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Abstract 
This study develops a conceptual system optimization model of adoption of a new infrastructure 

technology with multiple resource sites and multiple demand sites. With the model, this paper analyzes 
how the adoption of a new infrastructure technology is influenced by heterogeneous distances between 
different resource-demand pairs, technological spillover among different resource-demand pairs, 
different demand dynamics, and different technological learning rates. The main findings of the study 
are: from the perspective of system optimization, (1) heterogeneous distances among different 
resource-demand pairs will result in different adoption time of a new infrastructure; (2) technological 
spillover among different resource-demand pairs will accelerate the adoption of a new infrastructure; (3) 
it is hard to say that higher demand will pull faster adoption of a new infrastructure, and the optimal 
time of adopting of a new infrastructure is very sensitive to its technological learning rate.  
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1. Introduction 
Adoption of new technologies is recognized 

as an important driver of economic growth and 
competitive advantage (e.g., Kuan et. al 2015). 
Researchers have developed various technology 
adoption models, such as the technology adoption 
life cycle model (Rogers 1962), the Bass 
diffusion model (Bass 1969), the technology 
acceptance model (TAM) (Bagozzi et. al 1992, 
Davis 1989), and system optimization models of 
technology adoption (e.g, Messner & Strubegger 
1994, Seebregts 2001). Adoption of a new 
infrastructure technology, such as a UHV (ultra 
high voltage) transmission grid, commonly 

requires very high investment cost. The cost of 
establishing a new infrastructure could decrease 
in the future with technological learning effect as 
the experience of using the new technology 
accumulates (Arrow 1962, Arthur 1989). The 
cost reduction in the future relies on investment 
in the early stages of infrastructure development, 
and historical observations have shown that 
technological learning is quite uncertain 
(McDonald & Schrattenholzer 2001). Adoption 
of a new infrastructure commonly accompanied 
with system reconfiguration. For example, 
adoption of a UHV grid is commonly associated 
with relocating coal power plants, i.e., coal power 
plants can be moved from demand sites to 
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resource sites (e.g. Ma & Chi, 2012, Zhuang & 
Jiang 2009); adoption of a cloud computation 
infrastructure is associated with moving 
computation capacity from the end-use site to the 
cloud. In short, adoption of a new infrastructure is 
accompanied with uncertain technological 
learning in the time dimension and system 
reconfiguration in the spatial dimension. Thus it 
makes sense to analyze when and at what pace a 
new infrastructure should be implemented from a 
system optimization perspective. 

Most system optimization models of 
technology adoption treat infrastructures as links 
among different technologies or activities, rarely 
as main objects under study. Ma and Chen (2015) 
developed a system optimization adoption model 
of a new infrastructure with uncertain 
technological learning and spatial reconfiguration. 
Their concept model assumes a new 
infrastructure can be adopted to replace an 
existing one. The new infrastructure has 
technological learning potential but it is uncertain, 
and with the adoption of the new infrastructure, a 
product producing technology can be relocated 
from the resource site to the demand site. There 
was only one resource site and one demand site in 
their model. In reality, it is most likely that there 
are multiple resource sites and multiple demand 
sites, and the distances between different 
resource sites to demand sites could be different. 
This paper extends the model with a single 
resource site and a single demand site into a 
model with multiple resource sites and multiple 
demand sites. The extension enables us to 
analyze how the following factors influence the 
adoption of a new infrastructure which was 
missing in the previous model. 
 Heterogeneous distances between 
different resource-demand pairs. With 
different distance, the cost of establishing the 
new infrastructure between different 
resource-demand pairs could be different. Then 
what is the optimal time of adopting the new 
infrastructure between different 
resource-demand pairs from a system 
optimization perspective?  

