
ON A GENERALIZED GliB BASIS FACTORIZATION
ALGORITHM FOR BLOCKANGULAR LINEAR PROBLEMS

WITH COUPLING CONSTRAINTS

Carlos Winkler

September 1974 WP-74-49

Working Papers are not intended for
distribution outside of IIASA, and
are solely for discussion and infor­
mation purposes. The views expressed
are those of the author, and do not
necessarily reflect those of IIASA.

On A Generalized GOB Basis Factorization Algorithm for

Blockangular Linear Problems with Coupling Constraints

by

Carlos Winkler*

Introduction

An extension of the Generalized Upper Bounuinl Technique

to blockangular linear problems with coupling constraints was

proposed by Kaul [5J in 1965. Similar methods were developed

independent ly by MUller-ri1ehrbach [7] and Bennet t [1]. They

differ from other partitioning and decomposition algorithms in

that they are primal methods that follow the same path as the

Primal Simplex Method, using essentially a different repre­

sentation for the basis inverse. As has be~n pointed out by

GrigoriaJis [4], other partitioning methods for this same

class of problems, like Rosen's Primal Partitioning Procedure [lOJ

or Otlse' s Dual Algorithm [8], can be viewed as using this same

basis inverse representation with different pivot selection

strategies.

In the following we review the basic basis factorization

for blockangular linear problems with coupling variables and

from its analysis we determine an efficient strategy for large

problems, which for a large class of problems should reduce

the computations in the backward and forward transformation

* The res~arch for this paper was performed at the
Sy~tems Optimization Laboratory, Stanford University,
Stanford, California.

-2-

and the average time spent in inversions and reinversions.

At the end we present some preliminary computational

results which tend to confirm our theoretical conclusions.

Review of the Generalized GUB (G-GUB) Basis Factorization
•for Blockangular Linear Problems with Coupling Constraints

Consider the following linear program

Max z

Xo ~ 0 , xl ~ 0 , ••• , x
k

> 0

n. m. m
O1 1where XiER , biER , Di mi x ni , Hi rnO x ni , vOER , z scalar.

We assume the system has full rank. Then if BT is any

basis for P, it can be ordered so that it has the following

structure

=

- - - -HO HI H2
... Hk

GI

G2

Gk

•Our presentation is on lines similar to Lasdon's [6].

-3-

Proposition 1: Gi , for i = l, ••• ,k, can be partitioned, re­

arranging the columns if necessary, as G. = (B. ,C.) where
J. J. J.

B. is m. x m. and nonsingular.
J. J. J.

Proof: Since BT is nonsingular it has full row rank. This

implies that Gi has full row rank for i = l, .•• ,k. That is,

G. has rank m., and hence it contains at least one set of m.
J. J. J.

linearly independent columns. Let B. consist of such a set
J.

and C. of the remaining columns in G. (if any). II
J. J.

By proposition 1 we can rearrange the columns of BT
so that

=

Let

=

-4-

and

B. =
1

1. 11-

A.
1

B.
1

i = l, ••• ,k

Proposition 2:

in any order.

k
II

i=l
~., where the product can be taken

1.

Proof: Take an arbitrary order and carry out the matrix

multiplications and verify that the product is equal to BN.

(Will not be done here.)

-1Corollary: BN is nonsingular and BN

product can be taken in any order.

Notice that

=
k
II

i=l

..... -1
B. where the

1

..... -1B.
1

-1-A.B.
1 1

-1B.
1.

Proposition 3: If d is a column belonging to block i, i.e.

dT = (dO,O, ... ,O,di,O, ... ,O), then

..... -1 -1 -1 T= B. d = (dO - A.B. d.,O, ••• ,O,B. d.,O, ... ,O)
1. 111 1 1

-5-

"In particular, if d is a column in block 0, then d =d.

Proof: d = B~ld is equivalent to BNd = d. Writing this out

k
" I "dO + A.d . = dOJ J

j= 1

"B.d. = d. v.
J J J J

but for J ~ i, d. = 0:::98. = 0 since B. is nonsingular. Hence
J J J

the above equations reduce to

" "dO + A.d. = dO1 1

" d.~ " "'-1B.d. = d. = B. d.
1 1 1 1 1 1

and
-1= dO - A.B. d.

