
REMOTE FILE ACCESS: A DATA-ACCESS PROTOCOL FOR
COMPUTER NETWORKS

F. Caneschi and M. Sommani
Institute o f the National Research Council (CNUCE)
Pisa, Italy

RR-8043
December 1980

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
Laxenburg, Austria

Research Reports, which record research conducted at IIASA, are independently
reviewed before publication. However, the views and opinions they express are
not necessarily those of the Institute or the National Member Organizations that
support it.

Copyright O 1980
International Institute for Applied Systems Analysis

All rights reserved. No part of this publication may be reproduced or transmitted in
any form or by any means, electronic or mechanical, including photocopy, recording,
or any information storage or retrieval system, without permission in writing from
the publisher.

FOREWORD

The idea of connecting two or more computers in order to make them work
together is as old as the concept of digital computing itself. Recent years have
proved that computer networks are suitable instruments for achieving this goal.

Computer interconnection is assuming clear structure owing to the
significant contributions toward standardizing communication procedures
that have been made by a number of national and international organizations
and institutions. Although lower-level procedures are already well established,
higher-level ones are still being developed.

The Informatics Task a t the International Institute for Applied Systems
Analysis (IIASA) has made several studies of standard protocols and their
performance. This study concentrates on a protocol for a higher-level family,
the file transfer protocol. While a restricted implementation was carried out in
connection with the work on RPCNET, the Italian computer network for
education and research institutions, the protocol as defined in this paper has
a more general meaning. In fact, the assumptions the authors make about the
nature of the network software are quite general and can be applied to a
number of existing networks.

The authors started this work at the Institute of the National Research
Council (CNUCE), Pisa, Italy and completed it at IIASA. This study was sub-
mitted for publication in September 1979; its issue was delayed for technical
reasons.

PREFACE

A computer network may be seen as a set of components, some being hardware
(physical lines, modems, and computers) and some being software (programs
to perform the network functions). This report explores part of the software
structure of a computer network.

Although seven protocol layers are recognized as independent entities
in computer network architecture, in this report we consider, for the sake o r
simplicity, a three-layer architecture. The first layer drives the physical lines
and sends data (divided into "packets") onto the lines toward their destina-
tions. It also "routes" packets coming from the lines t o their destinations and
keeps the tables that describe the network topology up to date. When dealing
with this layer, we speak of a "first-level protocol."

The second layer is the interface between the host computer and the
network. It provides such services as maintaining connections, signaling errors,
assembling packets into users' data units, and disassembling users' data units
into packets for the network. The protocol related t o this layer is commonly
called the "end-toend protocol" because the host computers are considered
to be end users of the network.

The highest level of network architecture is the application level; any
program that uses the network by means of the end-toend services is
considered to be an application. Application programs exchange information
and perform services for users of the host computer. For instance, an application
program can allow a user to "connect" his terminal (which is physically
connected to a computer) to any computer in the network or can transfer a
data file from one computer to another.

Although with appropriate restrictions any user can use the network,
writing his application program to "talk" t o another program following a
private protocol, such services as terminal access or file transfer should be
considered as "system" services and should not be managed by ordinary users.

This means that standard high-level protocols must be developed for such
services.

This paper proposes a new system service, remote file access (RFA),
which permits a user to have access to data files stored physically in remote
computers without transferring either all the data or the associated program
from one computer t o another.

The logical-record-access philosophy of an RFA system suggests using it
as a basis for distributed data-base systems, for both enquiry and update
applications. From the networking point of view, an RFA system can be
considered an application.

Unfortunately, no standards have been developed for the end-toend
protocol. We were thus obliged t o make general assumptions, which led to a
description of the interaction between the application protocol (that is, the
remote file access protocol) and the end-toend protocol that was not formally
exact. Because most existing computer networks have similar interfaces between
the applications and end-toend layers, however, a future standard will not
differ substantially from our assumptions.

We studied and developed the RFA protocol with a flexible structure in
order to allow different types of implementation, such as the application made
during the RPCNET project. This restricted use must not be viewed as the
complete protocol, for it provided only a subset of the RFA facilities and
differed significantly from the final version. For these reasons we did not
compare the performance of the only present working example of an RFA
system with other types of file transfer protocols. The RFA system provides
services not offered by other, similar protocols.

CONTENTS

1 INTRODUCTION 1

2 HIGH-LEVEL PROTOCOLS AND THE FILE TRANSFER PROTOCOL 1
2.1 The File Transfer 2
2.2 An Alternative Solution: The Remote File Access 2

3 THE NETWORK ENVIRONMENT 3

4 NETWORK DATA REPRESENTATION 4

5 SYSTEM STRUCTURE
5.1 Logical Channels Used by the RFA
5.2 Resource Reservation in the RFA

6 THE RFA PROTOCOL
6.1 Finite-State Description
6.2 The RFA Data Channel Protocol

APPENDIX 12

THE RFA PROTOCOL: DETAILED DESCRIPTION
Connection Request
Session Messages (Normal Session)
Close Connection Request

DATA CHANNEL PROTOCOL
Connection Protocol
Data Transfer Protocol
Restart Protocol

REFERENCES 2 7

1 INTRODUCTION

Several studies have been made since the necessity for establishing standard
protocols for computer networks (Hovey 1976; Folts and Cotton 1977) was
recognized. An international agreement regarding the line protocol was
formulated, and a halfduplex logical channel (HDLC) was developed and, in
some cases, implemented.

The problem of a standard end-to-end protocol is still unresolved. X25
(CCITT Study Group VII 1976, 1977) is not an end-to-end protocol, although
studies to build up a standard end-toend protocol on an X25 basis (Csaba
1976) have been carried out.

To develop standardized high-level functions, we need t o make some
assumptions about the nature of the network making up the "sublayer" of a
high-level protocol. Naturally, the greater the accuracy of these assumptions,
the fewer changes need to be made during the implementation phase. The
assumptions we make on the nature of the network or of the services provided
by the end-toend protocol are similar to those described in INWG (Inter-
national Network Working Group) Protocol Note 86 (High-Level Protocol
Group 1977) and are summarized in Section 3.

