a m e t e r  u n c e r t a i n t y  co- 

v a r i a n c e  m a t r i x  s p e c i f y  t h e  d e g r e e  t o  which u n c e r t a i n t y  i s  c o r -  

r e l a t e d .  T a b l e  4 p r e s e n t s  t h e  r e s u l t s  f o r  t h e  p h y t o p l a n k t o n  

k i n e t i c s .  U n c e r t a i n t y  i n  growth  r a t e  and  r e s p i r a t i o n  r a t e  i s  

s t r o n g l y  p o s i t i v e l y  c o r r e l a t e d .  To u n d e r s t a n d  t h e s e  and o t h e r  

r e s u l t s ,  c o n s i d e r  t h e  s i m p l i f i e d  e q u a t i o n  f o r  p h y t o p l a n k t o n  

c h l o r o p h y l l ,  P I  t o t a l  i n o r g a n i c  n i t r o g e n ,  N ,  and  a v a i l a b l e  phos- 

p h o r u s ,  p ,  i n  k i n e t i c  form: 

. N P  W P =  ( K r  - K2)P - -P + . * .  'I K m N + N K  + p  H I 
(351 

mP 



where K1 is the growth rate, r is a light reduction factor 

(assumed to be known) , K2 is the respiration rate, w is the 
settling velocity and H is the layer depth. KmN and K are 

mP 
the llichaelis constants for inorganic nitrogen (N) and soluble 

reactive phsophorus (p). The nitrogen and phosphorus to chloro- 

phyll ratios are aNp and a 
PP ' 

Since the calculated quantity of 

chlorophyll depends on the difference between K1 and K2, if the 

actual K1 is larger than estimated, it follows that the actual 

K2 is also larger than estimated. The quantity within the 

parentheses can be estimated with a precision that exceeds the 

precision of estimation for each parameter within the expres- 

sion. Therefore uncertainties are correlated in such a way as 

to keep the net growth rate within the range implied by the 

calibration data. A similar reasoning explains the positive 

correlation between growth rate and phosphorus Michaelis constant. 

The strong negative correlations between growth rate and the 

nutrient stoichiometric coefficients 4dp and a PP ' follow from 
the nutrient equations (36) and (37). If growth rate is in- 

creased, then in order to keep nutrient uptake rate within 

observed bounds, the stoichiometric coefficient must decrease. 

The strong respiration rate-stoichiometric coefficients correla- 

tion follows from their correlations to growth rate. The strong 

inverse correlation between the inorganic nitrogen and phosphate 

Michaelis constants is a consequence of the dependence of growth 

and uptake on the product of Michaelis Menten expressions. In 

order for that term to remain constant the uncertainty must be 

negatively correlated. 

The strong positive correlation between the nitrogen/chloro- 

phyll and phosphorus/chlorophy11 stoichiometric ratios suggests 

that their quotient is the quantity that is actually being esti- 

mated. That is, the nitrogen to phosphorus ratio of the popu- 

lation is more accurately estimated and the tendency to keep 

this quantity between narrow bounds explains the strong positive 

correlation in the uncertainties of both other ratios. 

The importance of these cross correlations also becomes 

evident when the prediction error is considered, as shown sub- 



sequently. Consider the phytoplankton growth equation. For 

any set of exogenous variables the population net growth rate 

is determined by the difference between the growth and respira- 

tion rate. The difference between two almost equal uncertain 

expressions is more uncertain than either expression considered 

individually. This observation appears to imply that the error 

in net growth rate will be so large that prediction becomes 

impossible. However, the strong correlation of uncertainties 

modifies this result since the presence of a positive covariance 

between the two terms lessens the uncertainty of the difference. 

That is, for only K, and K2 uncertain and a, ,a2 constants, the 

variance of the difference is: 

The first two terms on the right-hand side of this equation 

represent the amplification of error since although the mean 

value of the difference is computed by a difference: 

the first two terms of the variance are a sum of the variances. 

It is the third term in eq. ( 3 8 )  that mitigates this effect. A 

strong positive correlation implies that the uncertainty of the 

difference is not as large as it would be if the uncertainty of 

both terms were independent. 