111

and

" "-1d = B. d
1

In particular if d belongs to block 0, then d. = 0 and by the
1

above re lations di = 0 and dO = dO making d = d in this case. II

We can now define BA = B~lBT and express the basis in

factorized form as

-6-

Proposition 4: BA has the following structure:

=

where BW i3 rnO x rnO and nonsingular and Vi
-1= B. C .•
1 1

Proof: The columns of BA are the columns of BT updated by

B;l, hence we obtain a unit vector in the positions where a

column is both in BT and BN• On the others, i.e. the first

1II0 columns, we get by proposition 3 the above structure with

B~lC. = V.. Further we can factorize BA as
111

~///B ;,......-
v .~v/-

II I
I 1!2l

I k

•
12

-7-

,., ,., ,.,
"'"and hence B - BNBwV and det B - det BN • det BW • det VT - T -

BN oJ
,.,

this impliesand since det BT '# 0, det 0 and det V = 1,
,.,

det BW = det Bw t- O and hence BW is nonsingular.

As a result of the above we have that we can express

the inverse of tI~e basis in factorized form as

B- 1 "'-1"'-1 -1 "'-1"'-1
k

"'-1= V Bw BN = V BW II B.T l
i= 1

Undating the Representation of the Inverse----- ..

Whenever we replace one column in the basis by another,

we encounter three mutually exclusive possible updating

situations:

1) 'l'he outgoing variable is in the working basis (WB) BW'

2) The outgoing variable is in some block, say i, and

vr ' the row of Vi corresponding to it is zero.

3) The outgoing variable is in some block, say i, and

vr ¢ O.

We proceed in each case in the following way:

Case 1: Here we replace one of the columns of

,., -1 "'-1
by a r-;ew one, which has the form d = EN d = Bi d for some i.

Hence we have to replace one column of BW and update its

inv8r~~ in tne u3ual way, and replace the corresponding column

in V. IH..,tice t~at all the information needed had to be

-8-

calculated for updating the incoming column and hence no

calculations are necessary.

Case 2: In this case we replace the outgoing variable

directly in its block inverse by the incoming variable. Notice

that both have to belong to the same block, since otherwise

we would have a pivot eleme"t equal to zero, since dr = -vrdO = 0

for this case. Then if EN is the elementary matrix to update
-1BN ' we woula have

since the pivot row v = o.r
-1Hence Bw ,V are unchanged. Only

one block inverse is changed by one column.

Cas~ 3: Since v # 0 we can pick a v ~ O. Then ther r.
J

column corresponding to v can be exchanged with the outgoing, r.
J

variable since it has a nonnegative pivot element, giving a

new BN which differs from the old one by one column. This
-1 .exchange will change both BW and V. To find out how BW 1S

affected let E be the simple permutation matrix (E = E- l) such

t~at n; = BTE, where the index * is us~d for the new representation.

'L.er; ", _ L~tVt.:

.... *-1
BT = EB- l =T

-9-

• ,-1 -1 -1 *then if BN = EU BN we have EN = BN BN and replacing this and

writing the above expression in partitioned form

E~)
E lt

N

since EN is an elementary column matrix with pivot row in

b r,l I d E3some lock, ~N = 0 an N = O. Hence

But since E is a permutation matrix for columns j and r,

El is an identity except for the j-th column which is 0, and

E2 is 0, except for its component corresponding to the j-th

row and column r, which is 1. Hence

1

1

___-v.....:!:r'----_----JI = ER '
1.

-10-

an elementary row matrix which has -vr on its j-th row. Now

we have to update V. Notice that only V. needs to be updated,
~

and only for columns j for which v ~ O. The update of the,W Br.
J

corresponds to premultiplying by an elementary column matrix.

Jlfter this ~'le are l:>ack 1;0 ':,'23,:: :L

In conclusion:

Case 1: Replace one column in working basis by another

and the same in V. No calculations.

Case 2: Replace one column by anot~er in some block

inverse. No calculations.

Case 3: Exchange outgoing variable to working basis.

Add row eta to representation of working basis

inverse. Update columns of V~ for which v ~ O.... r.
J

Now proceed as in Case 1.

