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1 Introduction

The rise in international trade and cross-border financial flows in recent decades implies that

countries are more than ever exposed to economic shocks from abroad, as demonstrated by

the recent global financial crisis. Hence, macroeconomic tools that treat countries as isolated

from the rest of the world may miss important information for forecasting and counterfactual

analysis. Such concerns do not arise with global vector autoregressive (GVAR) models, as they

accommodate spillovers from the global economy in a systematic and transparent manner. The

GVAR framework consists of single-country models that are stacked to yield a comprehensive

representation of the world economy.

The empirical literature on GVAR models has been largely influenced by the work of M.

Hashem Pesaran and co-authors (Pesaran et al., 2004; Garrat et al., 2006; Dees et al., 2007a;b).

Recent papers have advanced the literature on GVAR modeling in terms of country coverage

(Feldkircher, 2015), identification of shocks (Eickmeier & Ng, 2015) and the specification of in-

ternational linkages (Chudik & Fratzscher, 2011; Eickmeier & Ng, 2015; Feldkircher & Huber,

2015; Galesi & Sgherri, 2013). Most of the existing applications of GVAR models concentrate

on the quantitative assessment of the propagation of macroeconomic shocks using historical

data, while very few contributions have addressed their forecasting performance. Pesaran

et al. (2009) provide an out-of-sample forecasting exercise and conclude that taking global

links across economies into account using GVAR models leads to more accurate predictions

than using forecasts based on univariate specifications for output and inflation. Employing a

GVAR model to forecast macroeconomic variables in five Asian economies, Han & Ng (2011)

find that one-step-ahead forecasts from GVAR models outperform those of stand-alone VAR

specifications for short-term interest rates and real equity prices, while Greenwood-Nimmo

et al. (2012) confirm the superiority of GVAR specifications over univariate benchmark models

at forecast horizons beyond four quarters.

As an alternative to the GVAR framework a related strand of the literature advocates

the estimation of large VARs or panel VARs using Bayesian techniques. More specifically,

Bańbura et al. (2010) assess the forecasting performance of a large-scale monetary VAR

based on more than 100 macroeconomic variables and sectoral information. They show that

forecasts of these large-scale models can outperform small benchmark VARs when the degree

of shrinkage on the parameters is set in relation to the size of the model. Giannone &

Reichlin (2009) and Alessi & Bańbura (2009) propose to exploit these shrinkage properties

and estimate Bayesian VARs with a large cross-section of countries. Alessi & Bańbura (2009)

show that Bayesian VAR specifications as well as dynamic factor models are able to yield

accurate one-quarter to four-quarters-ahead forecasts for international macroeconomic data.

Koop & Korobilis (2015) propose a panel VAR framework that overcomes the problem of

overparametrization by averaging over different restrictions on interdependencies between
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and heterogeneities across cross-sectional units. More recently, Korobilis (2015) advocate a

particular class of priors that allows for soft clustering of variables or countries, arguing that

classical shrinkage priors are inappropriate for panel VARs.

In this contribution, we propose using established shrinkage priors and develop a Bayesian

GVAR (B-GVAR) model. Akin to the GVAR framework, we assume that links among

economies are determined exogenously, while we borrow strength from the Bayesian liter-

ature in estimating the individual country models. This allows us to keep the virtues of

the GVAR framework with regard to offering a coherent way for policy and counterfactual

analysis. Our model includes standard variables that are often employed in small-country

VARs such as output, inflation, short-term and long-term interest rates, the real exchange

rate, equity prices and the oil price as a global control variable (see e.g., Dees et al., 2007b;a;

Pesaran et al., 2004; 2009, among others). This set of variables is extended to feature total

credit (domestic and cross-border credit), which can act as an important transmission channel

of international shocks.

We compare forecasts of the B-GVAR model under prior specifications that resurface

frequently in Bayesian VAR empirical studies: the conjugate Minnesota prior (Litterman,

1986) and its version with a fixed (non-stochastic) variance-covariance error structure, and

a weighted average of a Minnesota type prior, the “initial dummy observation” prior, which

accommodates potential cointegration relationships among the variables considered, and the

“sum-of-coefficients” prior, which facilitates soft-differencing (Doan et al., 1984; Sims, 1992;

Sims & Zha, 1998). We extend this set of random-walk priors to include the stochastic search

variable selection (SSVS) prior proposed by George et al. (2008) for VAR models. Since the

hyperparameters for all priors are elicited locally (i.e., for the country model), our approach

induces country-specific degrees of shrinkage on the parameters, which is expected to improve

forecasts significantly. B-GVAR models are thus expected to be less prone to overfitting

(Giannone & Reichlin, 2009) and allow the researcher to include prior beliefs in the model,

while still taking the long-run co-movement of variables into account. We compare our battery

of priors using an expanding window to forecast developments one-quarter-ahead and four-

quarters-ahead. These forecasts are benchmarked to forecasts of a fifth-order autoregressive

model with drift term by means of root mean squared errors for point forecasts, and log

predictive scores for density forecasts. As another competitor, and to assess the importance

of international linkages for forecasting, we evaluate forecasts from isolated, country-specific

Bayesian vector autoregressions.

Our analysis provides several new insights on the specification and estimation of global

macroeconomic models. First, we find that forecasts can be improved by employing a global

framework that allows for country-specific degrees of shrinkage on the parameters. The pro-

posed Bayesian specifications of the GVAR tend to improve upon forecasts from the naive

model, a global model without shrinkage and a shrinkage model that neglects international
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linkages. Second, we find that the prior specification put forward in Sims & Zha (1998),

the fixed-covariance Minnesota prior and the SSVS prior all show a strong forecasting per-

formance. The latter outperforms other priors systematically in terms of density forecasts.

Third, our analysis indicates that Latin American variables are particularly hard to fore-

cast, while the forecast performance for developed economies is more homogeneous among

the specifications considered.

The paper is structured as follows. Section 2 provides a brief description of the global

VAR model, while Section 3 derives its Bayesian variant. In Section 4 we present the data

and perform the forecast evaluation exercise. Finally, Section 5 concludes.

2 The GVAR Model

GVAR specifications constitute a compact representation of the world economy designed to

model multilateral dependencies among economies across the globe. Basically, a GVAR model

consists of a number of country-specific specifications that are combined to form a global

model.

The first step is to estimate separate multivariate time series models. In our case, these are

standard vector autoregressive models involving a set of endogenous variables and enlarged

by weakly exogenous and global control variables (VARX* model). Assuming that our global

economy consists of N + 1 countries, we estimate a VARX* of the following form for every

country i = 0, ..., N ,

xit = ai0 +

p∑
s=1

Φisxit−s +

p∗∑
r=0

Λirx
∗
it−r + εit, (2.1)

where xit is a ki × 1 vector of endogenous variables in country i at time t ∈ 1, ..., T , ai0 is

a ki-dimensional vector of intercept terms, Φis (s = 1, . . . , p) denotes the ki × ki matrix of

parameters associated with the lagged endogenous variables and Λir (r = 1, . . . , p∗) are the

coefficient matrices of the k∗i weakly exogenous variables, which are of dimension ki × k∗i .

Furthermore, εit is the standard zero-mean vector error term with variance-covariance matrix

Σεi.

The weakly exogenous or foreign variables, x∗it, are constructed as a weighted average of

the endogenous variables in other economies,

x∗it =

N∑
j=0

ωijxjt, (2.2)

with ωij denoting the (non-negative) weight corresponding to the pair of country i and country

j. We assume that ωii = 0 and
∑N

j=0 ωij = 1. The weights ωij reflect economic and financial
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ties among economies, which are usually approximated using data on (standardized) bilateral

trade flows.1 The assumption that the x∗it variables are weakly exogenous at the individual

level reflects the belief that most countries are small relative to the world economy.