2 HIGH-LEVEL PROTOCOLS AND THE FILE TRANSFER PROTOCOL

A computer network, in its universal meaning, is a tool by which a number of
programs running on different computers (hosts) can exchange information
with each other. According t o this definition, any user program, under certain
conditions and with certain limitations, should be able to "access the network"
in order to "talk" with another program in another host, following their own
private protocol.

We can, however, separate from the set of all possible network appli-
cations some "system services" that should be managed not by user programs

but by the operating systems directly or by specialized subsystems. Such
services obviously should use standard protocols - thus the need for standard
high-level protocols.

Two network services were recently found t o contain standard protocols:
the terminal access with its related virtual terminal protocol (VTP) and the file
transfer with its file transfer protocol (FTP). Both have been the subject of
involved studies (High-Level Protocol Group 1977; Schulze and Borger 1978;
Bauwens and Magnee 1978; Shicker and Duenki 1976; Shicker et al. 1975 ; and
Gien 1978).

As our study is related to some aspects of the FTP, the next section
focuses on the file transfer.

2.1 The File Transfer

The file transfer should provide a tool by which a user can transfer large
amounts of data from one host to another in a network; the common denom-
inator of all the studies on the FTP is the definition of the file transfer functions.

Put simply, the FTP problem is a consumer-producer problem. On the one
side, a program asks, for instance, for a certain amount of data (normally
ordered and called a file) from another program that runs in another host. On
the other side, the "awakened" program starts sending data until the requested
amount is reached. Obviously, the reverse operation is also possible: the
requesting side may send data t o the other side, which, in turn, has to provide
the space (for instance, disk) for the data to be stored.

In FTP philosophy, the user initiates an event by means of a command
which may be issued in a network job control language (NJCL) environment;
from that point on, he is normally not involved with data transfer or similar
issues until a complete file transfer has been performed.

Two aspects of this philosophy should be taken into consideration. The
first is the master-slave relationship between the two sides of the connection.
Once the first messages have been exchanged, the roles are assigned; they will
not change for the rest of the transfer. The second is the "dynamic connection"
concept. The connection established between the two application programs
when one of them requested the network services will end when the data
transfer is completed.

2.2 An Alternative Solution: The Remote File Access

From the networking point of view, an operating system is a user. It is possible,
then, for a user's program to require access to remotely located data. Such a
program (data base management, for example) does not require an entire file,
but rather the possibility of accessing at any time any record of a complete file
system, without necessitating the transmission of all the data in the system.

Moreover, if the transmission of some data is requested, this should not mean
that when a file is "closed" (no longer used), the link established via the net-
work should be closed, too.

Because a connection may remain active for an indefinite period of time,
more than one user should be able to access the same file system (and even
the same file, with some restrictions, of course) at the same time.

In RFA there are no fixed roles: a producer of data directed to a file
system may at the same time be a consumer of data belonging to the same
file system, without opening another network connection. A connection of
this type is better considered as "static" than as "dynamic." Once the referred
file system has been accessed, no data transfer is performed until explicitly
requested. The connection path will be closed only on request when the entire
file system has to be released.

As the name remote file access suggests, this system is especially designed
for connection to nonlocal file systems, without necessitating the transfer of
entire files.

3 THE NETWORK ENVIRONMENT

User programs should never be involved in network details. For instance, a
user program should be able to refer to a file contained in a remote file system,
without any definition other than the normal file identifier. Before executing
the program, however, an NJCL command should request the "linkage" of that
file system to the job. The link command should be as simple as possible;
in some cases, only the host's network address, which holds the requested file
system, should be added to the file identifier.

The RFA should be in charge of establishing the requested connection
and setting up the proper entries in the system's tables, which describe the file
system, t o indicate its "remoteness."

As previously noted, we made some assumptions about the nature of
the services provided by the network that should be used by the RFA
function. We also noted that the assumptions we made are similar to those
in INWG Protocol Note 86 (High-Level Protocol Group 1977), namely, the
following :

1. The transport service regulates the information flow between network
users in such a way as to provide a synchronization and a limitation
of the demands on the receiver side(s).

2. If the transport service is not "error free," i t should detect errors and
signal them to both ends of the connection.

3. Any process, at any time, regardless of its role, should be able t o close
the connection with the counterpart.

4. User's (RFA's) information is delivered, correct and complete, and
ordered.

5 . The lack of availability of a remote counterpart should be distin-
guishable from a network break (error).

We made certain other assumptions primarily to better explain the protocol;
it is not, however, affected dramatically by them. These assumptions include
the following:

6. The primary service provided by the network to the application
programs is the possibility of establishing and maintaining logical
channels without taking into consideration the actual network
architecture (datagram or virtual call).

7. The following operations are possible in a logical channel:
a. CONNECT - to contact another application
b. LISTEN - to wait for a contact by another application
c. SEND - t o send data
d . RECEIVE - to receive data
e. CLOSE - to close the connection

8. From the user's point of view, a logical channel may be
a. Simplex (data flow is in one direction)
b. Halfduplex (data flow is in one direction until one party, nor-

mally the sender, decides to "pass the ball" to the other party)
c. Duplex (data flow is bidirectional; the sender can receive and

the receiver can send)

Moreover, we suppose that in the CONNECT and LISTEN operations
the user can specify the maximum amount of data to be transmitted in one
operation. The network software has to find an agreement if the amounts are
different in the two operations.

4 NETWORK DATA REPRESENTATION

As different computers and their operating systems may use different data
representations, we recognized the necessity for a uniform "network" data
representation early, when data transfer protocols were first studied and
developed.

The RFA function, however, is not normally involved with physical data
representations because it normally handles logical, not physical, records. This
does not mean that a uniform logical record structure should not be studied;
even if fewer differences exist in the logical record structures than in the
physical ones (for different computers), some differences do exist. This
problem, however, is not dealt with in this paper but will be the subject of
further study.

In the following description we suppose that a record is a data entity

whose meaning is fully understood by the two parties that are "talking" using
the network.

5 SYSTEM STRUCTURE

Figure 1 shows a proposed system structure similar to one implemented in
ARPANET (Thomas 1974). In the figure, the term "network software" means
all the lower-level services and protocols, such as line, reconfiguration, and end-
to-end, that stay "below" the remote file access function and protocol. The
network software could also be implemented in two or more different com-
puters using front-end processors; this is completely transparent to the RFA.

The RFA is split into two parts, the remote file access program interface
(RFAF') and the remote file access controller (RFAC).