This tends to suggest that large parameter uncertainties 

per se are not a sufficient condition for the conclusion that 

prediction errors will be large, since the cancellation due to 

cross-correlated uncertainties may be quite important. However, 

although the prediction error for situations near that used for 

the calibration might not be excessive in the presence of large 

parameter uncertainty, as the predicted state moves into new 

regions of state space the fortunate cancellations may decrease 

with the consequent increase in prediction error. 



4.3. Effect of Unobserved State Variables 

The relationship between the quantity of data available 

and parameter uncertainty is illustrated in Table 5. Uncer- 

tainty estimates for the case of only epilimnion data available 

as well as both epilimnion and hypolimnion data are compared. 

These results are computed by withholding the hypolimnion 

compartments from the sums in the elements of the covariance 

matrix, eq. ( 3 0 ) .  The index k ranges only over the epilimnion 

concentrations. Parameters that affect phytoplankton growth 

are not greatly influenced by the lack of hypolimnion data. 

However, respiration uncertainty increases ( 6 2  to 1 1 0 % )  since 

it has a greater role in the hypolimnion which is below the 

euphotic zone. It might also be expected that phytoplankton 

settling velocity uncertainty would be greatly increased with- 

out hypolimnion observations whereas the results in Table 5 

indicate that only a modest change, 66 to 7 4 $ ,  takes place. 

The probable reason is that at 0.1  m/day settling velocity and 

a 7 3  m depth of the hypolimnion, the effect of the settling 

velocity on hypolimnetic chlorophyll concentration is small 

during the period of stratification and, therefore, the obser- 

vations do not contain much information about this parameter. 

As a general rule, the magnitude of the cross-correlation 

coefficients decreases somewhat for only epilimnion data available. 

This might indicate that the prediction error will increase due 

to lack of cross-correlation as well as due to increased param- 

eter uncertainty. 

The effect of unobserved state variables is further illus- 

trated in Table 6. The epilimnion observations only are used 

and uncertainties for phytoplankton, zooplankton and phosphorus 

parameters are calculated. The effect of withholding the chloro- 

phyll and zooplankton data is shown in the second column. It 

appears that phytoplankton parameter uncertainties are not unduly 

affected. This result is rather surprising at first glance, 

since it suggests that it is possible to estimate phytoplankton 

kinetic coefficients without any direct observations of phyto- 

plankton concentration. However, the result is due to an 

assumption implicit in this particular calculation. For this 



example the nitrogen kinetic parameters are assumed to be known 

exactly; they were not included in the uncertain parameter set. 

Therefore using the certain nitrogen parameters and observations 

it appears that is is possible to deduce the phytoplankton param- 

eters without a large increase in estimated uncertainty. It is, 

therefore, an artefact of this particular calculation. It is 

included in Table 6 as an illustration of the effect of assuming 

that some parameters are known exactly. 

The effect of withholding phytoplankton and zooplankton 

observations on the zooplankton kinetics is striking. The uncer- 

tainties, which are large to begin with, increase almost tenfold 

without zooplankton observations. 

Removing the nitrogen observation, as well as phytoplank- 

ton and zooplankton, increases the phytoplankton uncertainty by 

tenfold as well. Therefore it is reasonably clear that obser- 

vations of these primary state variables are critical in order 

to reduce parameter uncertainty. It is likely that similar 

results would be obtained for other unobserved state variables. 

This suggests that model frameworks which include unobserved 

state variables are likely to have very large parameter uncer- 

tainties associated with these state variable kinetic coeffi- 

cients. 

4.4. Estimation of Model Prediction Uncertainty 

The model prediction uncertainty due to parameter uncertainty 

is obtained from: 

No No afkj 
~ { f  (t :0)1 = 1 1 (aOcr afkj, 

k j 
1 (- ao cov (Oa,OB) , (40) 

a=l B=1 B 

by making the assumption that the second and higher order terms 

in a Taylor series expansion for f (t ;El + 60) around the nominal 
k j 

point can be neglected. Therefore, the result obtained with 

Eq. (40) is only meaningful if the model responds linearly to 

changes in parameters. If this is not the case a Monte Carlo 

simulation, perturbing the parameters in accordance with the 

estimated variance-covariance structure, would be required. 