Following Pesaran et al. (2004) we stack the N + 1 country-specific models to obtain a

global model, which is given by

Gxt = a0 +

Q∑
q=1

Hqxt−q + εt. (2.3)

Here, G is a k × k-dimensional matrix that establishes contemporaneous relations between

countries, with k =
∑N

i=0 ki. Furthermore, let a0 be a k-dimensional vector associated with

the constant and Hq(q = 1, . . . , Q) is a k × k-dimensional global coefficient matrix (with

Q = max(p, p∗)). The matrices G, a0 and Hq are complex functions of the corresponding

country-specific parameters and the bilateral weights. Finally, εt is a global vector error term

with variance-covariance matrix Σε. Further details on the derivation of the GVAR model

can be found in Appendix B.

3 The B-GVAR: Priors over Parameters

Bayesian analysis of the GVAR model requires the elicitation of prior distributions for all

parameters of the model. We use several prior structures that have been developed for VAR

specifications over the parameters of the individual country-specific models, which we extend

to account for the presence of (weakly) exogenous variables.2 For prior implementation, it

proves convenient to rewrite the model in (2.1) as

xit = Π′iZit−1 + εit, (3.1)

where Zit−1 = (1, x′it−1, . . . , x
′
it−p, x

∗′
it , . . . , x

∗′
it−p∗)

′ is of dimension Ki × 1, where Ki = 1 +

kip+k∗i (p
∗+ 1) and Πi = (ai0,Φi1, . . . ,Φip,Λi0, . . . ,Λip∗)

′ denotes a Ki×ki matrix of stacked

coefficients. Up to this point we have not adopted any distributional assumptions for εit. We

complete the model specification by assuming that the errors εit are multivariate Gaussian,

i.e., εit ∼ N (0,Σεi).

Rewriting the model in terms of full-data matrices yields

xi = ZiΠi + εi (3.2)

1See e.g., Eickmeier & Ng (2015) and Feldkircher & Huber (2015) for an application using a broad set of
different weights.

2Karlsson (2012) provides an excellent overview for Bayesian VAR models.
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where xi is a T × ki matrix of stacked endogenous variables, Zi is a T ×Ki matrix of stacked

explanatory variables and εi is a T×ki matrix of errors. Furthermore, let Ψi = vec(Πi) denote

the vi-dimensional coefficient vector with vi = kiKi.

The General Conjugate Prior Setup

We start with the simplest prior for the coefficients of the country-specific VARX* models,

which is the natural conjugate prior. In the VARX* framework, we impose an inverted

Wishart prior on Σεi and a multivariate Gaussian prior on Ψi

Ψi|Σεi ∼ N (Ψi,Σεi ⊗ V i), (3.3)

Σεi ∼ IW(Si, vi), (3.4)

where Ψi and V i denote prior mean and variance, respectively. Additionally, we let Si de-

note the prior scale matrix and vi the prior degrees of freedom for Σεi. The use of such a

natural conjugate prior allows us to exploit a Kronecker factorization of the likelihood due

to the prior dependence between Ψi and Σεi, which translates into significant computational

advantages. Especially for forecasting applications where the model has to be re-estimated

several times over a training sample, this proves to be a significant advantage. However, it is

worth noting that the Kronecker factorization implies prior variances on the coefficients that

are proportional across equations of the country model, which might be very restrictive.

Following the literature on Bayesian VARs (Litterman, 1986; Sims, 1992; Sims & Zha,

1998), the most common choices for Ψi and V i are given by the so-called random walk priors.

Under the prior, the variables in the system are assumed to follow simple random walks. To

implement this prior, we set the prior mean according to

Ψij =

aij for the first own lag of endogenous variable j in equation j

0 in all other cases.
(3.5)

where aij (j = 1, . . . , ki) refers to the prior mean over the parameter associated with the first

own lag of the ki endogenous variables. These are set to one for variables in levels, leading

to the traditional random walk prior. The assumption that the endogenous variables a priori

follow random walk processes at the local level directly carries over to the global model. To see

this, note that under the prior model, the coefficients associated with the contemporaneous

and lagged (weakly) exogenous variables are set equal to zero. Moreover, the coefficients

corresponding to higher lag orders of the endogenous variables are also set equal to zero.

Hence, the G and H matrices reduce to k × k identity matrices. Consequently, the global

prior model is given by

xt = xt−1 + et, (3.6)
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where it is straightforward to show that the variance-covariance matrix of et is a block-diagonal

matrix with the corresponding ith block being equal to the prior expectation of Σεi. The only

assumption which is crucial for this result to hold is that the prior mean of coefficients related

to the weakly exogenous variables is set to zero.

Several choices are recommended in the literature for the elicitation of V i, which translate

into different assumptions about the behavior of the prior model. Doan et al. (1984), Kadiyala

& Karlsson (1997) and Sims & Zha (1998) propose three prominent prior specifications that

have been frequently employed by practitioners. The most prominent prior is the Minnesota

prior, which has a proven track record in terms of forecasting performance. The Minnesota

prior specifies the prior variance on the coefficients, V i, such that the parameter corresponding

to lag r of variable g is given by

V ig,r =


αi1
rκσig

for the coefficient of the rth lag of variable g

αi2
(1+r)κσ∗ig

for the coefficient of the rth lag of variable g if weakly exogenous

αi3 for the deterministic part of the model.

(3.7)

Here, hyperparameters αi1 and αi2 control the tightness of the prior on the endogenous and

weakly exogenous part, respectively. Moreover, the priors are scaled using standard deviations

obtained by running univariate autoregressions on the particular variables. Specifically, σig

refers to the standard deviation of a univariate autoregressive model for the corresponding

variable, whereas σ∗ig denotes the standard deviation obtained from an autoregressive model

of the gth weakly exogenous variable. Finally, rκ is a deterministic function of the lag length.3

Consequently, the strength of the prior belief in the random walk specification is governed

by α1. The hyperparameter κ increasingly tightens the variance on the prior for distant lags,

reflecting the belief that longer lags of the variables are more likely have zero coefficients.

There is a direct link between the locally specified V i and the global specification of

the GVAR model. It is straightforward to show that there exists a relationship between

the prior variances on the weakly exogenous variables and the variances related to other

countries’ endogenous variables (termed global prior variances). As an illustration, consider

βni1, the coefficient associated with the first lag of the nth weakly exogenous variable, i.e.,

xn∗it =
∑N

j=0 ωijx
n
jt, with prior variance given by σ2

in. Then, βni1,j = ωijβ
n
i1 denotes country

i’s coefficient corresponding to the nth variable of country j with (prior) variance given by

ω2
ijσ

2
in. Hence, the corresponding global prior variance is simply scaled down by the trade

links between countries i and j.4 Note that in contrast to a clean Bayesian approach this

3In order to achieve a symmetric specification of endogenous and weakly exogenous variables in the variance
prior, the term is (1+r)κ in the expression corresponding to the latter, since contemporaneous weakly exogenous
variables are included in the model.

4A more formal treatment can be found in Appendix D
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implies that the corresponding weights are not treated as being random and thus we do

not integrate out uncertainty surrounding the cross-country linkages. Moreover, in a fully

Bayesian framework the prior variances at the global level would be proportional to each other.

An alternative approach that provides an agnostic and statistical measure of connectivity

between countries and where fully conjugate priors are readily available is the Bayesian panel

VAR, see Koop & Korobilis (2015) or Korobilis (2015).
The Minnesota prior can be implemented by means of so-called dummy observations.