The RFAP is in charge of establishing and handling the connection, that
is, "trapping" all users' requests directed to a remote file system and perform-
ing the necessary network operations, such as SEND and RECEIVE.

The RFAC is the remote counterpart of the RFAP. The RFAC thus has
to receive the requests coming from the RFAF'(s) and to perform the necessary
operations on the requested file system.

A characteristic of this architecture is its flexibility. A host may in fact
choose between three possibilities:

1. Only the RFAP function is implemented. This option means that a
local user may access remote file systems, but no remote user can
access the local file system.

2. Only the RFAC function is implemented. This is the antithesis of
the first option; remote users can access the local file system or
systems, but local users cannot access remote file systems.

3. Both the RFAC and RFAP functions are implemented. This should
be the "typical" situation. The center (host) permits both access to
local files by remote users and access to remote files by local users.

We decided to split the RFA functions into two parts not only for flexi-
bility but also because of two other characteristics of the RFA system design:

1. User programs must be able to access remote files in the same way
that they access local ones, without their having to be rewritten or
recompiled.

2 . Physical access to every resource must be controlled at each host by
a single process to avoid conflicts - between, for instance, programs
sharing the same data.

The first characteristic refers directly to the RFAP, while the second concerns
the RFAC. In addition, the first means that the RFAP should convert all

I FHEHE~ SOFTWARE)
NETWORK /

FlLE MANAGEMENT -
SOFTWARE rn
FlLE MANAGEMENT J

FIGURE 1 RFA system structure

requests coming from user programs into requests that are meaningful for the
RFAC; the RFAP should also perform, if necessary, a mapping between remote
resources and concepts known t o the local operating system.

5.1 Logical Channels Used by the RFA

Once having decided to split the RFA into two distinct components, we needed
to determine how many logical channels we should use to perform the RFAP--
RFAC communication. According to the system configuration, every request
from the RFAP t o the RFAC causes four information transfers:

1 . Request transfer (from the RFAP to the RFAC)
2. Permission transfer (from the RFAC to the RFAP)
3. Data transfer (for data transfer requests only, from the RFAP t o the

RFAC, or vice versa)
4. Answer transfer (from the RFAC t o the RFAP)

From these considerations, it follows that the information exchanged
between the RFAP and the RFAC must flow in both directions. This situation
is summarized in Figure 2 . If we use a fullduplex (FD) logical channel, any
RFAP can exchange information with an RFAC using one logical channel for
both requests and data transfers.

If we use a halfduplex (HD) logical channel, the number of logical
channels in use between each RFAP-RFAC pair depends strictly on the nature
of the operating system under which the RFAP is implemented. Let ussuppose,

FIGURE 2 Connection between RFA components in different computers, showing the
logical channels used. P'1 - - - P'N and PI - - - PM represent user processes.

for instance, that the sender in the HD logical channel is allowed to reverse
the roles of the participants via an indicator that we can term a "change direc-
tion" indicator. This is a real situation; see, for example, the RPCNET logical
channel (Caneschi et al. 1978). In such a situation we have two possibilities.

In the first instance, the RFAP has to handle the requests for processes
sequentially; that is, no process multiplexing is allowed or requested. In this
case, a single HD logical channel can be used with the "change direction"
facility because no confusion can arise as to the roles of the two parts of the
connection. This case was implemented and tested in RPCNET (Caneschi et al.
1979).

In the second situation, the RFAP has t o interface and to multiplex
requests coming from a number of processes; every process, in turn, can issue
asynchronous requests with respect to the other processes. In this case, with a
single HD logical channel environment and the RFAP as the sender side, it is
impossible to know when the "change direction" indication has to be issued.
It therefore becomes necessary to use two logical channels, each one in
simplex (SX) mode, between each RFAP-RFAC pair.

If the available logical channel is simplex it is necessary to set up two
logical channels between each RFAP-RFAC pair. This situation is summarized
in Figure 3 , where columns represent the availability of a certain logical
channel type and rows represent the characteristics of the system where the
RFAP runs.

If it is desirable to separate the control messages from the actual data

FIGURE 3 Logical channels vs. system configurations.

transfer, twice as many logical channels must always be provided. When, for
example, users' programs do not provide all the buffers necessary for data
transfer, the logical channel could be congested in such a way that no new
request transfer could be performed. Moreover, although it is not the primary
aim of an RFA service, setting up a logical channel could provide the transfer
of data between two RFACs governed by an RFAP running on a separate
host. This facility gives the RFA the full capabilities of a file transfer (see
Figure 4), so that an RFA system can be considered as an extension of a file
transfer system.

F D

5.2 Resource Reservation in the RFA

HD

1 HD

2 HD

MONO-USER

MULTI-USER

As previously stated, in an RFA system more than one user is allowed to gain
access to the same file system at the same time. This capacity stems from the
"static" nature of an RFA connection and means that there is a high probability
of keeping the requested resource busy for a long time. We should thus permit
a number of users contemporary access not only t o the same file system, but
also to the same file.

From the point of view of the host's operating system, there can be an
almost infinite number of possibilities for sharing resources among a number of
users, including using passwords for reading and for writing and sharing a
limited amount of resources (or all, or none), according to the owner's specifi-
cations. From this point of view, the RFA system (RFAC) is the owner of the
required resources and can thus manage remote users' utilization of the file
or files.

According to the RFA's nature, a remote user knows that a file he is
using can be used by others at the same time or later, so a user should have the
possibility of reserving files, file systems, or both. Reservation of an entire file
system, although possible, should remain valid only for the duration of a
session and should depend on implementation. Reservation of a single file, on

SX

2 SX

2 SX

1 FD

1 FD

FIGURE 4 File transfer using the RFA.

the other hand, should be possible for a longer period of time and, to avoid
conflicts between users, should be performed automatically by the RFAC
when an operation is issued on that file. Due t o this mechanism, i t could
be possible for two or more users to write in the same file a t the same time
(an operation that normally is forbidden in operating systems). This should
be permitted only if all such users have issued a request for performing such an
operation. This stated, the "natural" serialization of the operations (the RFAC
is a single process) will prevent more than one user from writing at the same
time on the same file.

