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SUMMARY 

The useof an artificial basis for the simplex method was 

suggested in an early paper by Dantzig. The idea is based on an 

observation that certain bases, which differ only in a relatively 

few columns from the true basis, may be easily inverted. Such 

artificial bases can then be exploited when carrying out simplex 

iterations. This idea was originally suggested for solving 

structured linear programming problems, and several approaches, 

such as Beale's method of pseudo-basic variables, have indeed 

been presented in the literature. 

In this paper, we shall not consider the structure expli- 

citly; rather its exploitation in our case is expected to result 

directly from the choice of an artificial basis. We shall consi- 

der this basis to remain unchanged over a number of simplex iter- 

ations. In particular, this basis may be chosen as the true 

basis which has been most recently reinverted. In.such a case 

our approach yields an interpretation for a basis representation 

recently proposed by Bisschop and Meeraus who point out very 

favorable properties regarding the build-up of nonzero elements 

in the basis representation. 

Our approach utilizes an auxiliary basis, which is small 

relative to the true basis, and whose dimension may change from 



one iteration to another. We shall finally develop anupdating 

scheme for a product form representation of the inverse of such 

an auxiliary basis. 



ON THE SIMPLEX METHOD USING 
AN ARTIFICIAL BASIS 

Markku K a l l i o  

1 .  I n t r o d u c t i o n  

For  s o l v i n g  c e r t a i n  s t r u c t u r e d  l i n e a r  programming problems 

v i a  t h e  s implex method, Dan tz ig  [4] s u g g e s t s  t h e  u s e  o f  an  a r t i -  

f i c i a l  b a s i s  and a t r u e  b a s i s .  The power o f  u s ing  an  a r t i f i c i a l  

b a s i s  r e s u l t s  from i t s  c h o i c e  so t h a t  i t s  i n v e r s e  i s  ea sy  t o  

o b t a i n  compared t o  t h a t  of  t h e  t r u e  b a s i s ,  and so t h a t  t h e s e  

two b a s e s  d i f f e r  o n l y  i n  a  r e l a t i v e l y  few columns. I n  p a r t i c u -  

l a r ,  it i s  sugges t ed  t h a t  t h i s  approach i s  a p p r o p r i a t e  when t h e  

c o n s t r a i n t  m a t r i x  o f  a  l i n e a r  program i s  b lock  t r i a n g u l a r ,  such  

a s  i n  t h e  c a s e  of a  dynamic l i n e a r  program, f o r  i n s t a n c e .  The 

a r t i f i c i a l  b a s i s  may t h e n  be  chosen a s  a  s q u a r e  b lock  t r i a n g u l a r  

m a t r i x .  Beale  [ I ]  h a s  adopted D a n t z i g ' s  s u g g e s t i o n  f o r  t h e  

b lock-angular  l i n e a r  program. I n  t h i s  c a s e ,  t h e  a r t i f i c i a l  

b a s i s  can  be  chosen t o  be  a s q u a r e  b lock  d i a g o n a l  m a t r i x .  

I n  t h i s  pape r  w e  s h a l l  c o n s i d e r  a  l i n e a r  program which may 

o r  may n o t  have a s p e c i a l  s t r u c t u r e .  Our main g o a l  is  t o  show 

how t h e  computa t ions  may b e  c a r r i e d  o u t ,  i n  g e n e r a l ,  when an  a r t i -  

f i c i a l  b a s i s  i s  be ing  used.  Although w e  s h a l l  n o t  c o n s i d e r  any 

s p e c i a l  s t r u c t u r e  e x p l i c i t l y ,  t h e  e x p l o i t a t i o n  o f  a  s t r u c t u r e  

r e s u l t s d i r e c t l y  from an a p p r o p r i a t e  c h o i c e  f o r  t h e  a r t i f i c i a l  



basis. The artificial basis is assumed to remain unchanged 

during a number of consequent iterations. Several strategies 

may be adopted for changing the artificial basis. In particular, 

the most recently reinverted true basis may play the role of an 

artificial basis. In this case, our approach yields the basis 

representation which Bisschop and Meeraus [2] derive from a matrix 

augmentation and partitioning approach. 

Let k be the number of columns in which the artificial 

basis differs from the true basis in our approach. Following 

Beale [I], we shall call pseudo-basic the k variables in the 

artificial basis which are not in the true basis. When choosing 

an artificial basis, it is desirable that k is small. Thereafter, 

until the subsequent choice, the number of pseudo-basic variables 

cannot increase by more than one at each simplex iteration. 