Following Bańbura et al. (2010) and Koop (2013), the moments of the conjugate Minnesota
prior can be matched attaching the following set of artificial dummy observations to the actual
data

xMi =



01×ki

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

diag(ai1σi1, . . . , aikiσiki)/αi1

0ki(p−1)×ki

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

0k∗i (p∗+1)×ki

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

diag(σi1, . . . , σiki)


, ZMi =



1
α3

01×(Ki−1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0kip×1 Jp ⊗ diag(σi1, . . . , σiki)/α1 0kip×(Ki−kip−1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0(k∗i (p
∗+1))×(kip+1) Jp∗ ⊗ diag(σ∗i1, . . . , σ

∗
ik∗i

)/αi2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0ki×Ki


,

(3.8)

where Jp = diag(1, 2, ..., p) and Jp∗ = diag(1, 2, ..., p+ 1). Additionally, 0nq denotes an n× q
dimensional matrix consisting exclusively of zeros. This setting corresponds to the normal

inverse Wishart prior proposed by Kadiyala & Karlsson (1997).

The first block of xi and Zi implements the prior on the deterministic part of the model

whereas the second block implements the random walk prior. Finally, the last two blocks

implement the priors on the weakly exogenous variables and Σεi, respectively.

Second, we consider the “sum-of-coefficients” prior, which softly forces the posterior dis-

tribution towards a specification in first differences. This implies that coefficients associated

with own, lagged variables in each equation should sum to unity while other coefficients are

being pushed towards zero. Implementation of this prior is straightforward by adding the

following set of dummy observations to the data

xSi =
(

diag(ai1µi1, . . . , aikiµiki
)/θi1,

)
ZSi =

(
0ki×1 ι1×p ⊗ diag(ai1µi1, . . . , aikiµiki

)/θi1 0ki×(k∗i (p
∗+1))

)
,

(3.9)

where µ
ij

(j = 1, . . . , ki) denotes the pre-sample mean of the endogenous variables usually

calculated by using the first p observations, ι1×p is a p-dimensional row vector of ones and θi1

is a country-specific hyperparameter controlling the tightness of the prior.

The fact that this prior is not consistent with cointegration gives rise to the “dummy-

initial-observation” prior. This prior pushes variables in a country-specific VAR towards their

unconditional (stationary) mean, or toward a situation where there is at least one unit root

present. That is, either the process has a unit root, or it is stationary and starts near its
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mean, implying a penalty for models with inherent initial transient dynamics (Sims, 1992).

Implementation boils down to attaching the following set of dummy observations to the actual

data.

xIi =
(

(µ
i1
,...,µ

iki
)

θi2

)
,

ZIi =
(

0 ι1×p ⊗
(µ

i1
,...,µ

iki
)

θi2
ι1×p∗ ⊗

(µ∗
i1
,...,µ∗

iki
)

θi2

)
.

(3.10)

µ∗
ij

(j = 1, . . . , k∗i ) denote pre-sample averages from the weakly exogenous variables and θi2

is a hyperparameter controlling the tightness of the dummy-initial-observation prior.

In practice, macroeconomists usually incorporate all three versions of the random walk

prior, which can be implemented in a straightforward fashion by combining the three pairs of

dummy observations given in equations (3.8) to (3.10). The final prior, as motivated in Sims

& Zha (1998), is then simply a weighted average of the three individual priors described above,

where the weights attached to each prior are determined by the associated hyperparameters.

Several studies have emphasized the usefulness of such a weighted prior structure (Bańbura

et al., 2010; Giannone et al., 2013).

Natural conjugate priors require prior dependence between Σεi and Ψi. The traditional

implementation of the Minnesota prior drops this dependence, which provides more flexibility

in terms of prior elicitation. In the empirical application in subsection 4.3 we also consider

a variant of the Minnesota prior where the variance-covariance matrix of the error term is

considered non-random. This prior simply replaces the posterior of Σεi by a known estimate

Σ̂εi, which leads to analytical posterior solutions.

Stochastic Search Variable Selection (SSVS) Prior

The conjugate priors discussed above apply by definition the same degree of shrinkage across

equations. It might be appealing to provide more flexibility in the specification of the prior

variance-covariance matrix on the coefficients and move away from the random walk prior

model.

The SSVS prior, put forward by George & McCulloch (1993) and subsequently introduced

to the VAR literature by George et al. (2008), imposes a mixture of Normal distributions on

each coefficient of the VARX* which is usually specified as

Ψij |δij ∼ (1− δij)N (0, τ2
0j) + δijN (0, τ2

1j). (3.11)

Here, δij is a binary random variable corresponding to coefficient j in country model i. It

equals one if the corresponding variable is included in the model and zero if it is a priori

excluded from the respective country model. The Normal distribution corresponding to δij = 0

is typically specified with τ2
0j close to zero, which pushes the respective coefficient towards
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zero. The prior variance of the Normal distribution for δij = 1, τ2
1j , is set to a comparatively

large value implying a relatively uninformative prior on coefficient j conditional on inclusion.

The prior mean of the normal distributions in equation (3.11), routinely chosen to be zero

in applications of the SSVS prior, may of course be centered around some other value Ψij .

The SSVS prior has been recently applied within a GVAR framework in Feldkircher & Huber

(2015) to examine the international dimension of US economic shocks.

Defining a scalar parameter dij such that

dij =

τ0j if δij = 1

τ1j if δij = 0
(3.12)

and collecting all dij (j = 1, ..., vi) in a vi × vi matrix Di = diag(di1, . . . , divi) the prior on Ψi

simply reduces to the following hierarchical prior setup

Ψi|Di ∼ N (0, Ri), (3.13)

Σεi ∼ IW(Si, vi), (3.14)

where Ri = DiDi and the prior on Σεi is a standard inverse Wishart prior with prior degrees

of freedom given by vi and prior scale matrix Si. Note that the lack of prior dependence

between Σεi and Ψi renders this prior (even conditionally) non-conjugate.

Finally, we follow George et al. (2008) and impose a Bernoulli prior on δij

δij ∼ Bernoulli(q
ij

), (3.15)

where q
ij

denotes the prior inclusion probability of variable j in country i.

Estimation of this model requires Markov Chain Monte Carlo (MCMC) methods, although

the conditional posteriors of δij ,Ψi and Σεi are known. This implies that we can employ a

simplified version of the Gibbs sampler outlined in George et al. (2008), where we start drawing

Ψi from its full conditional posterior, which follows a Normal distribution. In the next step,

we draw the latent variable δij from a Bernoulli distribution and in the last step we draw

Σεi from an inverse Wishart distribution.5 This algorithm is repeated n times and the first

nburn draws are discarded as burn-ins. Averaging the draws of δij leads to posterior inclusion

probabilities for each variable j. Further details are provided in Appendix D.

5In contrast to the implementation in George et al. (2008), we impose an inverse Wishart prior on Σεi and
depart from using a restriction search over Σεi.
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4 Empirical Results

4.1 Data and Model Specification

The bulk of the empirical literature employing GVARs use the dataset put forward in Dees

et al. (2007b,a), which covers the most important economies in terms of real activity. For this

dataset, time series are available from the early 1980s onward. Other studies have extended

the country coverage to feature more emerging economies, at the price of limiting the available

time span (Feldkircher, 2015; Feldkircher & Huber, 2015). In this paper, our aim is to reserve

a significant share of our available time span for forecast evaluation, which is why we opt to

have rather long time series – at the implied cost of reducing the country coverage.6

We rely on data provided in Dovern et al. (2015), that extend the dataset used in Dees

et al. (2007a,b) with respect to variable coverage and time span. In what follows, we use

quarterly data for 36 countries spanning the period from 1979:Q2 to 2013:Q4.7

The country-specific VARX* models include seven domestic variables. Six variables are

the same as in Dees et al. (2007a,b) and Pesaran et al. (2009), namely real GDP (y), the

change of the (log) consumer price level (∆p), real equity prices (eq), the real exchange rate

(e) vis-á-vis the US dollar, and short-term (is) and long-term interest rates (il). We enlarge

this set of variables to feature total credit (tc, domestic and cross-border credit), as a seventh

variable. This seems to be important, as the hold-out sample for our forecasting exercise

contains the global financial crisis, which spread via both the trade and the financial channel.8

Note that not all variables are available for each of the countries we consider in this study.

