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Abstract 

A contributing factor to the range of results of energy-economy models on feasibility and 

costs for obtaining specified policy goals such as GHG reductions is the mechanism that 

translates technological progress into cost reductions per technology. In many models this 

mechanism is represented via a simple learning curve model, where costs decline as a 

function of experience, usually represented by cumulative capacity. However, many other 

factors influence technology-specific cost dynamics, with one major confounding 

variable being unit level economies of scale- declines in average unit costs arising from 

the building of larger capacity plants or units. Thus, this paper considers ‘de-scaled’ 

learning rates as an alternative to the conventional representation of learning phenomena. 

De-scaling involves removing unit scale’s influence on cost for a given technology, 

thereby creating a variable that is the residual of cost’s remaining determining factors, 

which then is estimated and interpreted as a more appropriate variable to capture learning 

effects proper. The influence of scale economies and remaining learning effects on 

technology costs are estimated econometrically with the analysis complemented by 

simpler analytical methods as well as incorporating results from the engineering literature 

to represent uncertainties. This paper finds de-scaling substantially reduces the learning 

rate for a number of energy supply technologies. De-scaled learning rates expressed over 

cumulative units installed is concluded to be a superior measure of learning effects over 

traditional formulations of specific costs versus cumulative capacity that confound 

economies of scale with learning effects, potentially misguiding policies via its resulting 

overestimation of the potential cost lowering impacts of demand-pull technology 

deployment incentives. 

 

Keywords: learning rate; learning-by-doing; economies of scale; unit level economies of 

scale; scale factors, de-scaling 
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Separating Economies of Scale and Learning Effects in 
Technology Cost Improvements 

Stephen Healey 

1 Introduction 

A key aspect contributing to the range of results of energy-economy models on 

feasibility and costs for obtaining specified policy goals such as GHG reductions is how 

policy models represent technological progress, and how this progress translates into cost 

reductions per technology. Nemet (2007), for instance, notes how a relatively modest 

change in the learning rate1 -a common method of an aggregate representation of 

endogenous technical progress- for Solar PV, from 0.26 to 0.17, results in a large change 

in the timing of its breakeven point with conventional technologies. The quicker low-

GHG technologies can become competitive with conventional technologies, the lower the 

overall system cost of achieving a given climate target. 

Learning rates are an appealing tool for use in energy-economy models due to their 

simplicity and the explicit link of technological progress to investments, compared to the 

traditional exogenous representation of technological change, typically as time trend, 

unaffected by policies and market conditions. Technological change becomes manifest 

through one dimension, cost, which changes as a function of cumulative experience- 

represented usually as cumulative capacity for energy technologies. The significance of 

learning rates is not limited to the energy-modelling community, as there is pressure in 

policy circles for public-led initiatives to deploy new energy technologies on the 

assumption that learning will cause their costs to decline more rapidly than otherwise 

(Rivers and Jaccard, 2006), frequently referred to as policy-led “cost buy down”.  Thus, 

an accurate interpretation and estimation of learning phenomena and derived learning 

rates is essential. 

Of course, many other factors influence cost dynamics, and these are conflated with 

experience when simple learning rates are used. One major confounding variable is unit 

level economies of scale- declines in average unit costs arising from building larger 

capacity plants. This is especially the case since unit economies of scale and learning 

when represented by cumulative installed capacity are both measured by a common unit, 

Megawatts (MW). While costing analysis using econometrics can isolate these effects, 

difficulties may still arise as unit scale and cumulative capacity are highly correlated in 

most samples. Decomposition analysis could overcome the correlation problem; however 

                                                 

1 The rate of cost decline for a doubling of cumulative capacity (McDonald and Schrattenholzer 2001). In 

the above example the unit cost reductions ($/W) assumed range from 26 to 17 percent per a doubling of 

cumulative installed capacity. 
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these costing models are complex and difficult to incorporate in energy-modelling 

frameworks. 

As a possible alternative, costs can be de-scaled before re-estimating the learning rate. 