Usi~g th~ G-GUB Basis Factorization in the Simplex Method

In a simplex method a representation of the inverse is

needed for calculating:

1) nBT i. e. IT
-1

= c , = cBT

'" " B-ld2) BTd = d , i.e. d = T

(BTRAN)

We now explore the implications of the G-GUB basis

factorization on this operation. For the following we will

use

1) BTRAN

-11-

Writing n "'-1"'-1 -1= cV BW BN in expanded form

k

I
i=l

hence, because of the structure of BN, we have that

and

k - -1l c.V.) BW].].
i=l

or

or

no·A. + n.B. = c. ,
].].].].

-1IT. = (c. - ITOA.) B.
1].].].

for i = 1, ••• , k

From these formulas we can obtain some useful information both

for Primal and for Dual strategies.

-12-

A) Primal Strategies

AI) Whenever c i = 0, i = l, ••• ,k, i.e. when all

sub-blocks are feasible, V-I is not used in

BTRAN.

A2) In addition, if we use partial pricing to coincide

with some block (or blocks), we need only to

calculate the TI.'s for that block (or blocks).
l.

Hence, if we first make all blocks feasible and then use

partial pricing, we need only B;l and one ail in BTRAN J with

considerable potential savings in computations and Input-

Output.

B) Dual Strategies

Here c = UR the r-th unit vector. If c = UR = (UR ,UR ' ••• 'Un)
o 1 k

Then according to which of the three update situations we

are (recall that they only depend on the position of the out­

going variable) we have:

Case 1: TI o = UR B;l, all other ITi's as before and we have
o

to calculate them all.

Case 2 : UR. ~ 0, UR • = 0 V. = i J v = O. Then
J r

l. J

k
I -

~ IT.uR - uR •v. = o ~ ITo = 0 = 0 Vj ~ i.
J J0 j=l J

Hence only have to calculate IT .•
l.

Case 3: As (2) with vr ~ O.

other ITils as before and we have to calculate

them all.

-13-

Hence, for Dual strategies we can only achieve savings

in BTHAN if we are lucky enough to fall in update situation 2.

2) FTRAN

Here we have

if d belongs to block i (d A-I A-I= V BW d fo~ i = 0), by proposition 3.

That is, we need only one of the block inverses, the working

basis inverse, and the Vi matrices. For some Dual methods it

is not necessary to completelY update the incoming vector, and

then it is not necessary to use the Vi matrices. On the other

hand it becomes necessary to use them when determining if the

sUbproblem variables satisfy the nonnegativity constraints so

that this benefit is partially offset.

Considerations in Selecting A Simplex Strategy

All Dual (and parametric) strategies for bloqkangular

linear problems with coupling constraints go out from the fact

that if all subproblems are solved first, then the resulting

solution is dual feasible for the overall problem. Hence the

first step is to solve the subproblems up to optimality. On

the other hand, in order to make full use of the reductions in

computations and data transfer during BTHAN for Primal

strategies, it is necessary to have all subproblems feasible.

-14-

Alternatively we could also in this case solve them up to

optimali ty, un U·.e beuristics that this way we would later

approach feas':'Li.lity in the common rows "from above"

(maximizLng case) and hence could expect to hit the feasible

region aT. a l.ie:her value of the objective function, and have

fewer i tera1:,iOn3 in Phase II. Thus we would have a Unified

Mcx:li!"ied Phase I Procedure for both Primal and Dual strategies

(See 0rcLard-.i.lays [~J).

!-)rimal. strategies would have the following advantages in

a) Si~ce they do not require a dual feasible overall

soluti8c, we c0uld stop before reaching optimality, saving

i teNit loris.

b; Fur tn8 ~al!le reason, they do not require any special

tricKS if tL8 sut~.rol.Jlems are unLJounded or if Ha ~ O.

After t:Jis phase, Primal strategies would have the

advantage of a much reduced BTHAN if we make use of partial

pricing. ~ince fer large problems partial pricing is desirable

to reduce overall computation time, the added benefits of

redl.4cir~g tile amount of data and of computations required in

the Oack~lard transformation make it even more attrac tive here.