With the exception of long-term interest rates, the cross-country coverage of all variables is,

however, above 80%. Long-term interest rate data are missing for emerging markets that are

characterized by underdeveloped capital markets.

The vector of domestic variables for a typical country i is thus given by

xit = (yit,∆pit, eit, eqit, isit, ilit, tcit)
′. (4.1)

6Note that this is in contrast to the working paper version of this study available at http://www.oenb.

at/Publikationen/Volkswirtschaft/Working-Papers/2014/Working-Paper-189.html, which also includes a
forecast comparison to the standard, cointegrated GVAR model put forward in Pesaran et al. (2004) and Dees
et al. (2007a,b), among others.

7The following countries are included in the respective regions: Europe includes Austria (AT), Belgium
(BE), Germany (DE), Spain (ES), Finland (FI), France (FR), Greece (GR), Italy (IT), Netherlands (ND),
Portugal (PT), Denmark (DK), Great Britain (GB), Switzerland (CH), Norway (NO) and Sweden (SE). Other
Developed economies feature Australia (AU), Canada (CA), Japan (JP), New Zealand (NZ) and the US (US).
Emerging Asia includes China (CN), India (IN), Indonesia (ID), Malaysia (MY), Korea (KR), Philippines
(PH), Singapore (SG) and Thailand (TH). Latin America comprises Argentina (AR), Brazil (BR), Chile (CL),
Mexico (MX) and Peru (PE). Mid-East and Africa consists of Turkey (TR), Saudi Arabia (SA) and South
Africa (ZA).

8For a more detailed description, see Table A.1 in Appendix A.
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We follow the bulk of the literature by including oil prices (poilt) as a global control vari-

able. With the exception of the bilateral real exchange rate, we construct foreign counterparts

for all domestic variables. The weights to calculate foreign variables are based on average bi-

lateral annual trade flows in the period from 1980 to 2003, which denotes the end of our initial

estimation sample.9 For a typical country i the set of weakly exogenous and global control

variables comprises the following variables,

x∗it = (y∗it,∆p
∗
it, eq

∗
it, is

∗
it, il

∗
it, tc

∗
it, poil

∗
t )
′. (4.2)

The US model (i = 0) deviates from the other country specifications in that the oil price

(poilt) is determined within that country model and the trade weighted real exchange rate

(e∗t ) is included to control for co-movements of currencies,

x0t = (y0t,∆p0t, eq0t, is0t, il0t, tc0t, poilt)
′, (4.3)

x∗0t = (y∗0t,∆p
∗
0t, e

∗
0t, eq

∗
0t, is

∗
0t, il

∗
0t, tc

∗
0t)
′. (4.4)

The dominant role of the US economy for global financial markets is often accounted for

by including a limited set of weakly exogenous variables in its country-specific model. For all

countries considered, we set the lag length of endogenous and weakly exogenous variables equal

to five. Given the quarterly frequency of the data and the fact that we introduce Bayesian

shrinkage, this seems to be a reasonable choice. We correct for outliers in countries that

witnessed extraordinarily strong crisis-induced movements in some of the variables contained

in our data. We opted to smooth the relevant time series in these cases rather than include

step dummies. While step dummies might control for outliers within the specific country

model, extreme shocks might still be carried over to other country models via trade-weighted

foreign variables. Obviously, this is not the case when smoothing the series in the first place.10

9Note that recent contributions (Eickmeier & Ng, 2015; Dovern & van Roye, 2014) suggest using financial
data to compute foreign variables related to the financial side of the economy (e.g., interest rates or credit
volumes). Since our data sample starts in the early 1980s, reliable data on financial flows – such as portfolio
flows or foreign direct investment – are not available. See Feldkircher & Huber (2015) for a sensitivity analysis
with respect to the choice of weights.

10We define outliers as those observations that exceed 1.5 times the interquartile range in absolute value.
The identified outliers are then smoothed using cubic spline interpolation techniques and in case they are
located at the beginning or the end of the sample – extrapolation techniques. Using the definition of the
interquartile range, we identify 2% of our sample as unusual observations. From these 2%, about 60% regard
unusual observations for inflation at the beginning of the observation sample. Short-term interest rates (20%)
and the real exchange rate (13%) have historically also shown very volatile patterns for the countries covered
in this study. More detailed country-specific information is available from the authors upon request.
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4.2 Selection of Hyperparameters

Due to the strong heterogeneity observed in the world economy, it is daunting to assume that

different countries obey the same structural dynamics in terms of macroeconomic fundamen-

tals. Thus, using the same set of hyperparameters when eliciting the prior for all countries

considered might be too restrictive to unveil differences between economies.

The conjugate priors rely on a set of (presumably fixed) hyperparameters which are ho-

mogeneous across countries. A specific set of hyperparameters could, however, induce a tight

prior in one country while being relatively loose in other countries. To avoid this problem,

we follow Carriero et al. (2015) and choose the hyperparameters by maximizing the marginal

likelihood on a discrete grid of values for α1 and α2. For the remaining parameters, we set

αi3 = 100 and θi1 = θi2 = 1. For the natural conjugate prior, the marginal likelihood is avail-

able in closed form (see, for instance, Bauwens et al., 2000; Koop, 2013). Using the marginal

likelihood as a loss function is motivated by the fact that it can be written as a sequence

of one-step-ahead predictive densities. Thus maximizing the marginal likelihood under a flat

prior is equivalent to minimizing the one-step-ahead prediction errors (Geweke, 2001; Geweke

& Whiteman, 2006).11 Since the marginal likelihood is not available in closed form for the

standard Minnesota prior, we use the hyperparameters obtained from the conjugate prior for

this setting. Following Carriero et al. (2015), the parameter controlling the degree of shrink-

age on “other” variables is set equal to 0.8 . Finally, we set aij equal to unity for the first lag

of “own” variables.

For the SSVS prior, we set the prior inclusion probability for each variable equal to 0.5,

which implies that a priori, every variable is assumed equally likely to enter the model. We

set τi,0j = 0.1sij and τi,1j = 10sij and rely on the semi-automatic approach described in

George et al. (2008) to scale the hyperparameters, where sij is the standard error attached to

coefficient j based on a VARX* estimated by OLS in country i. Finally, we set Si = 10Iki ,

the prior degrees of freedom vi to ki and Ψi equal to the zero matrix. As a robustness check

we also used a standard random walk prior specification in combination with the SSVS prior.

This implies that the prior mean on the first own lag is set equal to unity. However, since

almost no shrinkage is imposed for the case when δij = 1 the results are rather similar with

the standard SSVS implementation. Thus for the sake of brevity we only report the results

obtained by setting the prior mean equal to zero for all coefficients. To assess the importance

of shrinkage we include in the forecast exercise a prior that is flat over the coefficients (diffuse).

This prior is implemented by setting αi1 = αi2 = αi3 = 1010 in the conjugate Minnesota prior

setup.

11Note that this differs from the procedure proposed by Giannone et al. (2012), since we do not integrate
out the hyperparameters in a Bayesian fashion but simply plug in an estimate of the posterior mode of α1 and
α2 under a diffuse prior. This approach seems convenient since it avoids MCMC sampling for the conjugate
priors, which proves to be important for the empirical application.
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4.3 Forecast Performance

The initial estimation period ranges from 1979:Q2 to 2003:Q4 and we use the period 2004:Q1-

2013:Q4 as out-of-sample hold-out observations to compare predictive performance across

specifications. We base our comparison on recursive one-quarter-ahead and four-quarters-

ahead predictions obtained by re-estimating the models over an expanding window defined by

the beginning of the available sample and the corresponding period in the hold-out sample.12

In what follows, we compare the forecast performance for both point and density forecasts. For

means of comparison we choose the root mean squared error (RMSE) for point forecasts and

log predictive scores (LPS) to evaluate density forecasts.13 All forecasts are benchmarked to

those of a fifth-order univariate autoregressive (AR(5)) model and forecast errors are reported

in an unweighted fashion. That is, we do not attach more weight to favor GVAR specifications

that improve forecasts for particular countries which stand out in terms of economic activity.