The following are recognized reservation requests:

1. Write Exclusive: the user wants an exclusive readlwrite access and n o
other user can access the file or file system.

2 . Read Exclusive: the user wants an exclusive access but will perform
only read operations on the file or file system.

3 . Write Shared Write: the user wants an exclusive access to the file
o r file system and allows other users t o gain a write access t o it.

4. Write Shared Read: the user wants a write access t o the file o r file
system and forbids other users from writing into it.

5. Read Shared Write: the user wants a read only access t o the file
o r file system and allows other users t o write into it.

6. Read Shared Read: the user wants a read only access t o the file o r
file system and forbids other users from writing into it.

The criteria by which the RFAC satisfies reservation requests vary from
implementation t o implementation. Using passwords is a simple (perhaps too
simple) way t o implement such a mechanism.

The recognized reservation requests for a single file are the same as those
for a file system, with the only difference being one more parameter indicating
whether the reservation must be permanent (maintained after the end of the
session) or temporary. Reservation requests should normally be changed o r
deleted only by a request coming from the user who issued the reservation. It
should be possible t o have a sort of "super user" t o prevent undesirable
situations.

6 THE RFA PROTOCOL

The RFA protocol is simple: a detailed description of the actions taken by the
RFAP and the RFAC can be made using the well-known technique of finite-
state machines.

In the following description we assume that in any state a network's o r partner's
failure will cause only local action. This means that , in case of error, the
tentatives - i f any - for recovering d o no t provoke any special message
exchange between the partners. If recovery is feasible, this will imply a re-
transmission of the block or a change in the "window" configuration (see
Appendix); if, o n the other hand, recovery is not feasible, the connection will
be declared closed.

Having made this clarification, we may describe the protocol state by
state. It is perfectly symmetrical: the oriented graph describing it is the same
for both the RFAP and the RFAC.

If in the IDLE state, a request for connection will give control t o the
CONNECTlNG state. For the RFAP, a request for connection is originated
by the user who asked for the RFA services; for the RFAC, a request for
connection comes from the network, originated by an RFAP.

If in the CONNECTING state, a negative answer coming from the network
(for the RFAC) o r from the counterpart (for the RFAP) will return control
t o the IDLE state.

If in the CONNECTING state, a positive answer will put control in to the
CONNECTED state.

If in the CONNECTED state, any legal request for data access will be
executed. Control will remain in the CONNECTED state.

If in the CONNECTED state, a request t o close the connection will return
control t o the IDLE state.

The protocol is summarized in the oriented graph of Figure 5.

request close

CONNECTING

FIGURE 5 RFA connection protocol.

Any legal request issued in the CONNECTED state will consist of the four
phases described in Section 5 : request for operation; permission for operation;
data transfer (if any); and end of operation (with completion code).

When a normal data transfer (rather than "bulk" data transfer; see
Appendix) is performed, the user program accessing remote data is better
notified of a network failure in the form of an 110 error indication. The pro-
gram can reactivate the connection when this becomes possible and can decide
the point from which t o restart the operation. In this case, the RFAC does not
need t o note the broken connection.

The data transfer may, nevertheless, take a long time, resulting in more
likelihood of an interruption in network service during this phase and less
convenience in restarting this phase from the beginning. Although a long data
transfer is in contrast t o the normal RFA philosophy, the RFA system is, as
we noted previously, able t o provide a file transfer service. In the case of
"bulk" data transfer, a second logical channel is established between the par-
ties; it will be closed when the transfer has been performed. The rules governing
this "service" logical channel are explained in the following section.

6.2 The RFA Data Channel Protocol

The service logical channel operation is opened by a request t o send a file from
one file system t o another. The data transfer, if permitted, is performed using a
dynamic window technique, as explained in detail in the Appendix. When using
this technique, it is not necessary t o establish restart markers t o resume the
transfer after a network fault; in fact, the situation of the current window is

12

saved at the time of the interruption and will be used as a restart indicator
when transmission resumes.

As at least one network operation is active in any state, there is no possi-
bility of deadlocks due t o network or counterpart failure. In fact, in both cases,
as noted in Section 3, the operation will be terminated by the local network
software with an error indication, thus avoiding the necessity for the RFAP
(or the RFAC) t o wait for an indefinite period of time.

APPENDIX

The RFA Protocol: Detailed Description

The commands (operations) exchanged between the RFAP and the RFAC are
listed and explained in detail in the sections that follow.

CONNECTION REQUEST

A CONNECT network operation is performed by the RFAP; the message
associated with the CONNECT request will contain an indicator, called
NORMALIBULK; a number; and data.

The NORMALIBULK indicator will have the NORMAL value in the case
of an RFA "normal" connection or the BULK value if the operation is a data
transfer on a "service" logical channel. The number (from 0 to 255) is
associated by the RFAP with the user who requested the RFA services in the
case of a bulk data transfer. The third field (data) is used for additional infor-
mation, as will be explained subsequently.

The format of the CONNECT message is described in Figure 6, where

IND (1 byte) represents the indicator:
X'OO' means NORMAL
X' 10' means BULK

NAM (1 byte) is the number of the user of the RFAP, which will be used
in the CONNECTED phase during a bulk data transfer by the two
parties, as will be explained subsequently. If IND = NORMAL, this
field has no meaning.

LEN (2 bytes) is the length of the next field (expressed in bytes).
DATA (variable length) :

Byte 1 is the modifier. If IND = NORMAL, this byte indicates the
type of reservation requested for the file system. If IND = BULK.
this byte can be X'OO' (new file transmission) or X'10' (old file re-
transmission).
Bytes 2 and following are supplementary information. If IND =

NORMAL, these bytes contain a complete reference path (bytes 2-
52). If IND = BULK and modifier = X'OO', this field contains a

FIGURE 6 CONNECT message (RFAP side).

network address. If IND = BULK and modifier = X'IO', the first two
bytes contain a block number, the third byte contains the window,
and from the fourth byte on, a network address is specified.

On the other side, the addressed RFAC has to keep a t least one LISTEN
network operation active at any time. This means that as soon as one LISTEN
operation is closed by a corresponding CONNECT operation, the RFAC will
ask the network for another LISTEN operation, in order to "keep an ear free"
for another request.

When a CONNECT operation has been successfully closed, the RFAP
will start sending to the connected RFAC messages containing the requests
described in the following section.

