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Consider an imaginary research institute where the

i

director has to make decision~ under uncertainty concerning

the institute's research funds which when received, must be

allocated by him between several projects. The project

leaders have supplied him with their utility functions

u
l

' u
2

' ... u
n

for their own project funding, that is, project

leader k uses utility function uk in matters concerning

funding for his own project.

Now the director decides that, given an amount of

research funding x, he will allocate an amount x k to project

k so as to maXlmlze

+ U (x )
n n

subject to the oonstraint xl + ... + x = x
n

The question considered here, posed to me by Ralph L. Keeney,

1S, what is the implied utility function of the director?

Note that what follows applies also to the case where

the director chooses to maX1m1ze

k u (x )
n n n

for some positive weights k.
1

slnce utility function U.
1

may

be rescaled without loss to k.u ..
1 1

Let

+ U (x )J
n n

s . t . + x = x
n
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Result I It is sufficient to consider the case n = 2 since

a general case may be obtained by repeated application of

the n = 2 case.

Proof.

We require

u (x) = max
x

I
+x

2
+x

3
= x

but let us consider first the function

v (y) = !'J.ax
Y2+Y3 = Y

It will be sufficieni for the result to show that

But

u( x) = max
xI+Y = x

max
xl +y = x

- max
xl +y 2 +y 3

. II

Hence' until further notice this paper will consider the

problem

u(x) = max
y

( I )

For clarification of notation

,.) Ii· I
f(X = dtf'(t) t=x
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so. for example.

d
-u(y-x)
dx

where

= ~(Y-X)(dY-l)
dx

u(y-x) = dU(t)1
dt

t=y-x

H2sult 2 An optimal y exists and 1S unique for (1) if

u and u are strictly concave.
1 2

Proof First note that ul(y) + u
2

(x - y) 1S strictly

concave 1n y since u
l

and u
2

are. and the sum of two

concave functions is concave.

Hence a maximum 15 attained and is un1que.

Define y(x) by the relation

U\X) ::: U (y(x)) + u,,(x - y(x))
1. ,:

then result 2 sLows that y(x) is well defined on x.

II

Result 3 If u l and u
2

are twice differentiable and strictly

concave then

I ,

u(x) = ul(y(x)) =

Proof

Let

then

Hence

de
dy

, I

= ul(y) - u 2 (x - y)

de
dy = 0 where

I

til (y) = ( 2 )
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Thid is a maXlmum Slnce 0(y) is strictly concave 1~ y.

Equation (2) will always be satisfied if it is assumed that
, I

the ranges of u l and u 2 are equal. For most utility functions

this range 1S - (X) 0), and thus (2) will hold.

Using a Taylor expans10n

, , ,
u(x) + 6x u(x) = ul(y) + 6y ul(y) + u 2 (x-y) + (6x-6y) u

2
(x-y).

( 3 )

and (1) and (2) glve that

I I I

oxu(x) = ll)y(u
l

(y)) + (ox-6y) u 2 (x-y) =
,

6xu
l

(y) II

Result 4 If the total funding x is increased then each

group rece1ves an increased allocation.

Proof Using a Taylor Expansion for the optimal y = y(x),

so that

u(x + 6x)

( ) ( I: I:) '( ) (5x-Oy)2 u", (x-y)+ u 2 x-y + uX-uy u 2 x-y + 2 2

using (1) and (2) gives

u(x+6x)
I ~ " (6x-6y)2 "

= u(x) + 6x u(x) + 2 ul (y) + 2 u 2 (x-y).

( 4 )

Maximizing (4) with respect to 6y implies that

" "oy ul(y) - (ox - cSy) u 2 (x - y) = 0



that J.S "u 2
(x - y)

fJ..x. = > 0
ox " "

u l
(y) + u 2

(x - y)

sJ.nce u and u
2

are strictly concave.
1

Al::;o

" "u
l

(y) + u
2

(x - y)
> 0

also so that each group receives a strict J.ncrease in

allocation. I I
Theorem ~ Assuming

(i) u
l

and u
2

are strictly increasing, strictly concave

with continuous ::;econd derivatives

then

I

(ii) u.(x) -+ 0
J.

-+ -00

as

as
J. = 1,2,

() ( I -1 I ) [( 1 + u' -2 1 u' 1 ) -1 ( x )Ju x = u
l

+ u 2 u
2

u l

Proof We have from (2) that

and since

an inverse

or

strictly decreasing and continuous it has
,

which is valid over the range of ul' so that

'-1 'x - y = u
2

u
l

(y)

'-1 '= (1 + u
2

u
l

) (y)



Since ~ > 0 and
dx
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~s continuous we have that

'-1 '
1 + ~2 u, ~s strictly increasing and continuous so that it

too has an inverse, hence
'\

(1 + '-1' ,-1 (x)y = u
2

U
l

)

Since

u(x) = ul(y) + u 2 (x - y)

from ( 5 ) and ( 6 ) we have that

'-1 ,
u(x) = ( u

l + u
2

u
2 ul) (y)

( G)

[(1 + ~;l ~l)-l (x)]

( 7 )

Note that the formula ~s entirely in terms of the known

functions u
l

and u 2 "

Examples

·11

Take

so the problem is, find u(x) such that

u( x) = ma.x
y [log (y + a) + log (x - Y + b)]

By Qifferentiating, setting to to zero we have

1
y + a

1
x - y + b = 0

x - y + b = Y + a

y = x - a + b
2



Hence

u(x) log( x - a + b) (x - b + a )= 2 + a + log 2 + b

Now to demonstrate that the same result may be had uS1ng

Thus

1
x + a

1
x + b

Now

'-1
(x)

1
bu

2 = x

'-1 ,
1

y(x) = (1 + u 2
u

1
) (x) = x + - u,

u
1

(x)

= 2x + a - b

Hence

= 2 1 (x - a + U + a)og 2

(
X + a + b) .= 2 log as requ1red.