The AR(5) model is estimated in a Bayesian fashion, where a shrinkage prior in the spirit of

a standard Minnesota prior is imposed (i.e., higher lag orders are strongly pushed towards

zero) and the hyperparameter is estimated by maximizing the ML over the same grid as given

above.

Forecast Evaluation: Overall Results

Overall results based on one-step-ahead forecasts are provided in the upper panel of Table 1,

while those for four-steps-ahead are presented in the bottom panel. We start by considering

the best performing settings in the aggregate, across all variables and both prediction horizons.

To assess which specification exhibits the best overall performance, the final row in both

panels of Table 1 depicts the average RMSE across variables and the sum of variable-specific

LPS.14 Since the LPS is a scoring rule that takes into account higher order moments of

the corresponding one-step and four-steps-ahead predictive densities, we evaluate the overall

predictive fit of a given model by means of the LPS. For both time horizons considered, the

B-GVAR coupled with the SSVS prior outperforms all competing specifications. Models that

use the conjugate priors (M-C and S&Z) also tend to exhibit a compelling overall performance,

performing slightly worse. Note that the Minnesota prior with a fixed covariance matrix of the

error term (M-NC) shows the weakest performance among all shrinkage priors considered.15

Basing our conclusion on the overall sum of variable-specific LPS values, the best overall

12This implies that the marginal likelihood is numerically optimized for each time point in our hold-out
sample.

13See Appendix E for more details on the construction of the density measures.
14We use the sum of variable-specific LPS due to numerical reasons associated with the evaluation of a

high-dimensional predictive density.
15In order to differentiate this prior from the standard conjugate Minnesota prior, that integrates out uncer-

tainty with respect to Σεi, we include it under the header “Non-Conjugate” in Table 1, although (conditional)
conjugacy would be present in this setting.
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predictive performance is thus achieved by the Bayesian GVAR model with an SSVS prior.

In order to isolate the improvements in out-of-sample predictive accuracy that emanate from

the explicit assessment of international linkages in B-GVAR models, the BVAR specification

which is used as a comparison in the results of Table 1 is estimated using this prior.

We start by addressing the results obtained for one-quarter-ahead predictions. Considering

results on point forecasts first, most specifications yield forecasts that improve upon the

naive model, as indicated by relative RMSEs below unity. Comparing the results of the

BVAR specification with that of the GVAR under a diffuse prior does not yield clear-cut

results concerning the superiority of one of the two modelling frameworks for all variables

considered. Combining the virtues of both approaches (shrinkage and international linkages)

boosts forecast performance considerably. All B-GVAR prior settings that induce shrinkage

outperform the benchmark model. Only one-step-ahead forecasts for total credit under the

two conjugate priors are similar to those of the benchmark in terms of RMSEs. Comparing

B-GVAR shrinkage specifications, our results show a particular good forecast performance for

the Minnesota prior with fixed variance-covariance matrix for the error term (M-NC). The

M-NC prior yields the best point forecasts, outperforming all competitors for six out of the

seven variables considered. The forecast performance of the standard conjugate variant of

the Minnesota prior (M-C) is less spectacular, yielding prediction accuracy measures close

to that of the BVAR under an SSVS prior setting. Finally, the S&Z specification excels in

forecasting short-term interest rates, while for the remaining variables forecasts tend to be

similar or slightly worse than the ones from the M-NC specification. The SSVS prior also

performs well compared to the autoregressive benchmark, achieving a similar aggregate level

of predictive accuracy across variables as that of the other B-GVAR alternatives. However,

only the B-GVAR with an M-NC prior leads to improvements over the BVAR when comparing

average RMSE across variables.

Next, we evaluate the relative quality of density forecasts. Table 1, upper panel right-

hand side, displays the sum of log predictive scores over countries per variable, reported as

differences to the benchmark autoregressive model. Positive values indicate a better perfor-

mance of the forecast method under consideration compared to the benchmark. The results

confirm some of the findings for point forecast accuracy and provide new insights. Both iso-

lated country-specific VAR models (BVAR) and the international model without shrinkage

(diffuse) outperform forecasts of the naive model on average across all variables. Again, there

is no clear superiority structure when comparing these two approaches, while forecasts can

be further improved by considering models that explicitly feature international linkages cou-

pled with priors that induce shrinkage on the parameters (M-C, S&Z, and SSVS). Overall

improvements over forecasts from the benchmark are most pronounced for the SSVS prior

and the M-C specification.
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The lower panel of Table 1 presents the results based on a four-quarters-ahead forecast

horizon. In the medium-term, forecasts from the naive benchmark specification appear hard to

beat. The merits from using shrinkage priors play out more strongly in this setting than in the

short-term prediction exercise. While forecasts from the isolated country-specific BVAR mod-

els do not tend to worsen markedly with the expanded forecast horizon, the B-GVAR model

under a diffuse prior setting shows a relatively poor forecasting performance. This holds true

for both point and density forecasts. In line with our findings on the one-step-ahead forecast

horizon, forecasts can be further improved by considering GVAR specifications coupled with

shrinkage priors. However, forecast gains are less pronounced than in the short run. Among

the prior specifications considered, the S&Z prior excels in point forecast accuracy, while the

SSVS prior yields again the strongest performance regarding density forecasts.

Before providing information on the cross-sectional distribution of forecast accuracy of

the competing models, it is worth emphasizing that the forecast performance tends to fluc-

tuate over time. Inspection of the cumulative LPS over the out-of-sample prediction sample

reveals that especially within crisis periods, the combination of shrinkage priors coupled with

the inclusion of global factors improves the predictive performance significantly.16 This im-

plies that in circumstances where most economies in our sample experienced a sharp drop

in output growth caused by a global shock, information originating from the cross-section

becomes increasingly important in terms of improving the predictive ability of econometric

specifications.

[Table 1 about here.]

Forecast Evaluation: Cross-Country Differences in Point Forecast Accuracy

In order to examine whether there are systematic cross-country differences in point forecast

accuracy for the priors considered, Figures 1 to 5 show the cross-sectional distribution of

relative RMSE for the one-step-ahead forecast horizon for different world regions. We present

results for Europe, other developed economies, emerging Asia and Latin America.17 With

the exception of Latin America, all plots have the same scaling in order to ease regional

comparison of forecast accuracy under the different specifications.

[Figure 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

16The Figures depicting cumulative LPS over the forecasting period can be found in Appendix F.
17We consider all variables but long-term interest rates and equity prices, for which the cross-country

coverage is limited. Results for these variables as well as for the four-quarters-ahead forecast horizon are
available upon request.
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[Figure 4 about here.]

[Figure 5 about here.]

The results indicate that point forecast accuracy varies strongly across regions and less

so across variables. Taking a regional stance, the largest dispersion of relative RMSE values

is observed for variables in Latin American economies. Here the cross-sectional variance of

forecast accuracy tends to be large for practically all prior specifications considered. Point

forecasts are particularly inaccurate and cross-sectional distributions wide for inflation, total

credit and short-term interest rates. For these variables the distributions are about three to

four times larger than the ones for the rest of the regions and medians of the distribution of

RMSE tend to indicate a worse performance relative to the naive model. While the dispersion

of relative RMSE is markedly smaller in emerging Asia, some of the priors considered yield

very inaccurate point forecasts for real activity and inflation in India and Indonesia. By

comparison, forecast performance is very homogeneous for variables of European and other

developed economies. The distributions of relative predictive ability tend to be very tight,

and forecasts that fall far off the median do so for most priors considered. Inaccurate point

forecasts for real GDP can be found for Norway, whose economy depends strongly on oil

exports, and Denmark. For total credit and the real exchange rate, relative RMSE figures

are particularly large in Great Britain and Switzerland, two countries with a large financial

sector. Countries that appear as outliers in the box plots might either indicate that some

country-specific features (e.g., oil based economy, heavy financial sector) are not correctly

reflected in the model, the (linear) specification of the model might be too restrictive or the

variance of the underlying time series might be comparably large.