SESSION MESSAGES (NORMAL SESSION)

Every message from the RFAP t o the RFAC will have the general format of
Figure 7, where

USN (1 byte) is the number of the user, assigned by the RFAP to associate
the request with the user (see IDENTIFY operation).

REQ (1 byte) is the code pertaining t o the request.
LEN (2 bytes) is the length of the next field.
MOD (variable length) is the additional information used by the RFAC

t o perform the operation specified in the REQ field.

On the other side, every message from the RFAC t o the RFAP will have
the general format described in Figure 8 , where

USN (1 byte) is the number of the user.
OP (1 byte) is the operation code.
IND (1 byte) is the return code for the requested operation.
LEN (2 bytes) is the length of the next field.
DATA (variable length) is the result of the operation (if any).

Every message will be sent by the RFAP or the RFAC using a network
SEND operation and will be received using the corresponding RECEIVE
operation.

The data length is specified in the first part (header) of any message;
thus if the network allows only a fixed amount of data to be transferred in one

FIGURE 7 Session message (from RFAP to RFAC).

FlGURE 8 Session message (from RFAC to RFAP).

operation, the sender side will issue as many SEND operations as necessary,
which will be coupled by a corresponding number of RECEIVE operations on
the receiver side. As specified in Section 3 , the network is supposed to deliver
users' data in the order in which they are presented. In any case, the maximum
data length permitted in one operation should be a local parameter; the RFAP
has to decide whether to reject the requested operation or t o open (if possible)
a "service" channel if the data field is considered too long.

Having specified the general message format and rules, let us describe the
message formats operation by operation.

IDENTIFY operation. The RFAP identifies a user who will work with the
associated RFAC. This operation should be the first for any user and will be
issued automatically by the RFAP for any request. Messages:

1. From the RFAP to the RFAC
USN user's number, which will be used in any subsequent operation
REQ IDENTIFY (X'DO')
MOD user's name (in the RFAP's operating system notation), which will

be used in case of restart (see RESERVE and RELEASE operations)

2. From the RFAC t o the RFAP
USN user's number
OP operation code (X'DO')
IND RFAC's return codes:

X'OO' operation performed
X'FO' operation not performed; user's number already in use
x ‘ o ~ ' operation not performed; no space for new user

DATA this field has no meaning

CLEARID operation. The RFAP asks the RFAC t o clear a user identification
number that has been set up with the IDENTIFY operation. The actions taken
by the RFAC are the same as those taken in the case of a request t o close the

connection, but the logical channel is not closed. Messages:

1. From the RFAP t o the RFAC
USN user's number
REQ CLEARID (X'EO')
MOD this field has no meaning

2. From the RFAC to the RFAP
USN user's number
OP operation code (X'EO')
IND RFAC's return codes:

X'OO' operation performed
X'FO' n o user with such a number

DATA this field has no meaning

OPEN operation. The RFAP asks the RFAC to open the specified file.
Messages :

1. From the RFAP to the RFAC
USN user's number
REQ OPEN (X'O 1 ')
MOD byte 1 action (opening for reading, XL1O'; opening for writing,

X'O 1 ')
bytes file reference, number of records t o be read or written,
2 and and so forth, according to the specifications of the oper-
following ating system where the RFAC resides

2. From the RFAC to the RFAP
USN user's number
OP operation code (X'O 1 ')
IND RFAC's return codes:

X'OO' operation performed
X'O 1 ' operation not performed; file already opened
X'02' operation not performed; file already reserved by

another user (see RESERVE operation)
X'04' operation failed
X'08' reserved for future use
X'FO' no user with such a number

DATA this field is meaningful only if IND = X'04'; in this case, it contains
the return code issued by the operating system

The RFAC reserves the specified file as RW if the operation is READ
or as WR if the operation is WRITE. This temporary reservation is not per-
formed if the file has already been reserved by the same user, and it will be
canceled when the CLOSE operation is issued (see CLOSE operation).

WRITE operation. The RFAP asks the RFAC to write some data into the
specified file. Messages:

1. From the RFAP to the RFAC
USN user's number
REQ WRITE (X'OO')
MOD bytes 1 1 6 file reference

bytes 17-1 8 record number
bytes 19 and data
following

2. From the RFAC to the RFAP
USN user's number
OP operation code (X'OO')
IND return codes:

X'OO' operation performed
X'O1' file not previously opened
X'02' operation scheduled
X'04' operation failed
X'FO' no user with such a number
others free

DATA return codes according to the RFAC's operating system

READ operation. The RFAP asks the RFAC to read from the specified file.
Messages:

1. From the RFAP to the RFAC
USN user's number
REQ READ (XC02')
MOD bytes 1 - 16 file reference

bytes 1 7 1 8 record number
bytes 19-20 first record t o be read

2. From the RFAC to the RFAP
USN user's number
OP operation code (X'02')
IND return codes:

X'OO' operation performed
X'O 1 ' file not opened for reading
X'02' operation scheduled
X'04' operation failed
X'FO' no user with such a number
others free

DATA if IND = X'OO', this field contains the requested data; otherwise, it
contains the error return code issued by the operating system

CLOSE operation. The RFAP asks the RFAC t o close the specified file.
Messages:

1. From the RFAP to the RFAC

USN user's number
REQ CLOSE (X'04')
MOD bytes 1 - 16 file reference

2. From the RFAC to the RFAP
USN user's number
OP operation code (X'04')
IND RFAC's return codes:

X'OO' operation performed
X'O 1 ' file not yet opened
X'04' operation failed
X'FO' no user with such a number
others free

DATA if IND = X'OO', this field has no meaning; otherwise, it contains the
error return code issued by the operating system

The RFAC cancels the reservation for the specified file if that reservation
was caused by an OPEN operation.