 Technological spillover among different 
resource-demand pairs. Different 
resource-demand pairs might adopt the new 
infrastructure technology at different pace. The 
experience in the new infrastructure technology 
accumulates in resource-demand pairs which 
adopt the new infrastructure earlier will benefit 
those pairs which adopt the new infrastructure 
later, i.e, the cost of establishing the new 
infrastructure will be lower in the pairs which 
adopt the new infrastructure later. Then how this 
technological spillover effect influences the 
adoption of the new infrastructure from a system 
optimization perspective? 

In addition to exploring how the above two 
factors influence the adoption of a new 
infrastructure technology from a system 
optimization perspective, this paper also analyze 
how different demand dynamics, initial 
investment cost and technological learning rate 
of a new infrastructure technology influence the 
adoption of the new infrastructure with a 
optimization framework including multiple 
resource sites and multiple demand sites.  

Diffusion of new technologies, especially a 
new infrastructure technology, commonly takes 
a long time (Grubler, 2004). The model 
presented in this paper is developed from a 
long-term perspective. The model and analysis 
presented in this paper do not aim to represent 
the reality in terms of technological or economic 
details; instead, it is mainly for heuristic 
purposes. 

The rest of the paper is organized as follows. 
Section 2 introduces the optimization model 
with multiple resource sites and multiple 
demand sites. Section3 analyzes how the 
adoption of a new infrastructure is influenced by 
heterogeneous distances, technological spillover 
effect, demand dynamics, and so on. Section4 
gives concluding remarks. 

2. The model 

2.1 Model framework 
For the sake of transparency, the 
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techno-economic system of our model is quite 
simple and stylized. The simplification also 
follows previous research on endogenous 
technological change models (e.g., Grubler and 
Gritevskyi 1998, Manne and Barreto 2002, Ma 
and Nakamori 2009, Chi et al. 2012). Fig. 1 
gives an illustration of the model framework. In 
the model, the economy demands one kind of 
homogeneous good, for example, electricity. 
And the good can be generated with a producing 
technology from resources. There are 
multi-resource sites and multi-demand sites in 
the system. The left side of Fig. 1 lists resource 
sites, and the right side lists demand sites. T1 
and T2 are the same technology but located in 
different places for producing the good from 
resources to satisfy the demand, for example, 
coal power plants which can generate electricity 
from coal resources to satisfy the demand for 
electricity. There are two types of infrastructure 
technologies. One is existing infrastructure 
which is denoted with T3 in Fig. 1, and the other 
is a new infrastructure technology which is 
denoted with T4 in Fig. 1. With the existing 
infrastructure (e.g, railways for transporting 
coal), the resource has to be transported to 
demand sites where it will be used as the input 
for T1. With the adoption of the new 
infrastructure (e.g, UHV transmission grid), the 
producing technology T1 can be moved from 
demand sites to the resource sites and thus 
becomes to T2 in Fig.1, and the good produced 
by T2 will be transported (or transmitted) to 
demand sites with the new infrastructure.  

The model assume that the best match 
between different resource sites and demand 
sites is already known, that is to say, one demand 
site will provide the resource for one demand 
site, and one demand site will be served by one 
demand site. This assumption is for simplifying 
the model formulations and searching for 
optimal solutions. We will relax this assumption 

in our future work. We use ( )nkqk ,,1=  to 
denote the distance between the resource site and 
demand site in the kth resource-demand pair. Not 
losing generality, we assume nqqq ≤<≤ 21 . 

The existing infrastructure T3 is mature 
without learning effect, while the new 
infrastructure T4 has learning potential which 
means its cost could decrease in the future, 
depend on accumulated adoption of it. The 
distances between different resource-demand 
pairs are different, and thus the efficiencies and 
costs of using the new infrastructure could be 
different. When conducting a system 
optimization, different resource-demand pairs 
will adopt the new infrastructure at different 
time with different pace. The technological 
learning gained in resource-demand pairs which 
adopted the new infrastructure earlier can be 
spillover to pairs adopting the new infrastructure 
later. That is to say, the cost of establishing the 
new infrastructure in resource-demand pairs 
which adopted the new infrastructure later will 
be lower than the initial cost of the new 
infrastructure. 