For carrying out simplex iterations, we shall introduce yet 

an auxiliary basis, which has as many columns (and rows) as there 

are pseudo-basic variables. Thus, the auxiliary basis is likely 

to be small compared with the true basis. As the number of pseudo- 

basic variables may also decrease, the dimension of an auxiliary 

basis may increase, decrease or remain the same. In particular, 

at each iteration (until redefinition of the artificial basis) 

the auxiliary basis changes so that either a row or a column 

changes, a row and column is deleted, or a row and a column is 

appended to the auxiliary basis. In the final part of this pa- 

per we shall show how the inverse of this basis can be updated 

in a product form framework. 

2. Preliminaries 

Consider the linear programming problem (LP): 

f i n d x E ~ ~  to , 

(LP1) maximize cx, 

(LP2) subjecttoAx=b , 
(-3 X > O  - , 

n where c = (c.) E R , A = (a') E Rmn, and b E Rm. Here c and a' 
j 

are the jth zlement of vector c and column of matrix A, 



respectively. We assume that A is of full row rank. For the 

sake of simplicity, we assume also that (LP) is nondegenerate: 

for any basis BI all elements of B-'b are nonzero. 

We shall consider the revised simplex method [3] for (LP). 

A main difficulty then arises in how the basis inverse should 

be represented and updated along the iterations. In the following 

we develop a basis representation, where, instead of the inverse 

of the true basis, the inverse of a small auxiliary basis is up- 

dated at eachsimplex iteration. The computations needed for an 

iteration are then carried out using the inverse of the auxiliary 

basis as well as the inverse of an artificial basis. The latter 

one remains unchanged from one iteration to another (until a new 

artificial basis is chosen). 

For expository purposes, we shall adopt the following point 

of view from reference 151 on the simplex method: 

A system solution satisfies (LP2), a homogeneous solution 

satisfies Ax = 0 and a feasible solution satisfies (LP2) and 

(LP3). If x is a feasible solution and z is a homogeneous 

solution, then x + 8z is feasible as long as it is non-negative, 
for 8 E R. As 8 increases, the objective function increases if 

and only if cz > 0. The simplex method chooses as z one of the 

vectors corresponding to (changing the value of) a nonbasic 

variable, and cz > 0 is the reduced cost for that variable. The 

new feasible solution x + 82 is found by increasing 8 (and the 
objective function) as much as possible before violating the 

nonnegativity constraint. Provided that 8 is bounded, the new 
feasible solution is a basic solution. 

We shall now consider how the nonbasic variables are priced 

out and how such a homogeneous solution z is computed using an 

artificial basis and an auxiliary basis. 

3. A Simplex Iteration 

Consider an iteration of the simplex method. Let B be the 

current artificial basis and f3 the set of the basic variables 

corresponding to B. We shall not distinguish between a variable 

and its index. Thus f3 as well refers to the set of indices of 



basic variables. Let y  be the set of current basic variables, 

G the current true basis, and x the corresponding basic feasible 

solution. Denote by 7 and 7 the complements of and y respec- 

tively. We have xi > 0 for i E y  and (~-'b)~ ? 0 for i E B (by 

nondegeneracy) and x = 0 for i E 7. In particular x = o for i i 
i E B n 7 ,  representing the set of pseudo-basic variables. simi- 

larly, y (7 is the set of variables which are in the true basis 

but not in the artificial basis. Let k be the number of elements 

in this set. Also the number of elements in the set of pseudo- 

basic variables f l y  is k. For practical applications we may 

assume that 0 - < k < m. This will be guaranteed by an appropriate 

strategy of choosing the artificial basis. 

For convenience (without loss of generality), we may assume 

that 

- 
n B = 11,2, ..., k) , 

Y n 6  = ik + 1, k + 2, ..., m) , 
y  n E =  {m + 1, m + 2 ,  ..., m + k) , and - 
Y n B =  {m + k + 1 ,  ... nl . 

The situation may then be depicted as in Figure 1, which shows 

the constraint matrix A multiplied by the inverse of B. For con- 

venience, we shall now first consider the computation of the 

direction vector and thereafter the pricing operation needed 

in a simplex iteration. 

- - 
B n y  B n~ B ~ Y  B n y  

Figure 1 



Computation of Direction z 

For j E B, define a' Z B-' aj. Thus, a' is the alfa-column 

of variable j corresponding to the artificial basis B. Define 

an n-vector z j componentwise as follows : 

I 0 , otherwise. 

-1 j Then AZ' = B(-B a ) + a' = 0; i.e. zJ is a homogeneous solution. 

In particular, for the simplex method, zJ is the direction of 

change in the solution which corresponds to the basis B and an 
j increase in the nonbasic variable j E B. In this case, d = cz j 

is the reduced cost for variable j corresponding to the artifi- 

cial basis. 