Dual strategies would present a slight advantage in the

.Forward trar~s formation, but nothing so dramati c as to offset

the reduc tion in b'rRAN for Primal strategies, especially so

if we consider that usually time spent in BTHAN is much

larger tban that in FTHAN (See de Buchet [2]). Tl.e only

-15-

case where there is a reduction in BTHAN for Dual strategies

is in the case of a type 2 basis update. But in this case

BWdoes not change, and hence if we use the same c vector

',true in Phase II or in Phase I if' we interpret our obj ecti ve as

the minimization of the sum of artificials) then ITO will not

change on this iteration for a Primal strategy and we need

not recompute it, with still further savings on BTHAN for

the next iteration.

All the above considerations make an algorithm using

the Unified Modified Phase I Procedure, followed by a Primal

strategy using partial pricing, look very attractive. If the

numoer 01." iterations after the f10dified Phase I Procedure

is not vast ly larger than for a Dual method, it should perform

better. By not requiring us to solve problems up to optimality

we have an a l..1ded degree of freedom.

In the following figures I-a) and I-b)·we"present a

basic flow-Sheet of th~ resulting algorithm.

Other Consideraticns

Notice that the method does not depend on any particular

representation for the inverses of the basis involved. Hence

we can always use the most appropriate. LV factorization

followed by the Forrest and Tomlin updating procedure [3J

has proven highly successful. It can be used directly for

each block inverse. The author has worked out an adaptation

for this procedure for the working basis, which will be

reported elsewhere.

Figure I-a

G-GUB Modified FhRSC I

-
1=1

Solve problem I to
optimality (feasibility)

Set
Q(I) = F

I = 1+1

no

no

Set objective for G-GUB
and I = 1

GO TO G-GUB
ITERATE*

-16- *Figure I-b

__.' C1J !', : •. :

ralculate ITo and
price columns in Ho

es

I = I + 1

IF
(1. GT • K) 1=1

no

in Phase I no
Otherwise

no

Price
columns
in Eo

Q(I) = QBL

no

no

2

Update
Subproblem I

1

Update incoming
column and CHUZR

(out oin column)

3

-17-

Calculate TIl and
price columns in
hlock I

Select
exchange
variable

Add column eta to eta
file of BW- l . Replace
column in V

Update
sUbproblem

I = I + 1

l]f

(l.GT.K)l=l

FORHC
(objective)

.
Set Q(J)=F

J=l, ... ,K

Preliminary Experimental Results

FORTRAN Code

An all in core FORTRAN LP code, LPMI, written by J.A.

Tomlin in Stanford, was adapted to the G-GUB algorithM.

LPMI stores the matrix packed by columns in a vector of

nonzeroes, a vector of row indices and a vector giving for

each column a pointer indicating the position of its first

nonzero entry in the previous vectors. Similarly for the

eta file. Invert uses an L- U factorization, with product

form updates.

G-GrJB was conceived as an out of core code, where at each

time the data for one block, matrix and eta file, is held in

core in the form required by LPMI, while in the meantime the

data for all other blocks is kept on disk. The working basis

inverse, HO and V are stored in the same way as a block O.

Whenever we need the data for another block, the one in core

is written out to disk (unless it has not changed) and the

new one is read in. Due to the packing scheme used by LPMI,

which was designed as an in core code, the I-O operations for

G-GUB are somehow inefficient. This was thought to be not too

serious for an experimental code like G-GUB, since the time

spent on I-O could be measured, which allows us to make

comparisons on computation times alone, or to have an estimate

of the effect of these inefficiencies. Besides, it was felt

-18-

-19-

that the advantages of adapting and existing LP code instead

of writing a new one outweighted these other considerations.

Other computational characteristics of G-GUB are:

1) Block inverses were inverted whenever Nl new etas

had been added to it since its last inversion. The same for

the working basis. (For tests Nl = 30.)

2) Every N2 iterations the solution was recomputed by
""-1""-1 -1solving XB = V BW BN b. A first step for this is to cal-

-1culate for each i = l, .•. ,k, a. = B. b .• When doing this
J. J. J.

the accuracy of the computeda i was checked. If the maximum

row error exceeded a tolerance, the corresponding block basis

was reinverted even though it was not necessary by the
-1criteria in (1). At the same time the corresponding Vi = Bi Ci

was recomputed using the new representation for the inverse.