Comparing across prior specifications, these disaggregated results corroborate the findings

provided in Table 1. Concentrating on the median value, most prior specifications tend to

outperform forecasts from the naive models for all regions and variables with the exception

of Latin America. Forecasts under the M-NC and SSVS priors often yield the lowest cross-

sectional median of relative RMSEs. At first sight, also the diffuse prior yields quite accurate

point forecasts. However, the distribution of relative RMSEs tend to be tighter when using

priors that incorporate country-specific shrinkage. This holds in particular true for Latin

American variables, where relative RMSE distributions under some shrinkage priors are very

tight, while the forecast performance indicator is very disperse under the diffuse prior.

5 Conclusions

In this paper we develop a Bayesian GVAR model and assess its out-of-sample predictive

performance in terms of point- and density forecasts. We use a large quarterly dataset that
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starts in 1979:Q2, excels in country coverage and covers many of the most important macroe-

conomic and financial variables. This dataset allows us to reserve a significant share of the

data as a forecast evaluation sample (40 observations by country, spanning the period from

2004:Q1 to 2013:Q4). Our forecast evaluation sample thus includes periods of very distinct

macroeconomic and financial conditions: the period of the great moderation that was accom-

panied by stable GDP growth and low inflation, followed by the global financial crisis which

triggered most of the economies to enter (prolonged) recession phases, and the ongoing period

of recovery since then. Evaluating forecasts over that period yields a fair assessment of the

usefulness of Bayesian GVAR models, and the length of our hold-out sample significantly im-

proves upon earlier studies on forecasting using GVAR specifications (see, e.g., Pesaran et al.,

2009).

Our main results are the following. First, we provide ample evidence that taking interna-

tional linkages among the economies into account and using priors that induce shrinkage on

the parameters locally greatly improves forecast performance. Throughout the set of variables

considered in this study, the diffuse prior setup that is flat over the coefficients as well as

forecasts from isolated Bayesian VAR models do not tend to rank among the best performing

forecast specifications. This holds true for both point forecasts and density forecasts as well

as the short-term and medium-term horizon. To set the degree of shrinkage for each country

model locally, we numerically optimize the marginal likelihood with respect to the hyper-

parameters, which is equivalent to minimizing the one-step-ahead prediction errors. This

allows us to accommodate a large degree of heterogeneity across the economies, which ap-

pears of particular importance for forecasting in a global setting. Second, within the class of

Bayesian GVARs that induce country-specific shrinkage, no single prior dominates all fore-

casting setups. The SSVS prior shows a very strong forecast performance over the hold-out

sample, while the forecast improvement of the conjugate Minnesota prior compared to the

naive benchmark tends to be small. The Minnesota prior with a non-random variance covari-

ance matrix of the error term and the prior put forward in Sims & Zha (1998) show excellent

track records of point forecasts for the one-step-ahead and four-steps-ahead forecast horizons

respectively. Moreover, the Minnesota prior with a non-random variance covariance matrix

of the error term together with the SSVS prior both excel in short-term density forecasting

for the majority of variables considered. The latter also shows a strong density forecast per-

formance in the longer run. Taking a regional stance, our results indicate that forecasts for

Latin America are particularly inaccurate for most specifications considered in this study. By

contrast, forecast performance for variables from European or other developed economies is

much more homogeneous and differences between the various prior setups considered more

modest.
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Figure 1: Cross-sectional distribution of 1-step-ahead RMSE values for real GDP

(a) Europe
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Notes: The figures show the cross-sectional distribution of the ratio of the RMSE corresponding to the

model to the RMSE of an autoregressive model of order five over the time period 2004:Q1-2013:Q4. Diffuse

stands for the model estimated using maximum likelihood, M-C denotes the GVAR with the conjugate

variant of the Minnesota prior, S&Z refers to a GVAR estimated using a weighted average of the conjugate

priors as in Sims & Zha (1998), M-NC stands for the variant of the Minnesota prior with a non-random

variance-covariance matrix of the error term, SSVS denotes the GVAR estimated using the SSVS prior, and

BVAR denotes forecasts based on separate country VARs with the SSVS prior employed. Observations that

exceed 1.5 times the interquartile range are marked as outliers.
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Figure 2: Cross-sectional distribution of 1-step-ahead RMSE values for inflation

(a) Europe
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Notes: The figures show the cross-sectional distribution of the ratio of the RMSE corresponding to the

model to the RMSE of an autoregressive model of order five over the time period 2004:Q1-2013:Q4. Diffuse

stands for the model estimated using maximum likelihood, M-C denotes the GVAR with the conjugate

variant of the Minnesota prior, S&Z refers to a GVAR estimated using a weighted average of the conjugate

priors as in Sims & Zha (1998), M-NC stands for the variant of the Minnesota prior with a non-random

variance-covariance matrix of the error term, SSVS denotes the GVAR estimated using the SSVS prior, and

BVAR denotes forecasts based on separate country VARs with the SSVS prior employed. Observations that

exceed 1.5 times the interquartile range are marked as outliers.
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Figure 3: Cross-sectional distribution of 1-step-ahead RMSE values for the real exchange
rate

(a) Europe
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Notes: The figures show the cross-sectional distribution of the ratio of the RMSE corresponding to the

model to the RMSE of an autoregressive model of order five over the time period 2004:Q1-2013:Q4. Diffuse

stands for the model estimated using maximum likelihood, M-C denotes the GVAR with the conjugate

variant of the Minnesota prior, S&Z refers to a GVAR estimated using a weighted average of the conjugate

priors as in Sims & Zha (1998), M-NC stands for the variant of the Minnesota prior with a non-random

variance-covariance matrix of the error term, SSVS denotes the GVAR estimated using the SSVS prior, and

BVAR denotes forecasts based on separate country VARs with the SSVS prior employed. Observations that

exceed 1.5 times the interquartile range are marked as outliers.
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Figure 4: Cross-sectional distribution of 1-step ahead RMSE values for short-term interest
rates
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Notes: The figures show the cross-sectional distribution of the ratio of the RMSE corresponding to the

model to the RMSE of an autoregressive model of order five over the time period 2004:Q1-2013:Q4. Diffuse

stands for the model estimated using maximum likelihood, M-C denotes the GVAR with the conjugate

variant of the Minnesota prior, S&Z refers to a GVAR estimated using a weighted average of the conjugate

priors as in Sims & Zha (1998), M-NC stands for the variant of the Minnesota prior with a non-random

variance-covariance matrix of the error term, SSVS denotes the GVAR estimated using the SSVS prior, and

BVAR denotes forecasts based on separate country VARs with the SSVS prior employed. Observations that

exceed 1.5 times the interquartile range are marked as outliers.
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Figure 5: Cross-sectional distribution of 1-step-ahead RMSE values for total credit

(a) Europe
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Notes: The figures show the cross-sectional distribution of the ratio of the RMSE corresponding to the

model to the RMSE of an autoregressive model of order five over the time period 2004:Q1-2013:Q4. Diffuse

stands for the model estimated using maximum likelihood, M-C denotes the GVAR with the conjugate

variant of the Minnesota prior, S&Z refers to a GVAR estimated using a weighted average of the conjugate

priors as in Sims & Zha (1998), M-NC stands for the variant of the Minnesota prior with a non-random

variance-covariance matrix of the error term, SSVS denotes the GVAR estimated using the SSVS prior, and

BVAR denotes forecasts based on separate country VARs with the SSVS prior employed. Observations that

exceed 1.5 times the interquartile range are marked as outliers.
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Web Appendix to “Forecasting with Global Vector Autoregres-
sive Models: A Bayesian Approach” by J. Crespo Cuaresma,
M. Feldkircher and F. Huber

Appendix A Data Description

Table A.1: Data description

Variable Description Min. Mean Max. Coverage

y Real GDP, average of
2005=100. Seasonally
adjusted, in logarithms.