Let e E y be the variable to be increased during the cur- 
rent iteration. The pricing operation needed for determining 

e will be discussed below. For the current solution x, we define 

z as the direction of change as follows: 

where w = (w.) is a k-vector of weights. Notice, that e may be 
3 

in 6 n 7. In this case we define ze z 0. Clearly, A (x + 8z) = b, 

i.e. x + 8z is a system solution, for any 8 > 0. However, x + 8z 
may not be a feasible solution for any 8 > 0. Thus, further 

restrictions on w are needed to guarantee that z is a feasible 

direction. (For such a discussion, see reference [ 5 ]  ) .  In 

particular, the simplex method requires that (besides e) only 

currently basic variables i E y may be changed when moving in 

direction z. Thus, we require that zi = 0 for current nonbasic 
- 

variables i E such that i f e (the nonbasic variable to be 

increased). Notice that this requirement is already satisfied 

for i E n by definition of z in (1) and (2). 



As illustrated in Figure 1 ,  we define a kxk-matrix Q as 

follows: 

Then, we have the following result: 

Lemma I .  Q is nonsingular. 

Proof:  According to Figure 1, define 

is nonsingular because B and G are nonsingular. Thus, Q is non- 

singular. ( 1  
We may call Q an auxiliary basis and define 

-e = e where the k-vector a - (ai:i E f3 n 7 ) .  In this notation 
we have 

Lemma 2 .  If w = (w;) is defined by (4), then z defined by 
J 

(2) is a homogeneous solution for which z = 1 and zi = 0 for 
e 

all i E 7 such khat'i # e; i.e. z is the direction of change 
in the solution which corresponds to an increase in the nonbasic 

variable e E during the simplex iteration. 

Proof:  For i E $ n 7 ,  we have 

where ; comprises the k first components of ze. For i E n 7 ,  
we have by definition zi = 0 for i # e and zi = 1 if i = e. 

Thus z is a homogeneous solution, for which the nonbasic compo- 

nent e is equal to 1 and all the other nonbasic components z 
i 

i E 7 ,  are equal to zero. The result then follows from the 

uniqueness of such a homogeneous solution.(l 



We define E = (aJ : j E B n y) as the matrix of columns 
in A corresponding to the basic variables which are not in the 

artificial basis, and we carry out the computations needed to 

obtain z as follows: 
e If e E n 7 ,  compute a = B-'ae using the pseudo-basis B and 

e the entering column a . For e E f3 n 7, ae = B-'ae is a unit 

vector needing no computation. Let ze consist of the k first 
e -1-e elements of a , as above, and compute w = Q a using the aux- 

iliary basis Q. Carry out multiplication Ew. Thereafter, the 

direction of change in basic variables f3 fI y can he obtained from 

-ae + B-I (Ew) as the last m-k components of this vector. The vec- 

tor w indicates the change for variables i, for i E 'E f~ y. 

Pricinu Out Nonbasic Variables 

We shall next consider the computation of the reduced 

cost for a nonbasic variable j E 7. 'As noted before, d. = cz j 
3 

= c - naJ is the reduced cost of j corresponding to the artificial 
j 

basis. According to ( Z ) ,  when moving in the direction z, for 

e = j E 7 ,  the rate of change in the objective function is 
cz = d. + widi. If w is given by ( 4 ) ,  we have, by Lemma 2, 

3 
iEJ9 

for the reduced cost of j E y corresponding to the true basis G I  

where the k-vector d (di : i E f~ y) is the vector of 

reduced costs (corresponding to B) for 3 fI y. We denote 

Thus (6) becomes 

where 0 is an (m-k)-vector of zeros and 



Here n' may be interpreted as the correction to be made in the 

price vector n corresponding to B to obtain the price vector 

correspondi.ng to G. 

Thus, the computations needed for pricing out the nonbasic 

variables j E y are as follows: 

Compute p according to (7). For j E f3 n 7, notice that ~j is 
the jth unit vector and d = 0. Thus by (8) , cz =-d in this 

j j 
case. For j E 3 n 7, we first compute IT' according to (9) to 
obtain the current price vector T + T '  corresponding to G. As 

j usual, we then compute cz - c = (TT +  IT')^ . 
j 

4. A Product Form of Inverse for the Auxiliary Basis 

At the end of the simplex iteration, the entering variable 

e E replaces the leaving variable R in y. For updating the 

basis representation, we merely have to update the inverse of 

the auxiliary basis Q. Bisschop and Meeraus [ 2 ]  give updating 

formulas when Q-I is stored explicitly. Indeed, if the number 

of pseudo-basic variables remains truly small, an explicit rep- 

resentation can be appropriate. In the following, however, we 

shall develop a product form representation for Q-I. For this 

purpose, we assume that at the current iteration we have a 

k'xk'-matrix D, for some k' - > k, given in a product form such that 

where I is a (kt-k) x (kt-k) identity matrix. Using the product 

form representation of D, the computation of w and p (according 

to (4) and (7) ) can be done as follows: 