Diffusion of a new technology commonly 
takes a long time. We assume the entire decision 
time horizon is composed of 10 decision 
intervals. A decision interval is the basic time 
unit for installing new capacities of technologies. 
We assume a decision interval as of 10 years, 
and thus the entire decision time horizon is of 
100 years. 

The model framework and main assumptions 
follow existing operational optimization models 
such as MESSAGE model (Messner & 
Strubegger 1994) and the MARKAL model 
(Seebregts 2001). What is new in the model 
introduced in this paper is that we address the 
relocation of producing technologies with 
adoption of a new infrastructure with multiple 
resource sites and multiple demand sites

.  
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Figure 1 An illustration of the model framework 

Table 1 Symbols for describing the model 

Symbols Symbols meaning 

kq  Distance between the resource site and demand site in the kth resource-demand pair 

)2(1 TT  Technology of producing the good from resource 

3T  Existing infrastructure technology 

4T  New infrastructure technology 

t  Time period ( 10,1,0,200010 =+×= ttyear ) 
t
kd  Demand at time t in the kth demand site 
t
Ekc  Resource extraction at time step t  in the kth resource site 

t
kr  Cumulative extraction of resource by time t in the kth resource site 

ikη  Efficiency of technology )4,3,2,1( =ii  in the kth resource-demand pair 
t
ikC  Total installed capacity of technology i  at time t in the kth resource-demand pair 
t
iC  Total installed capacity of technology i  at time t  
t
ikC  Experience in technology i by time t in the kth resource-demand pair 

t
Fikc  Unit investment cost of technology i at time t  in the kth resource-demand pair  

4b  Elasticity of the unit investment cost of the new infrastructure with regard to its cumulative 
installed capacity 

OMiC  Operation and maintenance cost of technology i  

iτ  Plant life of technology i  

δ  Discount rate 

θ  Technological spillover rate 

Decision Variables: 
t
ikx  Output of technology i  at time t in the kth resource-demand pair 
t
iky  New installation of technology i  at time t  in the kth resource-demand pair 
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2.2 Model formulations 
Table 1 introduces the meaning of symbols 

which will be used to describe the model. 

The objective of the model is to minimize 
the total cost of the system while satisfying 
dynamic demand from a long term perspective. 
Eq. (1) is the objective function of the model.
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The total cost of the system includes two 

items. The first item of the objective function 
includes the investment cost of building new 
capacities and the O&M (operation and 
maintenance) cost. The second term represents 
the cost of extracting resource. 

With technological learning, the unit 
investment cost t

kFc 4  of the new infrastructure 
in Eq. (1) will decrease as a function of 
cumulative installed capacity with 4b , as shown 
in Eq.(2).  
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There is technological spillover effect. The 
technological learning gained in 
resource-demand pairs which adopted the new 
infrastructure earlier can be spilled over to pairs 
adopting the new infrastructure later. The 

t
kC 4  

in Eq. (2) is the sum of experience (quantified 
with cumulative installed capacity) gained in the 
kth resource-demand pair and experience spilled 
over from other resource-demand pairs, as 
shown in Eq. (3)  
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where tĈ  is the experience spilled over from 
other resource-demand pairs. The j

kC4  in Eq. (3) 
is a function of previous decision on adopting 
the new infrastructure, and  
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T1/T2 and T3 are assumed mature without 
learning potential, and so ( )3,2,1=ict

Fik  in Eq. 
(1) are constant.  

The extraction cost of resource increases 
over time as a function of resource depletion, as 
shown in Eq. (5).  
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where β is a constant coefficient, and  
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where kk 21 ηη =  because T1 and T2 are the 
same technology located at different places. 