Consider the results to be expected if the "prediction error" 

is calculated for the nominal parameter estimates and the exog- 

enous variable values which characterize the calibration data 

set. Since, in this case, an estimate of the model error (which 

would be the prediction error if the calibration data were not 

available) is in fact available, a comparison of the "predic- 

tion error" for this case and the estimated model errors provides 

a check on both the validity of the covariance estimate and the 

prediction error equation. The results are shown in Table 7. 

The range in prediction error computed over the year (actually 

at the times for which there are data available) is compared 

to the estimated model error. In all cases the prediction error 

is less than the model error. For most of the variables, the 

maximum computed prediction error approaches the estimated model 

error. Since the exogenous variables and the time periods of 

calculation are the same for both the model error estimate and 

the prediction error estimate it is expected that these errors 

should be nearly equivalent. The lower prediction error esti- 

mates are probably due to either the fact that the nominal param- 

eters are not the maximum likelihood estimates, or that the 

prediction error equation neglects higher order terms, or both. 

It is uncertain at present which of these two sources of errors 

is the most serious. 

It is worthwhile noting that (40) can also be written as: 

vif (t ;O)I = afkj, 
k j  

) (- ao cov (Oa,OB) . (41) 
a= 1 a=1 B=1 B 

Thus, the model prediction variability can be attributed to the 

parameter variance per se, and a contribution due to the param- 

eter cross correlations. The latter term is negative, due to 

the sign relation between gradients and parameter covariances. 

Therefore, the total variance is lower than would be obtained 

if only the parameter variance were taken into account. It is 

of interest to investigate the extent to which the cross-cor- 

relation of the uncertainties reduces the predicted error for 

this case. The results are shown in Table 8, which ?resents 

the prediction errors at the times at which data are available 



so that the seasonal variation can also be observed. These 

results clearly highlight the importance of the cross-correla- 

tions. If these are neglected and only the parameter variances 

are considered, the error of prediction is enormously inflated. 

This would lead to erroneously little confidence in the model 

predictions. 

The seasonal variation of the prediction error is of interest. 

In general the relative uncertainties are highest during the 

growing season. This is particularly apparent for chlorophyll-a, 

which has the highest uncertainty in the period of zooplankton 

growth. Since the zooplankton growth is highly uncertain, the 

accuracy of the chlorophyll-a predictions drops accordingly. 

Also the ortho-phosphorus and ammonia uncertainties are highest 

in the growing season, as a result of the coupling to phyto- 

plankton-zooplankton dynamics. For total kjeldahl-N, nitrate- 

nitrite and total phosphorus a relatively high accuracy is 

achieved for the entire year. 



5. COIJCLUSIONS 

The method proposed in this investigation for the analysis 

of parameter uncertainty and prediction error appears to be 

quite useful and relatively straightforward to implement. The 

estimation of the parameter covariance matrix for a twenty param- 

eter-sixteen state variable seasonal phytoplankton model is 

direct, although it does require multiple integrations of the 

differential equations (three or four per parameter depending 

on the accuracy required for the Jacobian elements). Pre- 

liminary experience with the parameter estimation algorithm, on 

the other hand, has not been favorable. Therefore, the parameter 

covariance matrix computed using the asymptotic maximum likeli- 

hood estimate is, strictly speaking, not directly applicable. 

If it is assumed that the nominal parameter values are reason- 

ably close to the maximum likelihood estimate, then it is prob- 

able that the covariance matrix is reasonably close also. In 

any case its utility can be seen in terms of the insights 

regarding the estimable parameter groups and the probable error 

of the individual parameters. 

The prediction error equation is a linearization about the 

nominal parameter values. As a consequence it is also an approx- 

imation. For the case of the nominal parameters and the 1972 

data set, the prediction error is calculated to be somewhat 

lower than the actual model error. Whether this is due to the 

linearization or the lack of maximum likelihood estimates is 

uncertain at present. Roughly speaking, and based only on 

limited computational experience, the method appears to produce 

parameter covariances and prediction errors that are somewhat 

lower than the actual values, but they appear to be reasonable 

and, therefore, in spite of the inaccuracy, useful for inter- 

pretations and, with qualifications, quantifications of param- 

eter and prediction uncertainty. 