2.173 4.298 5.400 100%

∆p Consumer price inflation.
CPI seasonally adjusted, in
logarithms.

-0.157 0.021 0.660 100%

e Nominal exchange rate vis-à-
vis the US dollar, deflated by
national price levels (CPI).

-5.373 -2.814 4.968 97.2%

iS Typically 3-months-market
rates, rates per annum.

-0.001 0.118 5.189 97.2%

iL Typically government bond
yields, rates per annum.

0.000 0.077 0.275 61.1%

tc Total credit (domestic + cross
border), seasonally adjusted,
in logarithms, average of
2005=100.

-14.140 3.514 6.552 83.33%

poil Price of oil, seasonally ad-
justed, in logarithms.

- - - -

Trade flows Bilateral data on exports and
imports of goods and services,
annual data.

- - - -

Notes: Summary statistics pooled over countries and time. The coverage refers to the
cross-country availability per country, in %. Data are from the IMF’s IFS data base and
national sources. Trade flows stem from the IMF’s DOTS data base. For more details see
the data appendix in Feldkircher (2015).
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Appendix B Deriving the GVAR Model

For the sake of exposition, let us assume that p = 1, p∗ = 1 and ai0 = 0. Following Pesaran
et al. (2004), the country-specific models in equation (2.1) can be rewritten as

Aizit = Bizit−1 + εit, (B.1)

where Ai = (Iki ,−Λi0), Bi = (Φi,−Λi1) and zit = (x′it, x
∗′
it )
′. By defining a suitable link

matrix Wi of dimension (ki + k∗i ) × k, where k =
∑N

i=0 ki, we can rewrite zit as zit = Wixt,
with xt (the so-called global vector) being a vector where all the endogenous variables of the
countries in our sample are stacked, i.e., xt = (x′0t, . . . , x

′
Nt)
′. Replacing zit with Wixt in (B.1)

and stacking the different local models leads yields the global model,

xt = G−1Hxt−1 +G−1εt

= Fxt−1 + et. (B.2)

Here, G = ((A0W0)′, · · · , (ANWN )′)′ and H = ((B0W0)′, · · · , (BNWN )′)′ denote the corre-
sponding stacked matrices containing the parameter matrices of the country-specific specifi-
cations. In line with existing work (e.g., Dees et al., 2007b) we assume that G is invertible.
Finally, et ∼ N (0,Σe), where Σe = G−1Σε(G

−1)′ and Σε is a block-diagonal matrix given by

Σε =


Σε0 0 · · · 0
0 Σε1 · · · 0
...

...
. . .

...
0 0 · · · ΣεN

 . (B.3)

Consequently, the matrix G establishes contemporaneous cross-country correlations. The
eigenvalues of the matrix F provide information about the stability of the global system. In the
empirical application we rule out explosive behavior of the model by discarding posterior draws
that significantly fall outside the unit circle.18 The framework outlined above deviates from
the work pioneered by Pesaran et al. (2004) in that we do not explicitly impose cointegration
relationships in the individual country-specific models.

18The proportion of such draws is extremely small and including them in the analysis does not qualitatively
affect any of the conclusions of the study.
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Appendix C Posterior Distributions

The Conjugate Case

For all priors discussed in Section 3 that can be cast into a form that uses dummy observations,
prior quantities can be expressed as

Πi = (Z ′iZi)
−1Z ′ixi (C.1)

V i = (Z ′iZi)
−1 (C.2)

Si = (xi − ZiΠi)
′(xi − ZiΠi) (C.3)

where Zi, xi denotes any (or a combination) of the dummy observations discussed in Section 3.
In the conjugate case, the posterior distributions of Ψi and Σεi are of Normal and inverse-

Wishart form, respectively. Formally, this implies that

Ψi|Σεi,DT ∼ N (Ψi,Σεi ⊗ V i) (C.4)

Σεi|Ψi,DT ∼ IW(Si, vi) (C.5)

where DT denotes the data up to time T . The posterior mean of Ψi = vec(Πi) is given by

Πi = (Z
′
iZi)

−1Z
′
ixi, (C.6)

where Zi and xi denote the dummy-observation-augmented data matrices. Moreover, V i is
simply

V i = (Z
′
iZi)

−1 (C.7)

The scale matrix of the posterior of Σεi is given by

Si = (xi − ZiΠi)
′(xi − ZiΠi) (C.8)

and the posterior degrees of freedom are T + vi. The conjugate nature of this prior implies
that posterior distributions are available in closed-form.

The Non-Conjugate / SSVS Case

Following George et al. (2008), we replace Σεi ⊗ V i in equation (C.4) by a vi × vi matrix Ri,
where

Ri =
(
Σ−1
εi ⊗ (Z ′iZi) +R−1

i

)−1
. (C.9)

The mean of the conditional posterior is given by

Ψi = Ri
(
R−1
i Ψi + Σ−1

εi ⊗ (Z ′ix
′
i)
)
. (C.10)

The posterior degrees of freedom are still vi = T + vi and the posterior scale matrix is given
by

Si = Si + (xi − ZiΠi)
′(xi − ZiΠi). (C.11)
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Finally, the conditional posterior of δij is distributed as Bernoulli,

δij |δi•,Ψi,Σεi,DiT ∼ Bernoulli(qij) (C.12)

where the notation δi• indicates conditioning on all δig for g 6= j and the probability that
δij = 1 is given by

qij =

1
τ1j

exp(− Ψ2
ij

2τ1j
)

1
τ1j

exp(− Ψ2
ij

2τ1j
)q
ij

+ 1
τ0j

exp(− Ψ2
ij

2τ0j
)(1− q

ij
)
. (C.13)
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Appendix D Posterior Inference at the Global Level: The Implications and Ad-
vantages of Country-Specific Priors

The method described in Section 3 imposes priors exclusively at the individual country level.
The main reason for local prior elicitation is computational. Furthermore, it is straightforward
to show that placing the priors locally leads to the same priors on the global level scaled by
the strength of the invoked trade links.

Prior implications at the global level

The global implications of a prior imposed locally and the corresponding prior variances can
be derived by substituting Wixt in equation (B.1),

AiWixt = BiWixt−1 + εit. (D.1)

The prior variance-covariance matrices of Ai and Bi are given by

V Ai = Var[vec(Ai)] =

(
0k2i×k2i

0k2i×kik∗i
0kik∗i×k2i

V Λi0

)
, (D.2)

V Bi = Var[vec(Bi)] =

(
V Φi1 0

0 V Λi1

)
, (D.3)

where we assume without loss of generality that covariances between the blocks of coefficients
equal zero. Consequently, the expressions for the variance-covariances matrices of vec(AiWi)
and vec(BiWi) boil down to

V AiWi
= Var[vec(AiWi)] = (W ′i ⊗ Iki)V Ai(W

′
i ⊗ Iki)

′, (D.4)

V BiWi
= Var[vec(BiWi)] = (W ′i ⊗ Iki)V Bi(W

′
i ⊗ Iki)

′. (D.5)

Here, for Λi1, it can easily be seen that the prior variance in country i corresponding to the
coefficient associated with country jth endogenous variables is driven by the prior variance-
covariance V Λi1 and the trade weights in Wi.

Equations (D.4) and (D.5) imply that the variance-covariance matrices of G and H in
equation (B.2) are given by

V G =


V A1W1

0 · · · 0
0 V A2W2

· · · 0
...

...
. . .

...
0 0 · · · V ANWN

 , (D.6)

V H =


V B1W1

0 · · · 0
0 V B2W2

· · · 0
...

...
. . .