The objective function is subject to several 
sets of constraints. The first set represents 
demand constraints. Eq. (8) denotes that the 
demand at each demand site must be satisfied at 
each decision interval. 

t
k

t
kk

t
k dxx ≥+ 241 η            (8) 

The second set includes balance constraints. 
Eq. (9) indicates that the maximum input of T1 
is less than or equal to the output of T3. Eq. (10) 
denotes that the maximum input of T4 is less 
than or equal to the output of T2. 

t
kk

t
k xx 113 ≥η             (9) 

t
kk

t
k xx 442 ≥η            (10) 

The third set represents capacity constraints. 
Eq.(11) denotes that the production of each 
technology cannot go beyond its total installed 
capacity at each decision interval. 

t
ik

t
ik xC ≥             (11)  
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The fourth set constraints contain the 
decision variables. Non-negativity constraints 
are placed on the decision variables, as shown in 
Eq. (12) and (13). 

0≥t
ikx             (12) 

0≥t
iky             (13) 

The efficiency of the new infrastructure will 
decrease as the distance increases. We analyze 
the adoption of the new infrastructure with three 
types of dynamics of k4η  which is a function 
of the distance between a resource site and a 
demand site, as shown in Fig. 2. In all of the 
three types of efficiency dynamics, the value of 
efficiency is from 0.7 to 1. The three types 
efficiency dynamics are namely E1, E2, and E3, 
which are described with Eq.(14), Eq.(15), and 
Eq.(16), respectively. As shown in Fig.2, T4’s 
efficiency with E2 is always higher than that 
with E1 and E3. 
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Figure 2 Three types of efficiency dynamics of the 
new infrastructure 

E1: kk q×−= 3.014η         (14) 

E2: 1.0333100.03334 +×−= kq
kη    (15) 

E3: 10.6-0.3 2
4 +××= kkk qqη     (16) 

The demand in the model is exogenous and 
change over time. We analyze the adoption of 
the new infrastructure under three scenarios of 

demand dynamics, namely D1, D2, and D3, 
which are described with Eq. (17), Eq. (18), and 
Eq. (19), respectively. As shown in Fig. 3, with 
D1, the demand at each demand site grows very 
slowly at the beginning, and then it grows faster; 
with D2, the demand grows slowly at the 
beginning, then it grows faster, and then it grows 
slowly again; with D3, the demand grows very 
fast at the beginning, then the growth rate starts 
to decrease, and finally the demand starts to 
decrease. 

D1: t
k

t
k dd )05.01(0 +×=        (17) 

D2: t
kt

k e
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×−×+

×
= 08.0

0

1061
106       (18) 

D3: ttdd k
t
k ×+×−= 1420001060 20   (19) 

In the following, we present optimization 
results of the model in different scenarios and 
explore how the distance, spillover effect, 
demand, initial investment cost, and learning 
rate influence the adoption of the new 
infrastructure technology. 
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Figure 3 Three types of demand dynamics 

 
3. Simulations and analysis 

3.1 Adoption of the new infrastructure 
with a baseline simulation 

We assume there are 5 resource sites and 5 
demand sites. One resource site corresponds to 
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one demand site, which means there are 5 
resource-demand pairs in the entire system. The 
value of distance between resource-demand pairs 
are 2.01 =q , 4.02 =q , 6.03 =q , 8.04 =q , 

15 =q , respectively. For exploring how the 
adoption of the new infrastructure technology is 

influenced by different factors, we first do a base 
line simulation with the model and then conduct 
simulations with different parameter values. 
Parameter values as well as efficiency and 
demand dynamics in the baseline simulation are 
presented in Table 2. 

