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Prognostic systems analysis is widely applied to generate ‘sharp’ projections into the future. However, prognostic scenarios and ‘sharp’ 

futures are a physical impossibility! 

For illustration assume that our knowledge of the past suggests that global emissions, Y = Y(t),    and global temperature, T = T(t),    

continue increasing linearly also in the future. Assume further that we also learned from the past that the unsharpness in projecting 

emissions and temperature forward in time increases linearly, that is  ∆Y  ≈ a t and is  ∆T ≈ b t . 

This simplified example allows resolving for time and expressing ∆T as a function of 

∆Y, i.e., ∆T / ∆Y = const,   or, equivalently, ∆T∆Y’ = const  with ∆Y’=1 / ∆Y’ . The 

combined equation informs us that the unsharpness in T and the unsharpness in Y are 

interdependent. We also speak of a ‘Heisenberg-like unsharpness relation’, which 

informs a model user that a prognostic parameter carries another parameter’s 

unsharpness if the other parameter is resolved too sharply. By way of contrast, 

prognostic models are typically operated, and display their prognostic parameters, in a 

sharp modus. Their unsharpness regimes are out of bounds; they center at and around 

the zero-unsharpness origin in the figure. 

Challenge 

Approach 
We grasp the dynamics of an emissions-temperature data series by finding the ‘optimum’ between two extremes:  

            (i)  the ‘no learning needed’ case under which the data series’ dynamics has been nullified as, e.g., in the case of linear regression; and  

            (ii) the ‘no learning possible’ case under which the data series exhibits complete stochasticity and does not permit ‘useful’ learning in 

retrospect.  

We extend the learning methodology from the ‘data world’ to the ‘modelling world’; that is, from the emissions-temperature space to the 

parameter spaces of selected, simplified models which reproduce the emissions-temperature dynamics, and use the resulting ‘optimal 

parametric learning’ methodology to characterize the Heisenberg-like unsharpness relation inherent in the retrospective, model-based 

forecasts. 

 

We learn about the historical emission-temperature path by plotting 

it on a grid and increasing the size of the grid’s cells until the grid 

image of the historical path becomes tractable. In (a) and (b) the 

grids are too fine for successful learning. In (c) learning is 

successful – we see a regular ladder.  
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In retrospect, the simplest linear dynamical emission-temperature model is able to forecast 

precisely only intervals for emissions, Y, (left) and temperature, T, (middle). As a result, we get 

an unsharp emission-temperature forecast – the grey square in the (Y,T) plane (right).  

 

Given an exact future emission value, the corresponding future temperature values lie in the 

union of the temperature projections of all unsharp emission-temperature forecasts (the grey 

squares in the (Y,T) plane) whose emission projections contain the given future emission value. 

A Heisenberg-like unsharpness relation arises. 

Conclusion 
Model- and data-based emission-temperature projections are necessarily unsharp. Retrospective analysis helps find the measure of 

unsharpness.  

The key questions arising are (1) whether it is possible to determine the Heisenberg-like relation of a model; and (2) whether it is even 

possible to determine the model’s characteristic unsharpness regime by learning from the past? 