ERASE operation. The RFAP asks the RFAC to erase the specified file.
Messages:

1. From the RFAP to the RFAC
USN user's number
REQ ERASE (X'08')
MOD bytes 1 - 16 file reference

2 . From the RFAC to the RFAP
USN user's number
OP operation code (X'08')
IND RFAC's return codes (same as for CLOSE operation, but X'01'

has no meaning)
DATA system's return codes (see CLOSE operation)

RESERVE operation. The RFAP asks the RFAC to reserve the specified file.
Messages :

1. From the RFAP to the RFAC
USN user's number
REQ RESERVE (X' 1 0')
MOD bytes 1 - 16 file reference

byte 17 reservation codes (same as for the reservation of an entire
file system; see Section 5.2):
WE (X'OO') Write Exclusive
RE (X'O 1 ') Read Exclusive
WW (X'10') Write Shared Write
WR (X'20') Write Shared Read
RW (X'40') Read Shared Write
RR (X'80') Read Shared Read

byte 18 reservation type:
T E (X'OO') temporary reservation, which will be can-

celed at the end of the session
PE (X'l 0') permanent reservation, which will remain

after the end of the session; a permanent
reservation cannot be issued for an entire
file system

2. From the RFAC t o the RFAP
USN user's number
OP operation code (X' 10')
IND RFAC's return codes:

X'OO' reservation performed
X'O1' the requested type of reservation is not compatible with

a reservation that has already been made by another user
X'02' file already reserved by this user
X'FO' n o user with such a number

DATA this field has n o meaning

RELEASE operation. The RFAP asks the RFAC t o cancel a previously issued
reservation. Messages:

1. From the RFAP t o the RFAC
USN user's number
REQ RELEASE (X'20')
MOD bytes 1-1 6 f i e reference

2. From the RFAC t o the RFAP
USN user's number
OP operation code (XL20')
IND RFAC's return codes:

X'OO' operation performed
X'O 1 ' file no t previously reserved
X'FO' n o user with such a number
others free

DATA this field has n o meaning

SEND operation. The RFAP asks the RFAC t o send a specified amount of data
(even t o another RFAC). Messages:

1. From the RFAP t o the RFAC
USN user's number
REQ SEND (X640')
MOD bytes 1 - 1 6 file reference

bytes 17-18 number of the first record t o be sent
bytes 19-20 number of records (if equal t o X'FFFF', the whole

file must be sent)

byte 21 user's name that will be used in the secondary connec-
tion

bytes 22 and network address of the destination
following

2. From the RFAC to the RFAP
USN user's number
OP operation code (XL40')
IND RFAC's return codes:

X'OO' send operation completed
X'O 1 ' file reserved by another user for reading
X'02' operation scheduled
X'04' file not existing or not readable
X'08' connection rejected by the counterpart
X'FO' no user with such a number

DATA this field has no meaning

The name that will be used during the data transfer is the name specified
by the "master" RFAP in the command message. The details of the transmission
protocol are explained in the folIowing pages. When the transmission has been
finished, a message is sent to the "master" RFAP both if the data transfer is a
"three-party" connection (i.e., implies a data transmission between two
RFACs) and if the RFAP is the actual receiver.

RECEIVE operation. The RFAP asks the RFAC to receive a specified amount
of data (even from another RFAC). Messages:

1. From the RFAP to the RFAC
USN user's number
REQ RECEIVE (XL80')
MOD bytes 1 - 1 6 file reference

bytes 17-1 8 number of records to be received (if equal to X'FFFF',
the entire file must be received)

byte 19 user's number that will be used by the counterpart
in the connection

byte 20 second modifier:
X'OO' data are overwritten; the old contents of

the file are lost
X'O 1 ' data are appended to the end of the file
XL02' data are partially overwritten; the next two

bytes indicate the first record that must be
overwritten

bytes 21-22 meaningful only if the previous byte has a value of
XL02'

2 . From the RFAC to the RFAP
USN user's number

OP operation code (X'80')
IND RFAC's return codes:

X'OO' transfer completed
X'O 1 ' file system reserved by another user
X'02' operation scheduled
X'04' file temporarily reserved by another user
XLO8' file permanently reserved by another user
X'FO' n o user with such a number

DATA user's number used during the transfer (allowing the RFAP to
release this name and to use it for another connection)

INFORMATION operation. The RFAF' asks the addressed RFAC about a file
transfer. The request can be sent both to the sender RFAC and to the receiver
RFAC. Messages :

1. From the RFAF' to the RFAC
USN user's number
REQ INFORMATION (X'CO')
MOD user's number for the transfer

2. From the RFAC t o the RFAP
USN user's number
OP operation code (X'CO')
IND RFAC's retuni codes:

X'OO' file transmitted
X'O 1 ' n o transfer request from this user
X'02' no transfer request with this number
X'04' the file is being transmitted
XC08' the file has been transmitted only partially, for the

reason and in the amount specified in the DATA field
Xbl 0' no connection request by any other RFAC to date
X'FO' no user with such a number

DATA meaningful only if IND = X'08'
byte 1 reason codes:

X'O1' no more space to store data
X'02' temporary network interruption; the trans-

mission will resume as soon as possible
bytes2-5 numberofbytesreceived

CLOSE CONNECTION REQUEST

When the user wants to "detach" the file system, he has t o issue a command,
which is translated by the RFAP into a network CLOSE operation or into a
CLEARID operation if more than one RFAP's user is working on that connec-
tion. The RFAC will receive the CLOSE code as a termination of the currently

opened network operation and will close all currently opened users' files, cancel
all previously issued temporary reservations, and close the logical channel.

As previously stated, in the IDENTIFY operation the RFAP sends two
users' names to the corresponding RFAC. The first is a number used during the
connection by the RFAP and the RFAC. The second is the actual name (in the
RFAP's operating system notation) of the user. It can be an account number,
a programmer's name, or any set of characters that unequivocally identifies this
user to the RFAP's operating system. When a file is permanently reserved,
this name is associated with the file name in such a way that if the same user
later asks for another connection, his files will remain under his domain; a new
connection request with the associated IDENTIFY operation will bring,
generally, a new user's number, which is an RFAP parameter.

Data Channel Protocol

The data channel is established on request by means of a SEND or RECEIVE
RFA operation when a bulk data transmission is to be started. The protocol
ruling the data channel is a typical file transfer protocol. It can be considered
as divided into three parts, the connection protocol, data transfer protocol,
and restart protocol, which are discussed in the sections that follow.

CONNECTION PROTOCOL

The RFAC or RFAP that received the SEND request issues a network
CONNECT operation to the destination RFAC or RFAP, which has been
specified in the SEND message. Messages:

1. From the sender to the receiver
IND BULK (X610')
NAM user's number, as specified by the RFAP
DATA byte 1 modifier = X'OO'

bytes 2 and network address of the RFAP that requested the
following operation

2. From the receiver t o the sender
connection accepted
connection rejected

The message exchange will be the same whether the sender is an RFAP
or an RFAC. As the RFAC-RFAC connection is more usual, we will consider
it in this section; rules for RFAP-RFAC connection (a particular case of this
general situation) may be deduced from those discussed here.