With regard to the actual numerical values for the parameter 

and prediction uncertainties computed for the Lake Ontario model, 

it should be pointed out that both the parameter covariances and 

prediction errors are larger than would be the case if the 



nominal parameters and exogenous variables for the original 

calibration ( 1 9 6 7 - 1 9 7 0 )  had been modified to more closely 

match the 1972 data set and exogenous variables which were 

used to estimate model error variances. As a consequence these 

larger than normal model errors tend to inflate the parameter 

covariances and prediction errors. Thus the actual values 

listed in the tables should be considered only as indicative of 

the behaviour to be expected from parameter uncertainty covar- 

iance~ and prediction errors and not of their absolute numerical 

values. A more complete study using a carefully calibrated 

model would be required to establish the probable range of 

parameter uncertainties and prediction errors. 



Table 1.A The biological system, sources ( + )  and s i n k s  ( - )  

P 
(pliy toplankton)  

z1 z2 
(herbivorous  .eocplonXton) ( ca rn ivorous  zooplankton) 

P rcccss  ' 

C C 
Growth (.I.]r N . d?- p 

'1 K + C  
K m ~  + mp p 

R e s p i r a t i o n  - K2 (TIP 

Herbivorous - C (T) ZIP 
g r a z i n g  9  

Herbivorous 
r e s p i r a t i o n  

Carnivorous 
g r a z i n g  

Ca rn ivorous  - K4(T)Z2 
respiration 

---. - -- 

Paramc? t e r  -- Nominal value  ( a t  15  C t~ l i e re  a p p l i c a b l e )  

Phytoplankton 

Growth r a t e  
I 

Resp i ra t ion  r a t e  K2 (T) 0.07 day-' 

PI-Michaelis cons tan t  Km 0.025 mg I4/1 

PO -Michaelis  cons tan t  
4  

K 0.002 mg P/1 
mp 

S e t t l i n g  v e l o c i t y  - 0 .1  m/day 

Zooplankko? 

Carbon/Chlorophyll r a t i o  

Herb:.vorous grazing 

Herb. a s s i m i l a t i o n  e f f .  

Herb. r e s p i r a t i o n  

Herb. g raz ing  s a t u r a t i o n  

Carnivorous grazing 

Cam. a s s i m i l a t i o n  eff. 

Carn. r e s p i r a t i o n  

0.05 mg C/pg 

0.9 l/mg C day 

0.6 

0.9 l/mg C day 



Table 1.B The n i t r o g e n  system, sources  (+) and s i n k s  ( - )  

P r o c e s s  
3  

( O r g a n i c  N) 

Organic  n i t r o g e n - '  
ammonia t r a n s f o r m a t i o n  

N i t r i f i c a t i o n  

P h y t o p l a n k t o n  u p t a k e  - a a  G P  - ( 1  - a )  aNpGpP 
NP P  

P h y t o p l a n k t o n  
endogenous r e s p i r a t i o n  

Zooplankton  
endogenous r e s p i r a t i o n  

+ aNpK2 (TI P 

+ aNZK3 (TI Z  

Zooplankton  e x c r e t i o n  + ( a  C (T) ZP - aNZGZZ) 
Np 9 

Table 1.C The phosphorus system, sources  (+)  and s i n k s  ( - )  

* P r o c e s s  6  
( O r g a n i c  P) 

O r g a n i c  phrosphorus-  
o r  t h o p l ~ o s p h o r u s  t r a n s f o r m a t i o n  

P h y t o p l a n k t o n  u p t a k e  - a  G P  
PP P  

P h y t o p l a n k t o n  endogencus  r e s p i r a t i o n  + a  K (TIP 
PP 2 

Zooplankton  endogenous  r e s p i r a t i o n  + a K (T)Z 
PP 3  

z , ,oplankton e x c r e t i o n  + (appCg (T) ZP - a  G Z) 
PZ z 

P a r ~ r o c t e r  - Nolninal va!,.~? ( a t  1 5  C wlicre a p p l i c a k ~ l e )  - - - - - - . . . 