T --e T (W ,0) = ( ( a  ,o)D~ and (~1~0) = (d,O)D (11) 

In one iteration the dimension of the auxiliary basis Q 

may increase, remain the same or decrease. However, we do not 



let the dimension of D decrease; it either remains unchanged or 

it increases (if the dimension of Q increases). We shall now 

consider separately the four possiblecasesfor updating the in- 

verse representation (1 0) for Q-'. We refer by 5 and D to the 
updated auxiliary basis and its representation, respectively. 

e E B, R E B. In this case, the column ze replaces 
-2 

column a in Q. Let zR be the rth column of Q. As usual (see 

e.g. [3]), D may now be updated through premultiplication by 

an elementary (column) matrix E,  whose rth column 17 is given 

componentwise by 

for 1 < i < k  and i # e  , - - 

- 
"i 

- for i = e , 

otherwise . 

For 5 and a, the updated matrices D and Q, respectively, we have 

where I again is a (k'-k)x(k'-k) identity matrix. Dimensions 

k and k' remain unchanged in this case. 

e E @, R E 6 .  In this case, row e of Q is replaced by p, 
Q - -1 - 

the Rth row of ( 1 .  First we have to compute p = pQ . In prac- 

tice, this may be done using the following formula: 

where I is the eth unit (row) vector. D is now updated through 
R th post-multiplication by an elementary (row) matrix, whose e row 

q is given componentwise as follows: 

I-Pi/Pe I - - for 1 < i < k  and i # e  , 

'i I for i = e , 

I otherwise - 



Again, if 5 and are updated matrices, then 

and the dimensions k and k' remain unchanged. 

e E B, L E f3. One column and row is now appended to both D 

and Q. For the purpose of simplifying notation, we shall assume 

such row and column permutations that the appended row and column 
are the (k+l ) th row and column, respectively, in the updated 

matrices and 0. Accordingly, to bring D to the same dimension 

as B, we assume that the (k+l ) th unit row and column vector is 
(implicitly) appended to these positions in all elementary mat- 

rices of the current product form of D. D results now from mul- 
tiplying D by two elementary matrices E and E2. For defining 1 -e these matrices, let p be given as in (13), let = aL, and define 

a row vector n1 and a column vector i2 componentwise as follows: 

l o  otherwise , 

for 

n: = I 1/6 1 for i = k + l  , 

I otherwise , 

- 
where 6 = - p w .  

- 1  
For determining D, the updated representation (10) for Q , 

we have the following result: 
1 

Lemma 3 .  Let El and E2 elementary matrices so that n' in 
(15) is the ( k + ~ ) ~ ~  row of El and q 2  in (16) is the (k+l) 

th 

column of E,. Then 



where I is the (kt-k) x (kl-k) unit matrix. 

Proo f :  By our notation, the updated auxiliary basis is 

Thus, we have 

- 
(where again 6 = $ - pw). Thus, E2E1D = 6. 1 1  

e E 8 ,  R E 8. In this final case, the eth row of Q and the 

column corresponding to the leaving column R has to be deleted 

from Q. Although the dimension of Q now decreases, we shall 

leave the dimension of D unchanged. Again, for the purpose of 

simplifying notation, we assume that, e = k and R is the last 

column of Q. We define an elementary (row) matrix T, and an 
th ' 1 elementary (column) matrix T2 for which the k row r( and col- 

CI 

umn q L  , respectively, are defined componentwise as follows : 



I otherwise . 

The following result completes the discussion of updating 

the product form representation of an auxiliary basis: 

Lemma 4. Let T, and T, be elementary matrices so that 
L 

q 1  in (19) is the kth'row of T' and q2 in (20) is the kth column 

of T2. Then for the updated representation 

where I is a (kg -k+l ) x (k' -k+l ) identity matrix. 

Proof: For the proof, we may refer to (1 7) and ( 1 8) where 
- 

Q, a, DI D and k now play the role of Q, Q, DI D and k-1, respec- 
tively. Because ae, in this case, is a unit vector w = Q -lZe 

is the kth column of Q-l corresponding to the vector [-y;t] in 
L -l 

(18). Thus, T, is the unique elementary (column) matrix E such 
L. 

that the kth column of ED is the kth unit vector. Thereafter, 
- 1 T1 (=El in ( 18) ) is the unique elementary (row) matrix E such 

that the kth row of ET2D is the kth unit vector. Thus 
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