If the connection request has been rejected, the sender RFAC will send an
answer t o the requesting RFAP, specifying code Xb08' (see SEND operation).
The receiver RFAC will send another answer t o the requesting RFAP,

specifying the reason for the rejection.
If the connection request has been accepted, the sender RFAC will send

an answer t o the requesting RFAP, specifying code XL02' (see SEND operation).
The receiver RFAC will send a similar answer (see RECEIVE operation). When
the data transfer has been completed, both the sender and receiver sides will
send another message to the master RFAP, specifying code X'OO'.

At this point, the data transfer protocol will begin.

D A T A T R A N S F E R P R O T O C O L

Every data block (sent by means of a network SEND operation) will consist
of a block header and data. The block header is a three-byte field where

byte 1 X'OO' data field contains data
X'O1' last block sent (data field contains the last block)
X'02' last block acknowledged
X'08' message is a status message
X'10' request for status

bytes 2-3 block number, the number of the block being transmitted

If the message is a status message,

byte 1 X' 10'
bytes 2-3 block number referring t o the left edge of the window
byte 4 window situation. A bit with a value of 1 means that the corres-

ponding block has been received correctly; a bit with a value of 0
means that the corresponding block has not been received.

The receiver side will send a status message every half window, except
when a request for status arrives from the sender. If no additional space for
storing data is available, the receiver will send a "last block acknowledged"
message and will discard any arriving block. When the sender receives this mes-
sage, the connection wilI be closed.

If no status is received, the sender will send blocks until the end of the
window has been reached and will then start a "time-out" mechanism, waiting
for the status message. If the time-out expires, a request for status will be sent
and the time-out will be started again. As soon as the last block is sent, the
sender will make a request for status to the receiver.

Because at least one network operation is active in each state (both that
of the sender and that of the receiver), both sender and receiver can be notified
at any moment if the counterpart will not be available owing to a network or
host failure. In this case, the window situation will be saved and the connec-
tion will be considered closed.

We may now describe the protocol, using the well-known technique of
the state diagram.

Sender

If in the IDLE state, a request to send data will pass control to the
CONNECTING state.
If in the CONNECTING state, a connection rejected condition will
close the logical channel and will pass control to the IDLE state.
If in the CONNECTING state, a connection accepted condition will
pass control to the SENDING state.
If in the SENDING state, blocks are sent according to the window
situation. A status received condition will pass control t o the UPDATE
WINDOW state. A last block acknowledged received message will
close the connection and will pass control to the IDLE state.
If in the SENDING state, an end of window condition will pass control
to the WAITING FOR STATUS state.
If in the SENDING state, a block sent condition will not cause any
change of state.
If in the SENDING state, a last block sent condition will pass control
t o the SENDING REQUEST FOR STATUS state.
If in the UPDATE WINDOW state, the window updated condition
will pass control to the SENDING state.
If in the WAITING FOR STATUS state, a time-out mechanism will
be started: the time-out expired condition will pass control to the
SENDING REQUEST FOR STATUS state.
If in the WAITING FOR STATUS state, a status received condition
will pass control to the UPDATE WINDOW state.
If in the WAITING FOR STATUS state, a last block acknowledged
received message will close the connection and will pass control to
the IDLE state.
If in the SENDING REQUEST FOR STATUS state, a request sent
condition will pass control to the WAITING FOR STATUS state.

Receiver

- If in the IDLE state, a request to receive data will pass control to the
CONNECTING state.

- If in the CONNECTING state and a connection message is received,
that message is checked. If accepted, control will pass to the
RECEIVING state; if rejected, control will return to the IDLE state.

- If in the RECEIVING state, a block received condition will pass
control to the CHECK SEQUENCE NUMBER state.

- If in the CHECK SEQUENCE NUMBER state, a duplicate block or a
block out of the current window will be discarded; control will
return to the RECEIVING state.

- If in the CHECK SEQUENCE NUMBER state, an accepted block will
pass control to the UPDATE WINDOW state.

24

- If in the SEND STATUS state, the message sent condition will pass
control to the RECEIVING state.

- If in the LPDATE WINDOW state, a no status point condition will
return control to the RECEIVING state.

- If in the UPDATE WINDOW state, a last block arrived condition
(if no more blocks have t o be received) will pass control t o the SEND
ACKNOWLEDGE state.

- If in the UPDATE WINDOW state and no more space is available for
storing data, control will pass t o the SEND ACKNOWLEDGE state.

- If in the UPDATE WINDOW state, a status point condition or a last
block arrived condition (if some blocks still have to amve) will pass
control t o the SEND STATUS state.

- If in the SEND ACKNOWLEDGE state, the message sent condition
will close the connection and will pass control to the IDLE
state.

The situation is summarized in the oriented graphs of Figures 9 and 10.

R E S T A R T P R O T O C O L

If transmission is interrupted by a network or host crash, the window is saved
at both sides, if possible. Transmission will be resumed, when possible, using a
restart protocol.

The problem of deciding when the transmission has to be restarted
remains unresolved; a network may or may not have a mechanism to alert users
when the connection has been reestablished. Although this is not a trivial
problem, we can solve it only by making additional assumptions about the
nature of the network, which would make our description more specific. We
can, however, list some suggestions to implement such a mechanism; these
might include the following:

1. The network alerts the users (RFACs and RFAPs) who were inter-
rupted.

2. The RFACs and RFAPs, who have a "wait" option in the CONNECT
and LISTEN network operations, can issue such operations and wait
until they are completed, at which time the connection will be
reestablished.

3. The RFACs, RFAPs, or both start a time-out and repeat, respectively,
the CONNECT and LISTEN operations when the time-out expires.
If the operations are closed without error, the connection is estab-
lished; otherwise, the time-out is started again.

4. The sender tries to connect the receiver only when a new request
for file transfer, directed to that node, is issued.

reauest to send data

connection last block
acknowledged

REQUEST FOR
STATUS u

FIGURE 9 Data channel protocol: sender side.