2
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Hence u
l

= log(x + a) u
2

= log(x + b) yields a utility

function of log(x + a + b) for the director.

As an exercise for the reader, it may be shown

either ~y direct route or via (7) that if

-cx
u (x) = -e

1
and

-dx-e

, then

u(x) = -e

-cx= -eHence

function of -e

cd- --x
c+d

-dx= -e

for the director.

yields a utility

In these two standard cases u(x) is the same form as the

functions u l and u
2

•

Indeed if

then

-cx= -me

cd- --x
c+d

-e

-dx= -ne

that lS, the directors weighting of the projects does not

affect his decisions.

Theorem 2

If' each member of the group has

( i ) utility function
-ckx

a -e

( i i ) a utility function log(x

or ( iii ) a utility function -(x +

k = l, ... , n

+ a
k

) k = l, ... , n

b )-p P > 0, k = l, ... ,n
k

then the group utility function u lS independent of the

weightings given to the individual members utilities.

Proof Since it is merely a matter of solution the proof

will be omitted.

be ampl.ified.

However the statement of the theorem will



( i ) If
+W U

n n

where

then

u(x)

where

-cx
e

f ( ,.) > 0 and

1
c

(ii) If

1
+ ..• + c

n

then

u(x)

where

a

(iii) If'

= a
1

+ ... +a
n

g(o) > 0

then

u(x) h( ) (x + b)-P
= - wl '··· ,wn ' P

nCo) > :)

where b = b l + . .. + b n · 11

The importance of this result lies in the observation

that the group decision maker need only know the group
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members' utilities before making decisions on group funds.

He need not decide beforehand how he will weight the

importance of the group members. In particular the role

of group decisiun maker and weighting decision maker may

be divided between two different people (or groups) who

need not even communicate with each other.

The interestingly simple expression for the exponential

coefficient in Theorem 2 (i) can be generalized.

TheorPlli 3 If r(x) is the coefficient of risk for the group

utility function and rk(x) that for the individual members

then

1 1
r ( x ) = -r-

l
-:-(-x-

l
'7'")

1
+ r (x )

n n

wh.::re x
k

is the optimal allocation to group member k.

Freof Hecall that r(x)
"= _u(x),
u(x)

Note that this result ~s true whatever the forms of the

uk but that this does not imply the proof of a general

form of Theorem 2 because the optimal x
k

will depend on the

weightings.

For simplicity's sake we ,.ill. r~'G1l~ it for the case

n = 2.

Now

r
u(x)

,
= u

l
(y) = (8 )
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Thus, differentiating with respect to x,

"u(x) = ~l(Y) £x.dx

From the proof of Result 4

"u,) (x - Y)
.s!.l. :=

L

dx " "u1(Y) + 11 ') ( X - Y)
,:..

" "
" U1 (Y) u

2
(x - y)

u(x)= " "Ul(Y) + u
2

(X - Y)

that lS

1 1 1
-11-- - "

+
"u(x) u1(Y) u

2
(x - Y)

Using ( 8 ) once more we have that

,
u(x)- -,,--
u(x)

=

whic~ gives the result.

trivial using Result 1.

The extension to a general n is
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The following is a characterization (perhaps not complete)

of functions having the property of Theorem 2.

Theorem 4 If all members of the group have a utility

function

then u(x) the group utility function, 1S independent of the

weightings assigned to the group members if

( i ) 8v(~) = v(x + f(8))
-1

(where f exists)

or if (ii) v(8x) = v(x) + g(8)

F'rc,o f Note that it 1S sufficient for (i) to tak~ b
k

= 0

and for (ii) to take a k = 1.

We will al~o just prove it for the case n = 2.

(i) At optimality

,
D.lGv(uly) =

or using property (i)

'-I
Since v exists

a (x - y)
2

and

y
D. 2x-f(6)

= a l + a
2



u(x)
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vhich is independent of the veighting 8.

(ii) At optimality

I

v(b
2

+ x - y)

No .....
I

8v(x)
I X= v(-)

8
from (ii)

hence

or y

= b,... + x - y
c...

1 + 8

vhich again 1S independent of the veightings. II



Concluding Remarks
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Results have been presented when a

group decision maker allocates resources uS1ng the criterion

of max1m1z1ng total utilities. This criterion has not been

justified, although Theorem 2 suggests to me that it may

well be reasonable and certainly simple to use.

Additivity is not essential for many of the results.

For example if the criterion used is

u (x )
n n

Many of the results are actually simpler because the problem

of weightings does not arise. The results of this paper may

be applied very straightforwardly to the situation

log u(x) = max
xl + .. • + x

n
= x




