Power-to-gas and power-to-liquids for managing renewable

electricity intermittency in the Alpine Region
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Background

Large scale deployment of renewable
energy sources (RES) can play central
role in reducing CO, emissions from
energy supply systems, but intermittency
from solar and wind technologies
present grid integration challenges.
High-temperature  co-electrolysis  of
steam and CO,, in the so-called power-
to-gas (PtG) and power-to-liquids (PtL)
configuration, could provide a path for
utilizing  the  excess  intermittent
electricity from a power system by
converting it into chemical fuels that can
be directly utilized in other sectors, such
as transportation and heating.

Aim of the study

The main focus of this work is to
emphasize on the impacts of temporal
and spatial intermittency of RES in
power dispatch systems as well as on the
utilization ~ of  excess  intermittent
electricity via PtG and PtL processes into
other  energy  sectors  (such  as
transportation, heating or power, in the
context of long-term storage).

Power-to-gas/liquids

Recent development and performance
improvements have demonstrated
efficient co-electrolysis of H,O(g) and
CO, in Solid Oxide Electrolysis Cell
(SOEC). The ohmic resistance as well as
the cell degradation rates and
mechanisms are rather similar as in the
electrolysis of steam alone . In the light
of such developments of SOECs, an
overall conversion efficiency of 70% are
to be expected. This efficiency refers to
the calorific value of the final product
(liquid methanol in the case of PtL and
methane gas in the case of PtG) and the
power input to the process.
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Fig. 1. Schematics of the power balancing and long-
term storage concept PtG/PtL

Methodology

The study 1s carried out usmg BeWhere model [1]. BeWhere 1s a geograpluc
explicit cost optinization model, based on mixed integer lmear programming
(MILP), written m GAMS and uses CPLEX as solver.
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levels of fossil fuel prices (FEP) (represented by the bottom x-axis
scale) and the corresponding displaced fossil fuels from the
transportation sector, represented by the top x-axis scale. The total
transportation energy demand of the region is about 570 TWh/year.

Preliminary results
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[Mt/year], over the range of variation of carbon
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Summary

The results of the model at this
stage can be summarized m the
followmg contextual remarks:

* The PtG and PtL concepts add
flexibility to the energy system
by lmking power to gas/liquid
fuels that can be used in other
sectors.

* PtG and PtL provide the
opportuiuty to recvcle large
volumes of CO, mto the fuel
supply systeni.

* Under the assumed economy
and operatimg conditions of the
SOECs, results mdicate these
technologies can enable greater
mtegration of renewables mfto
the energy system.

* The sensutwvity analysis shows
even without carbon tax and at
base case FFPs the model builds
PtL plants.

Ongoing and future
work

There 15 ongomg work to enhance
transmission  lines (both  existing
and new) and fossil power plants
representation m the model.

Further into the future we plan to
enhance the model by considermg
only bicenergy based CO, sources
and use 1t to uwestigate mnet
reductions m atmospheric carbon
m the context of negative
E1ISSIONS.
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