In any case, the CONNECT network message for the sender will have
the following format:

IND BULK (X' 1 0')
NAM user's number, as specified by the originator RFAP
DATA byte 1 (modifier) XL1 0'

bytes 2-3 block number related to the left window edge
byte 4 window
bytes 5 and network address of the originator RFAP
following

The receiver RFAC will look for an interrupted file transfer with the
specified RFAP's name and number and will accept or reject the connection.
Then the two windows are compared and the "more advanced" one is chosen
as the actual window. A status message is sent back to the sender, and the
normal data transfer protocol is started again. By "more advanced" window
we mean the window that has the highest left edge, or, if the left edges of

FIGURE 10 Data channel protocol: receiver side.

the two windows are the same, the window that contains more 1s in its
configuration.

The two windows may be identical; the sender's window may be more
advanced than the receiver's window; or the receiver's window may be more
advanced than the sender's window. The first instance occurs when the net-
work fails during a normal block transmission and the two RFACs have time to
save their windows. The second can happen if the receiver's host crashes after
sending a status message and before saving the updated window; in this case,
the sender's window is true, while the receiver's window does not reflect the
actual situation. The third case comes about if the network crashes during the
transmission of a status message, or if the sender's host crashes after the re-
ceiver RFAC has sent a status message and before the sender is able to update
its window; in this case, the receiver's window is true. The "most advanced win-
dow," in any case, reflects the true state of the transmission.

ACKNOWLEDGMENT

The authors would like to thank Dr. K. G . Beauchamp for his useful comments,
which were especially helpful during the reviewing phase of this paper.

REFERENCES

Bauwens, E., and F. Magnee (1978) Definition of the virtual terminal protocol for the
Belgian university network. Pages D3-1 D3-14, Proceedings of the Symposium on
Computer Network Protocols, edited by A. Danthine. LiBge, Belgium: Universitk
de Libge.

Caneschi, F., E. Ferro, L. Lenzini, M. Martelli, C. Menchi, M. Sommani, and F. Tarini (1978)
Architecture of and the service facilities provided by RPCNET - the Italian computer
network for education and research institutions. Pages 695-701, Evolutions in Com-
puter Communications, Proceedings of the ICCC (International Council for Computer
Communication) Fourth International Conference on Computer Communication,
Kyoto, Japan. Amsterdam: North-Holland Publishing Co.

Caneschi, F., L. Lenzini, and M. Sommani (1979) Remote file access in RPCNET. Pages
321-329, Proceedings of the European Conference on Applied Information Tech-
nology of the International Federation for Information Processing (IFIP), London.
Amsterdam: North-Holland Publishing Co.

CCITT Study Group VII (1976) Draft Recommendation X25. Geneva: International
Telegraph and Telephone Consultative Committee, International Telecommunication
Union.

CCITT Study Group VII (1977) Editor's group on Level 3 of X25 "Proposed additional
amendments and additions to X25," Temporary Document 75-E. Geneva: Interna-
tional Telegraph and Telephone Consultative Committee, International Telecommu-
nication Union.

Csaba, L. (1976) Problems in the Design of the IIASA End-to-End Protocol. INWG
Protocol Note 45. Teddington, UK: International Network Working Group, European
Informatics Network, National Physics Laboratory.

Folts, H., and I. Cotton (1977) Interfaces: new standards catch up with technology. Data
Communications June: 3 1 4 0 .

Gien, M. (1978) A file transfer protocol (FTP). Pages D5-1-D5-7, Proceedings of the
Symposium on Computer Network Protocols, edited by A. Danthine. Libge, Belgium:
Universitd de Libge.

High-Level Protocol Group (1977) A Network Independent File Transfer Protocol.
INWG Protocol Note 86. Teddington, UK: International Network Working Group,
European Informatics Network, National Physics Laboratory.

Hovey, R. B. (1976) Packet switched networks agree on standard interface. Data Communi-
cations May/June: 25-39.

Schulze, G., and J. Borger (1 978) A virtual tenninal protocol based upon the "communi-
cation variable" concept. Pages D2-1-D24, Proceedings of the Symposium
on Computer Network Protocols, edited by A. Danthine. Libge, Belgium: Universitk
de Libge.

Shicker, P., and A. Duenki (1976) Virtual terminal definition and protocol. ACM
(Association for Computing Machinery) Communication Review 6 (4): 1-1 8.

Shicker, P., A. Duenki, and W. Baechi (1975) Bulk transfer function (proposal). EIN/ZHR/
75/20.

Thomas, R. H. (1974) A resource sharing executive for the ARPANET. Pages 155-163,
Proceedings of the 1973 National Computer Conference, New York. Montreal: AFIPS
Press.

THE AUTHORS

Fausto Caneschi attended the University of Pisa and received his Laurea in
1975 in electronic engineering. Now researcher at CNUCE, an Institute of the
National Research Council (CNR) of Italy, he worked at IIASA during 1978
and 1979 as an expert on protocols, particularly high-level protocols, for the
Informatics Task of the System and Decision Sciences Area. He also super-
vised the IIASA-Pisa-Frascati connection, from organizational as well as
technical viewpoints, and provided consultancy for IIASA computer users.
Dr. Caneschi's work includes papers on computer networks and satellite com-
munications.

Marco Sommani also attended the University of Pisa; he received his Laurea
in mathematics in 1972. A researcher at CNUCE, he worked during 1979 at
IBM's J. Watson Research Center, Yorktown Heights, New York, in the field
of image processing. Dr. Sommani is particularly interested in computer science
and applied mathematics, including computer languages and graphic optimiza-
tion. His work' includes several papers on computer networks, particularly file
transfer protocols.

RELATED IlASA PUBLICATIONS

RM-74-18 An Adaptive Routing Technique for Channel Switching $3.00 AS45
Networks, by D. E. Bell and A. Butrimenko.

RM-76-07 Optimization of the HDLC I-Frame Structure and IlASA $3.00 AS45
Data Communication Network, by Y. Masunaga.

RM-76-31 Optimal HDLC I-Frame Structure in a Two-Way File $3.00 AS45
Transfer and IlASA Data Communication Network, by
Y. Masunaga.

R R-7511 On Stochastic Computer Network Control, by Yu. A. $3.00 AS45
Rozanov.