N i t r o g e n  ---- 
N i t r o g e n / c h l o r o p h y l l  r a t i o  a 0 . 0 1  mgN/pg 

NP - 1 
O r g a n i c  N -+ NiI 3 K34 (TI 

0.026 d a y  

N H ~  -+  NO^ K~~ (T) 0 .03  day-' 

N s e t t l i n g  - 0 . 0 0 1 d a ~ - ~  

P h o s p h o r u s  

~ h o s p h o r u s / c h l o r o p h y 1 1  ra t io  

U n a v a i l a b l e  P  -+ PO4 

P s e t t l i n g  

0 . 0 0 1  mg P/pg 
-1 

0.105 d a y  
-1 

0 .001  d a y  

Mote: a = a  
NZ NP/al 

a = c  
4/ (c4+c5) 



Variable 

EPILIMNION 

Chl a 

TKN 

NH3-N 

NO3-N 

T- P 

PO4-P 

HYPOLIMNION 

Chl a 

TKN 

NH -N 
3 

NO3-N 

T-P 

PO4-P 

Table 11. Model error variance at nominal parameters. 

Data 
Average 
(1972) 

Wdel 
Std. Dev. 

Coef. of 
Variation 

Data Average Spatial 
Std. Dev. 



T a b l e  111. Paramete r  u n c e r t a i n t y .  

Coefficients of ~criation (%)  

(all data) 

Phytoplankton 

Growth rate 

Resp. rate 

N. Michaelis 

PO Michaelis 
4 

N/Chla 

p04/Chla 

Settling vel. 

Nitrogen 

NH3 + NO3 

N Settling 

Phosphorus 

Unavail P + PO 
4 

P Settling 

Zooplankton 

C/Chl 
a 

H. grazing 

H. assim. eff. 

H. resp. 

H. graz. sat. 

C. grazing 

C. assim. eff. 

C. resp. 
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Table V I .  E f f e c t  of missing s t a t e  v a r i a b l e  observa t ions  
on parameter unce r t a in ty  

coefficients of variation (%) 

(surface layer data only) 

only nitrogen only 
all variables and phosphorus phosphorus 

Phvtovlankton 

Growth rate 

Resp. rate 

N. Michaelis 

PO Michaelis 4 
~ / c h l ~  

p04/Chla 

Settling vel. 

Nitrogen 

Org . N -+ NH3 

NH3 -+ NO3 

N setting 

Unavail P -+ PO 4 
P setting 

Zooplankton 

C/Chl 
a 

H, grazing 

H. assim. eff. 

H. resp. 

H. graz. sat. 

C. grazing 

C. assim. eff. 

C. resp 



Table VII. 

Comparison of Prediction Error and Model Error 

Variable 
1.: 

Prediction Error Model Error 

Range in Jv{fk(tj,e) 

Epilimnion 

Hypolimnion 

Chl a 

H. Zoop 

C. zoop 

TKN 

Total P 

9 Chl a 0.2 - 0.88 
12 NH3-N 5.9 - 12.0 
13 NO3-N 6 - 10 
14 TKN 10 - 13 
15 Total P 0.67 - 1.0 



Table VIIL. 

Coefficients of variation ( % )  for model predictions due to parameter uncertainty. 

u = variance 

u = variance neglecting parameter covariance structure 
P 

Total P 
u u 

P 

3 8 

4 15 

6 2 3 

8 3 5 

12 12 1 

4 4 7 

3 22 

4 2 0 

Cruise 

1 

2 

3 

4 

5 

6 

7 

8 

n Zooplankton 
u u 

P 

172 2607 

50 1628 

789 2478 

398 1473 

Chlorophyll-a 
u u 

P 

4 2 228 

2 8 126 

3 2 466 

15 5 3481 

5 1 162 

28 175 

55 301 

Ortho - P 
u u 

P 

18 122 

134 807 

17 6 498 

7 3 945 

140 770 

3 1 190 

10 78 

9 5 3 
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