...
0 0 · · · V BNWN

 , (D.7)

which are k2 × k2 matrices, respectively. Furthermore, equations (D.6) and (D.7) imply that
the covariances between countries equal zero.
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Finally, note that when defining conjugate priors locally the corresponding variances only
need to be proportional to each other within a given country, since country models are esti-
mated separately in the GVAR framework. This is in stark contrast to a global conjugate prior
specification which would require variances of all equations in the system to be proportional
to each other.

Posterior simulation and computational issues

Constructing the prior at the local level (and thus leaving the fundamental GVAR structure
untouched) facilitates the use of parallel computing. While the majority of the priors described
directly come along with analytical posterior solutions, the SSVS prior for example does not.
This implies that posterior simulation has to be carried out N + 1 times, which might be
computationally infeasible. Setting priors locally allows us to fully exploit parallel computing
and thus to carry out estimation even in the case posterior distributions are not available in
closed form.

In an optimal parallel computing environment the computational speed can be increased
c times, when spread across c central processing units (CPUs). However, in reality, only a
fraction % of some problem at hand can be parallelized. Amdahl’s law (Rodgers, 1985) states
that the maximum speedup gained by parallelization is given by 1/

[%
c + (1− %)

]
. In the

GVAR case, % is approximately one which implies that the GVAR framework is perfectly suited
for exploiting gains from parallelization. This is in contrast to panel VARs (Korobilis, 2015)
or large Bayesian VARs (Bańbura et al., 2010) for which computational costs increase more
strongly with the dimension of the estimation problem. Thus if the number of available CPUs
equals the number of countries, the time needed to estimate a GVAR model using Bayesian
methods approximately reduces to the time needed to estimate a single model. In practice,
however, overhead costs typically arise. These costs are related to the transportation of the
data from the host processor to the nodes. This is negligible relative to the overall estimation
time, especially when we have to use simulation based methods. For our present application
estimation of a model with p = p∗ = 5 lags takes between 30 minutes (conjugate specifications)
to around two hours (non-conjugate/SSVS prior specifications) on a workstation with eight
CPU cores and for 10,000 posterior draws.

Taking into account the computational advantages of such a modelling strategy, posterior
inference is done locally, producing draws from the individual country posteriors for all coun-
tries in the sample. These draws are transformed using the usual GVAR algebra to produce
valid draws from the (joint) global posterior of F and Σe, denoted by p(F,Σe|DT ), where
DT denotes the available information set for all countries. Functions of the parameters like
forecasts or impulse response functions can be easily calculated using Monte Carlo integration.
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Appendix E Forecast Measures

The f -step ahead predictive density of the GVAR model is given by

p(xt0+f |Dt0) =

∫
F̃

∫
Σe

p(xt0+f |F̃ ,Σe,Dt0)p(F̃ ,Σe|Dt0)dF̃dΣe (E.1)

where DT0 denotes the data up to time T0 and F̃ = (F1, . . . , Fq). Note that for conjugate
priors, the one-step ahead predictive density is available in closed form. However, for f > 1
we either have to resort to numerical methods or turn the problem at hand into a sequence
of one-step ahead forecasts. The latter approach, known as the direct method, is employed
for all conjugate prior distributions, whereas for non-conjugate distributions we use Monte
Carlo integration to approximate the predictive density. This boils down to drawing from the
country-specific posteriors and using the algebra outlined in Appendix B to obtain posterior
draws of F and Σe. We construct the corresponding forecasts by iterating equation B.2
forward and sampling the corresponding errors from N (0,Σe). This procedure is repeated
nsim times.

As a point estimate, we use the mean of the predictive density described above. Evaluation
of the point forecasts is based on the root mean square error (RMSE). The RMSE associated
with variable q is given by

RMSEq =

√∑T−f
t0=T0

(x(q)Ot0+f − x(q)t0+f )2

T − T0 − f + 1
(E.2)

where x(q)Ot0 is the observed data corresponding to the elements in xt and to variable q. The
mean of the f -step ahead predictive density of variable q is denoted by x(q)t0+f .

The log predictive score (LPS), as given in e.g. Geweke & Amisano (2010), is the predictive
density given by equation (E.1) evaluated at the realized outcome.

LPS(xOt0+f |Dt0) = log p(xt0+f = xOt0+f |Dt0) (E.3)

As noted above, for f > 1 equation (E.3) has no closed form solution. Following Adolfson
et al. (2007) we approximate the LPS using a multivariate normal density which is evaluated
with posterior mean estimates from the predictive density. This second-order approximation
is given by

L̂PS(xOt0+f |Dt0) ≈− 0.5[k log(2π) + log |Ωt0+f |t0 |

+ (xOt0+f − xt0+f |t0)′Ω
−1
t0+f |t0(xOt0+f − xt0+f |t0)], (E.4)

where Ωt0+f |t0 denotes the mean of the f -step ahead predictive variance-covariance matrix.
We present variable-specific log predictive scores calculated by integrating out the effect of
other variables in the system. Under the assumption of multivariate normality, the LPS
associated to variable q can be calculated by deleting the rows (and columns) corresponding
to variable g 6= q from xOt0+f , xt0+f |t0 and Ωt0+f |t0 , respectively.
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Appendix F Forecast Ability: Changes Over Prediction Sample

Figure F.1: LPS relative to AR(5) benchmark over forecasting period: GDP, inflation, total
credit and long-term interest rates
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Notes: Diffuse stands for the model estimated using maximum likelihood, M-C denotes the GVAR with

the conjugate variant of the Minnesota prior, S&Z refers to a GVAR estimated using a weighted average of

the conjugate priors as in Sims & Zha (1998), M-NC stands for the variant of the Minnesota prior with a

non-random variance-covariance matrix of the error term, SSVS denotes the GVAR estimated using the SSVS

prior, and BVAR denotes forecasts based on separate country VARs with the SSVS prior employed.
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Figure F.2: LPS relative to AR(5) benchmark over forecasting period: Short-term interest
rates, real exchange rates and equities

0

10

20

30

2004 2006 2008 2010 2012 2014
Time

Lo
g 

P
re

di
ct

iv
e 

B
ay

es
 F

ac
to

rs
 r

el
at

iv
e 

to
 A

R
(5

) 
S

ho
rt

−
te

rm
 In

te
re

st
 R

at
es

Models

Diffuse

M−C

S&Z

M−NC

SSVS

BVAR

−5

0

5

2004 2006 2008 2010 2012 2014
Time

Lo
g 

P
re

di
ct

iv
e 

B
ay

es
 F

ac
to

rs
 r

el
at

iv
e 

to
 A

R
(5

) 
R

ea
l e

xc
ha

ng
e 

ra
te

s

Models

Diffuse

M−C

S&Z

M−NC

SSVS

BVAR

0

100

200

2004 2006 2008 2010 2012 2014
Time

Lo
g 

P
re

di
ct

iv
e 

B
ay

es
 F

ac
to

rs
 r

el
at

iv
e 

to
 A

R
(5

) 
E

qu
iti

es

Models

Diffuse

M−C

S&Z

M−NC

SSVS

BVAR

Notes: Diffuse stands for the model estimated using maximum likelihood, M-C denotes the GVAR with the

conjugate variant of the Minnesota prior, S&Z refers to a GVAR estimated using a weighted average of the

conjugate priors as in Sims & Zha (1998), M-NC stands for the variant of the Minnesota prior with a non-

random variance-covariance matrix of the error term, SSVS denotes the GVAR estimated using the SSVS prior,

and BVAR denotes forecasts based on separate country VARs with the SSVS prior employed.

9


	Introduction
	The GVAR Model
	The B-GVAR: Priors over Parameters
	Empirical Results
	Data and Model Specification
	Selection of Hyperparameters
	Forecast Performance

	Conclusions
	References
	Appendix Data Description
	Appendix Deriving the GVAR Model
	Appendix Posterior Distributions
	Appendix Posterior Inference at the Global Level: The Implications and Advantages of Country-Specific Priors
	Appendix Forecast Measures
	Appendix Forecast Ability: Changes Over Prediction Sample