After this step the working basis was reinverted with its

recomputed columns. The accuracy of the thus recomputed XB
was always found to be good.

3) All computations were performed on an IBM 360/91 at

the Stanford Linear Acceleration Center (SLAC). The computing

times reported are CPU seconds.

Description of Problems

Three problems were available. They are described in

Table 1.

-20-

Table 1. Description of Problems

Problem FIXMAR FORESTRY DINAMICO

/3.9%

/4.3%

/4.5%

Tot'll number of rows 325 404 417

'l'otal number of columns 452 603 527

Total density 1. 8% 1. 6% 1. 8%

Number cf blocks 4 6 3

Common rows 18 11 56

Block 1 rows, column,density 92/114/6% 73/103/6. l%~ 117/177

Block 2 73/94/5.4% 47/71/12.3% 108/164

Block 3 57/125/3.5% 69/109/8.9% 136/192

Block 4 85/118/8.7% 72/134/5.7%

Block 5 63/89/12.1%

Block 6 69/97/7.4%

First Runs

The first experiments, with an early version of the code,

were done to compare solution times of G-GUB and MPS-360. The

results with the two problems available at that time are given

in Table 2.

-21-

Table 2. Solution times using G-GVB and MPS-360

o
~

--_._-- .._------_.-, ---------

Code G-GUB G-GUB

prObl~
making first making first

blocks feasible block:; optimal MPS-36

!<'IXMAR 22 21 36

DINAr-nco 126 113 112

Second Runs

The above times for G-GUB were considered encouraging.

It was felt that for later tests LPMl should be used as the

standard LP since then the times would not be affected by

differences in the codes and would be directly comparable.

Besides, if G-GVB performed better, it was important to

determine to what degree this was due to the Modified Phase I

Procedure, to the G-GUB basis factori zation o,r to the partial

pricing strategy used in conjunction with this latter one.

Therefore some slight modifications were introduced to

the code, which allowed us to test different options. These

options were

A) Basis representation using G-GUB factorization or

the standard LPMl LU factorization with product

form updates for the basis of the whole problem.

B) Modified Phase I: Here we considered three options

(1) solving blocks to optimality, (2) making blocks

-22-

feasible or (3) use standard Phase I without

treating blocks first.

C) Pricing: (1) Partial pricing by block or (2) total

pricing at each iteration.

By a combination of these options the following strategies

could be tested:

Basis
Strategy Representation Modified Phase I Pricing

-1 G-GUB feas~bili ty block
0 G-GUB optimality block

1 G-GOB optimality total
2 G-GUB no block

3 G-GUB no total

5 LPr11 no total

5a LPMl no block

,;... '.:

Using problem FIXMAR these strategies were compared. The

results are given in Table 3.

-23-

Table 3. Comparison of strategies on problem FIXMAR

Strategy -1 o 1 2 3 5 5a
,

Total CPU sec 22.12 21.04 25.45 38.52 38.70 35.02 47.65

I
Core used 156k I 156k 156k 156k 156k 200k 200k,

I/O CPU sec 4.30 I 2.98 4.35 10.99 10.53 -- --

Total-I/O
CPU sec 17.82 18.06 21.10 27.53 28.17 35.02 47.65

Compo time
Q-GUB iteration 3.35 3.46 4.42 3.40 4.41 -- --,

Compo time
LI"!Pl i t;el'ation -- -- -- -- -- 5.15 5.30

Third Run

By this time strategies 0 and 5 were compared on problem·

FORESTRY. The results are given in Table 4.

Table 4. Comparison of strategies 0 and 5 on
problem FORESTRY

Strategy o 5

Total CPU sec 60.52 91.22

Core used 158k 270k

I/O CPU sec 11.82 --

Total - I/O
CPU sec 48.70 91. 22

Compo timet
G-GUB iter. 9.30 --
Compo timet
LMPI iter. -- 10.1

, ,':,.!

-24-

Analysis of Results

1) The G-GUB algorithm can produce substantial reductions

in overall computation time for blockangular linear problems, ,.;

with coupling constraints, with respect to comparable general

LP'~, us can be seen by comparing the total solution times

for problems F'IXMAR and FORESTRY using strategies 0 (G-GUB

algori Hun) and 5 (general LP).