Table 2 Parameter values in the baseline simulation 

Parameters T1 T2 T3 T4 

Initial investment cost (US$/kilowatt) ( 0
Fikc ) 500 500 100 30000 

Efficiency ( ikη ) 0.4 0.4 0.85 0.9 

Plant life (year) ( iτ ) 30 30 30 30 

Initial total installed capacity (kilowatt) ( 0
ikC ) 50000 0 0 0 

O+M cost (US$/kilowatt Year) ( OMiC ) 200 200 80 100 

learning rate ( ib−− 21 ) 0 0 0 0.2 

Initial demand 0
kd  50000 

Initial extracting cost(US$/kilowatt) ( 0
Ekc ) 15 

Extraction coefficient ( β ) 10-10 

Discount rate (δ ) 5% 

Spillover rate of technological learning (θ ) 1 

Efficiency dynamics   E1: Eq. (14)  

Demand dynamics D1: Eq.(17) 

Fig. 4 shows the adoption of the new 
infrastructure technology in the five 
resource-demand pairs as well as the entire 
system with the baseline simulation, from which 
we can see that the longer the distance is, the 
later the adoption is. The new infrastructure 
technology dominates the 1st resource-demand 
pair from 2050, the 2nd pair from 2060, the 3rd 
and the 4th pairs from 2070, and it does not 
appear in the 5th pair at all which is of the 
longest distance. This is because with the longer 
distance, the lower the efficiency of the new 
infrastructure is, and thus it becomes more and 
more uneconomic to adopt the new 
infrastructure with the increase of distance. The 
resource-demand pair with the shortest distance 
adopts the new infrastructure firstly, with 
technological learning, the cost of adopting the 
new infrastructure decreases, and then it 
becomes economic for resource-demand pairs 

with longer distance and they start to adopt the 
new infrastructure.  
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Figure 4 Adoption of T4 with the baseline simulation  
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3.2 Adoption of the new infrastructure 
with different technological spillover 
rate 

In the baseline simulation, the technological 
spillover rate (θ ) is assumed to be 1, which 
means the experience gained in one 
resource-demand pair can be spilled over to 
others completely. In order to explore how 
different spillover effect influence the adoption 
of the new infrastructure, we conducted 
simulations with different spillover rate values, 

8.0=θ  and 5.0=θ . The left part of Fig. 5 
plots the adoption of the new infrastructure in 
the five resource-demand pairs with 8.0=θ , 

and the right part of Fig. 5 plots that with 
5.0=θ . From Fig. 5 we can see that the lower 

the spillover rate is, the later the adoption of the 
new infrastructure is. With 8.0=θ , the 
adoption of the new infrastructure in the first 
three resource-demand pairs is similar with that 
with 1=θ , and it is 10 years late in the 4th 
resource-demand pair; with 5.0=θ , the 
adoption of the new infrastructure in the first 
four resource-demand pairs is 20-30 years late 
than that with 1=θ . The new infrastructure does 
not appear in the 5th resource-demand pairs with 
either 8.0=θ  or 5.0=θ .  
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Figure 5 Adoption of T4 with different technological spillover rate 

3.3 The adoption of the new 
infrastructure with different 
efficiency dynamics 

In the baseline simulation, the efficiency of 
the new infrastructure decrease with E1 -- a 
linear function of its implemented distance, as 
shown in Eq. (14). For exploring how different 
efficiency dynamics influence the adoption of 
the new infrastructure, we conducted simulations 
with efficiency dynamics E2 -- an exponential 
function of the distance, and E3 -- a quadratic 
function of the distance. E2 and E3 are described 
with Eq. (15) and Eq. (16), respectively. 

The left part of Fig. 6 plots the adoption of 

the new infrastructure in the five 
resource-demand pairs with E2, and the right 
part plot that with E3. As we can see, with E2, 
the new infrastructure does not appear in the 5th 
resource-demand pair, the same as that with E1, 
but the adoption of the new infrastructure in the 
2nd, the 3rd, and the 4th resource-demand pairs are 
brought forward for around 10 years; with E3, 
the new infrastructure does not appear in the 3rd, 
4th, and 5th resource-demand pairs, and the 
adoption of the new infrastructure in the 1st and 
2nd resource-demand pairs are around 20-40 
years late than that with E1. In a summary, for 
the earlier adoption of the new infrastructure, 
E2  E1  E3, this is because with E2, the 
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efficiency is always higher than that with E1 and 
E3 for any given distance, and with E1, it is 
higher than that with E3, as shown in Fig. 2. 
With any of the efficiency dynamics, the new 
infrastructure intends to be adopted with 
resource-demand pairs with short distances 

