

Lviv Polytechnic National University

Systems Research Institute Polish Academy of Sciences

High resolution spatial inventory of GHG emissions from stationary and mobile sources in Poland: summarized results and uncertainty analysis

<u>Rostyslav Bun</u>^{1,2}, Zbigniew Nahorski³, Joanna Horabik-Pyzel³, Olha Danylo^{1,4}, Nadiia Charkovska¹, Petro Topylko¹, Mariia Halushchak¹, Myroslava Lesiv⁴, Oleksandr Striamets¹

¹Lviv Polytechnic National University, Lviv, Ukraine, mail: rbun@org.lviv.net;
²Academy of Business in Dąbrowa Górnicza, Poland;
³Systems Research Institute of the Polish Academy of Sciences, Warsaw, Poland;
⁴International Institute for Applied Systems Analysis, Laxenburg, Austria

Motivation and research aim

NIR: national inventory of GHG: **Poland** (traditional approach)

Category 1 Category 2

E =

Category n

New task: spatial inventory (spatial distribution of emissions)

Emission sources

Categories of anthropogenic activity covered by IPCC Guidelines

Classification:

<u>1. Point-type sources:</u>

2. Line-type sources:

3. Area-type sources/sinks:

Maps of emission sources

forests etc.

What is spatial resolution?

Ô

Emissions calculation

IPCC Guidelines: E = A * F

Emission structure

IPCC Guidelines \rightarrow structure -

Subsectors

Sectors

Positive feature

Categories

Negative feature: The same emission sources but repotted as different categories in different sectors

Industrial processes

Chemical processes Fossil fuel using

Forestry and land use change Energy Transport

Approach: bottom-up vs top-down ?

National scale

Regional scale

District scale

Municipal scale

Elementary emission sources Disaggregation of activity data and proxy data

National scale

Regional scale

District scale

Municipal scale

Elementary emission sources

Summing up the results

Transport sector in Poland

Input data

- Statistical data
 - GUS, BDL
- Emission factors
 - NIR, IPCC
- Digital maps
 - road map
 - administrative map
- Indicators
 - car numbers
 - road categories etc.

<u>**Results:**</u> total specific GHG emissions in transport sector (Subcarpathian region, CO2-equivalent, 2012)

Emissions: GHGs, categories, fuels

Vehicle category	Fuel		
	gasoline	diesel	LPG
Passenger cars	CO ₂	CO ₂	CO ₂
	CH ₄	CH ₄	CH ₄
	N ₂ O	N ₂ O	N ₂ O
Buses	CO ₂	CO ₂	CO ₂
	CH ₄	CH ₄	CH ₄
	N ₂ O	N ₂ O	N ₂ O
Lorries	CO ₂	CO ₂	CO ₂
	CH ₄	CH ₄	CH ₄
	N ₂ O	N ₂ O	N ₂ O
Special vehicles	CO ₂	CO ₂	CO ₂
	CH ₄	CH ₄	CH ₄
	N ₂ O	N ₂ O	N ₂ O

Specific CO₂ emissions from diesel combustion by passenger cars in Poland (2 km x 2 km; t/km²; 2010)

Structure of CO₂ emissions in road transport by vehicle types and fuels (Poland voivodships, square root scale, 2010)

Presentations:

Agriculture and waste (Nadiia Charkovska et al.)

Electricity and heat production (Petro Topylko et al.)

Industrial processes (Nadiia Charkovska et al.)

Fugitive emissions and fuel processing (Mariia Halushchak et al.)

Residential sector (Olha Danylo et al.)

Prism-map of specific GHG emissions from all anthropogenic sectors without LULUCF in the Silesia region (CO₂-equivalent, Gg/km², square root scale, 2 x 2 km, 2010)

14

Total GHG emissions structure in Poland by sector in CO₂-equivalent (2010)

GHG emissions in Energy Sector in Poland by sub-sectors (Gg, CO₂-equivalent, 2010)

Uncertainty of spatial inventory results

Conclusions

The presented approach:

- provides high resolution of GHG spatial inventory in Poland (>100m);
- provides spatial analysis at the level of point-, line-, and area-type emission sources/sinks without using any additional grid;
- takes into account the territorial specificity of many parameters that affect emissions or removals of GHGs;
- makes it possible to aggregate the final results even to the level of municipalities without decreasing accuracy;
- enables to display a real contribution of each even very small territory to the overall emission processes.

Marie Curie Project n°247645 FP7-PEOPLE-2009-IRSES

Thank You for Attention!