2) It' FIXIVIAR is any indication then each one of the three

optioDU in the G-GUB algorithm helps in reducing the overall

~ulution time. The best results are obtained when all three

are in effect, where in this case we get a reduction by

approximately a factor of 2.

3) NCltlc8 that strategies I and 3 differ only in that

.i lIltd"'C':3 :... 3," ,_~l' 1:iJ..· I·lod i.fied Pha~e I Prucedure and this gives

about a 25% reduction in computation times. This would m~an,

if it were true in general for blockangular problems with

coupling constraints, that general LP's could be made more

efficient for this type of problem by using this strategy.

4) The mean time per iteration was noticed to increase

with the number of block vectors in the working basis. This

relationship is plotted on Fig. 2 for DINAMICO, for which the

effect is more pronounced due to the large number of common

rows. Notice that the mean time per iteration with 45 block

vectors in the working basis is about three times that with o.

-25-

~~ls effect is due mainly to longer transformation times,

especially in FTRAN, as the number of non zeroes in the WB

and in the V matrices increases linearly with the number of

block vectors in the working basis, and to an increase in th~

frequency of the more expensive type 3 updates. (The mQre

block vectors in BW the smaller the probability of Vr = 0).

This suggests a strategy modification to reduce the mean

time per iteration. At the end of Phase I, all block variables

in th~ working basis are treated as parameters fixed at their

current value. Thus there are no block vectors in the working

basis and V = 0 and we get faster iterations because of the

reduced transformation time. When the number of block vectors

in the working basis has again increased to a lev~l similar to

that at the end of Phase I, the variables treat~d as parameters

al'e L:o!1Gider('d as candiJat;\.~:...~ and thvll' val LlL'::) m,-::l~ .:.-·it.:!.i ill thE:

direction to improve the libjective functIon until they reac..:h their

bounds or displace a basic variable.

R8marks

I wish to thank J.A. Tomlin for his comments and a~vice

and G. B. Dant~ig for encouraging this work a 1~ tile :.:)ys Lerns

Optimization Laboratory at Stanford.

-26-

FIGURE 2: MEAN TIME PER G-GUB ITERATION
VS. NUMBER Of BLOCK VECTORS
IN WORKING BASIS.

25 mean time per G-GUB
iteration (centiseconds)

problem DINAMICO

20 • run A

o run B

15

10

5

number of block vectors in working basis
o

{/

o 10 20 30 40 50 60

REFERENCES

C~) Bennett, J.M. An Approach to Some Structured Linear
Programming Problems, Operations Research, 14, 1. 1966.

[~ de Buchet, J. How to Take into Account the Low Density of
Matrices to Design a Mathematica~ Programming Package.
In Large Sparse Sets of Linear Equations. (J.K. Reid,

ed.), Academic Press, 1971. M~

[~l Forrest, J.J.H. and Tomlin, J.A. Updating Triangular
Factors of the Basis to Maintain Sparsity in the
Product Form Simplex Method, Math. Prog ~ 1972.

[~ Grigoriadis, M.D. Unified Pivoting Procedures for Large
Structured Linear Systems and Programs. In
Decomposition of Large-Scale Problems, (D.M. Himmelblau,

ed.), North-Holland, 1973.

[~] Kaul, R.N. An Extension of Generalized Upper Bounding
Techniques for Linear Programming, ORC-62-27,
Operations Research Center, University of California,

Berkeley, 1965.

[6] Lasdoh,L.S.. 0ptimization·Theory for ~arge $yst~ms,

Macmillan, 1970.

LtJ MUller-Mehrbach, H. Das Verfahren der Directen
Dekomposition in der Linearen Planungsrechnung.

Ablauf und Planungs-Forschung, 6. 1965.

[~ Ohse, D. A Dual Decomposition Method for Block
Diagonal Linear Programs, Zeitschrift fUr Operations

Research, 17. 1973.

[9] Orchard-Hays, W. Practical Problems in LP Decomposition.
In Decomposition of Lar~e-Scale Problems, (D.M. Himmelblau,
ed.), North-Holland, 1973.

[10] Rosen, J.B. Primal Partition Programming for Block
Diagonal Matrices, Numerische Mathematik, £, 1964.