firstly, and then those with the longer distances. 
This is because with any of the efficiency 
dynamics, the longer the distance, the lower the 
new infrastructure's efficiency is and thus the 
more uneconomic it is.  
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Figure 6 Adoption of T4 with different efficiency dynamics 

3.4 The adoption of the new 
infrastructure with different demand 
dynamics 

In the baseline simulation, the demand at 
each demand site increases with a constant 
annual growth rate (5%), as shown in Eq. (16). 
For exploring how different demand dynamics 
influence the adoption of the new infrastructure, 
we conducted simulations with demand 
dynamics D2 -- a logistic function of time, and 
D3 -- a quadratic function of time. D2 and D3 
are described with Eq. (17) and Eq. (18), 
respectively. 

The left part of Fig.7 plots adoption of the 
new infrastructure in the five resource-demand 
sites with demand dynamics D2, and the right 
part of Fig. 7 plot that with demand dynamics 
D3. As we can see from Fig. 7, with demand 
dynamics D2, the new infrastructure will not be 
adopted at all; and with demand dynamics D3, 

the adoption of the new infrastructure is similar 
to that in the baseline simulation, i.e., with 
demand dynamics D1. From Fig. 3, we can see 
that for any given time before 2070, D3>D2>D1, 
but this does not result in that higher demand 
pulls earlier adoption of the new infrastructure, 
with other parameter values and dynamics as the 
same. Although D2 is higher than D1 before 
2070, the new infrastructure is not adopted with 
D2. Although D1 is much higher than D3 after 
2090, it does not result in much earlier adoption 
of the new infrastructure. With the three demand 
dynamics, we can hardly conclude what kind of 
demand dynamics will induce the fastest 
adoption of the new infrastructure. What we can 
conclude is that higher demand does not have to 
pull earlier adoption of the new infrastructure, at 
least for a certain time period. In our future work, 
we will explore in details how different demand 
dynamics influence the adoption of a new 
technology.  
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Figure 7 Adoption of T4 with different demand dynamics 

3.5 The adoption of the new 
infrastructure with different 
investment cost 

In the baseline simulation, the investment 
cost of building the new infrastructure is 
assumed not related to its implemented distance. 
In this subsection, we assume the investment 
cost of the new infrastructure is a linear function 
of the distance with Eq. (20).  

1
1 q

qcc kt
Fi

t
Fik =

,         (20) 

With Eq. (20), the longer the distance is, the 
higher the investment cost is. In the baseline 
simulation, the new infrastructure's efficiency 
will decrease with the increase of the distance. 
For exploring how dynamic investment costs as 
a function distance influence the adoption of the 
new infrastructure, we run a simulation with the 
new infrastructure's efficiency as a constant 
value (0.9), i.e., not influenced by its 
implemented distance. The left part of Fig. 8 
plots the adoption of the new infrastructure in 
the five resource-demand pairs in this simulation. 
As we can see, in this simulation, the longer the 

distance is, the later the adoption of the new 
infrastructure is. This is because, the longer the 
distance is, the more uneconomic is to adopt the 
new infrastructure early. It is after experience in 
the new infrastructure is accumulated in the 
resource-demand pairs with short distance to 
reduce the investment cost with technological 
learning effect, then it becomes economic to 
adopt the new infrastructure in the 
resource-demand pairs with longer distances.  

We also run a simulation with both the new 
infrastructure's investment cost and its efficiency 
as functions of its implemented distance, i.e., 
with both Eq. (20) and Eq. (14). The right part of 
Fig. 8 plots the adoption of the new 
infrastructure in the five resource-demand pairs 
in this simulation, from which we can see that 
the adoption in the 2nd and the 3rd 
resource-demand pairs is postponed much and 
the new infrastructure does not appear in the 4th 
and the 5th pairs. In this simulation, the influence 
of distance on the adoption of the new 
infrastructure is strengthened through both 
investment costs and efficiency.  
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Figure 8 Adoption of T4 with different investment cost 

3.6 The adoption of the new 
infrastructure with different 
learning rate 

Technological learning is thought as the 
endogenous driving force for the adoption of 
currently uneconomic new technology. We run 
simulations with different technological learning 
rate of the new infrastructure to analyze how it 
influences the adoption of the new infrastructure. 
In the baseline simulation, the technological 
learning rate of the new infrastructure is 
assumed to be 20%. The left part of Fig. 9 plots 
the adoption of the new infrastructure in the five 
resource-demand pairs with the technological 
learning rate as 18%, with other parameter 
values and dynamics the same as in the baseline 
simulation, from which we can see that, the 
adoption of the new infrastructure in the 1st to 
the 4th resource-demand pairs is postponed for 
around 20~50 years. And the new infrastructure 
does not appear in the 5th resource-demand pair. 

The right part of Fig. 9 plots the adoption of the 
new infrastructure in the five resource-demand 
pairs with the technological learning rate as 22%, 
with other parameter values and dynamics the 
same as in the baseline simulation, from which 
we can see that the adoption of the new 
infrastructure in the 2nd to the 4th 
resource-demand pairs is brought forward for 
about 10~20 years, and the 5th resource-demand 
pair also adopts the new infrastructure which 
was not in all previous simulations presented in 
this paper. What we can summarize from the two 
simulations presented in Fig. 9 is that the model 
is very sensitive to the learning rate of the new 
infrastructure. Historical observations have 
shown that technological learning rates could be 
very uncertain (McDonald & Schrattenholzer, 
2001). In our future work, we plan to develop 
the model in to a stochastic optimization model 
to analyze what are the robust strategies of 
adopting the new infrastructure with uncertain 
technological learning.  
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Figure 9 Adoption of T4 with different learning rate 

 

4. Conclusions 
This paper developed a conceptual system 

optimization model with multiple resource sites 
and multiple demand sites to study adoption of a 
new infrastructure technology. The main 
findings of the simulations presented in this 
paper include the following points: 

(1) Heterogeneous distance among different 
resource-demand pairs will result in different 
adoption time of a new infrastructure because its 
investment cost might increase and its efficiency 
might decrease with its implemented distance 
increases. It is after experience in the new 
infrastructure is accumulated in the 
resource-demand pairs with short distance to 
reduce the investment cost with technological 
learning effect, then it becomes economic to 
adopt the new infrastructure in the 
resource-demand pairs with longer distances.  

(2) Technological spillover among different 
resource-demand pairs will accelerate the 
adoption a new infrastructure, the higher the 
spillover effect, the faster the adoption is.  

(3). From a system optimization perspective, 
it is hard to say that higher demand will pull 
faster adoption of a new infrastructure with our 
conceptual model, and the optimal time of 
adopting of a new infrastructure is very sensitive 
to its technological learning rate. 

The policy implications of the above point (1) 

and point (2) are that authorities in planning the 
adoption of a new infrastructure should pay 
attention to heterogeneous distances among 
different resource-demand pairs, it is better to 
start with the most economic one to accumulate 
enough knowledge/experience, and it is 
important to promote the technological spillover 
among different resource-demand pairs.  

The above point (3) implies that in our future 
work, it is necessary to do a more detailed 
analysis on demand dynamics and their 
influence on the adoption of a new infrastructure, 
and it makes sense to develop a stochastic 
optimization model to analyze the robust 
strategies on adoption a new infrastructure with 
uncertain technological learning. 
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