De-scaling involves using unit scale factors found in the literature to remove unit scale’s 

influence on cost for a given technology, thereby creating a variable that is the residual 

of cost’s remaining determining factors. Four learning curves can then be calculated- i) 

original unit costs vs. cumulative installed capacity , ii) original unit costs vs. cumulative 

units, iii) de-scaled unit costs vs. cumulative installed capacity, and iv) de-scaled unit 

costs vs. cumulative units. This fourth learning curve, where de-scaled costs and 

cumulative units are used as an alternative measure of experience, aims to fully separate 

the confounding effects of experience and unit scale, and is thus suggested for use in 

energy models as a more accurate representation of learning phenomena. This paper finds 

de-scaling substantially reduces the value of the learning rate when compared to 

conventionally estimated learning rates. Furthermore, the magnitude of this de-scaling 

effect, as well as the magnitude of the learning rate prior to de-scaling, differs according 

to the underlying unit scale dynamics for a given technology. 

The paper is organized as follows. Section two provides background of the concepts 

of economies of scale and learning-by-doing. Section three outlines the de-scaling 

method, while section four provides a description of the data. Section five then discusses 

the results, while section six concludes.  

2 Background  

Economies of scale are defined as reductions in average unit costs as output increases. 

These cost declines occur in the long run after all inputs are free to vary. Figure 1 below 

illustrates this concept graphically. The range X1 to X2 shows economies of scale, where 

unit costs decline with increasing levels of output. X2 represents the level of output where 

unit costs are lowest, referred to as minimum efficient scale. Finally, the range X2 to X3 

shows diseconomies of scale- increasing unit costs with increasing production (Mankiw 

et al., 2002). 

Figure 1: Graphic Depiction-Economies of Scale 
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There are two main sources of economies of scale. Firstly, lower average production 

costs can arise through specialization and the division of labour that occurs with larger 

plant sizes and capital investment. For example, expanding plant size allows the firm to 

spread fixed costs over higher output volumes thus reducing specific unit costs.  Large 

plants also allow workers to specialize in a specific task, allowing the firm to increase 

labour productivity as output is standardized and workers improve their proficiency via 

repetition (Mankiw et al., 2002). Secondly, economies of scale may also arise due to 

idiosyncratic engineering properties of the technologies in question. For instance, for a 

given wind speed, wind turbines produce more energy in proportion to the swept area of 

the turbine blade. Thus, larger turbine blades will produce more energy per swept area, 

generally resulting in lower unit costs (Danish Wind Industry Association, 2000). 

A similar phenomenon in economics is known as learning-by-doing, whereby firms 

get better at producing a given technology via improved plant management, improved 

worker productivity via repetition, and improved design- all of which drive down costs 

(Grubler et al., 1999). Learning curves relate declines in unit costs to increases in either 

the total cumulative production of that technology, in units, or – more typically- its 

cumulative installed capacity. The learning rate, derived from the linear estimation of the 

aforementioned learning curve, is the rate in which unit costs decline for every doubling 

of cumulative production/capacity (McDonald and Schrattenholzer 2001). 

The initial learning curve studies tended to represent learning as a function of 

cumulative units, and tended to measure productivity directly in labour-hours.2 Applying 

this framework to the energy literature, however, involved a shift away from using 

cumulative units to the use of cumulative capacity3 as the independent variable instead. 

As mentioned briefly in the introduction this is problematic, as both economies and scale 

and learning-by-doing are now measured using a common unit, Megawatts, making it 

difficult to isolate their individual effects.  

3 Methods 

3.1 De-scaling 

The process of de-scaling involves using scale factors found in the literature to remove 

scale’s influence on cost, thereby creating a resulting cost variable whose dynamics over 

the specified timeframe become explained by determining factors other than scale, in 

particular learning-by-doing effects. This process is described step-by-step as follows: 

Firstly, the ratio of the scale factor for each technology (SF(t)), for each year in the 

sample, was calculated using the formula 

SF(t)= k(t)
α/k(t-1)

α  (1) 

where:  

                                                 

2 See e.g. Wright, 1936, that analyzed the specific labor-hour requirements per airframe manufactured 

versus cumulative output of airframe units. Another early example of such a study is provided by Rapping, 

1965, who analyzed productivity gains in the production of US Liberty ships during WWII. 
3 This transition appears to have occurred in the late 1970s in publications performed at the US Solar Energy 

Research Institute (Krawiec et al., 1980) and originally was largely inconsequential considering that unit 

size of PV panels and their conversion were mostly static at that time. 
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SF(t) = scale ratio for the current period 

k(t)= Average annual unit size for the current period (MW) 

k(t-1)= Average annual unit size for the preceding period (MW)  

 

and 

α = the specific scaling factor taken from the literature  

 

This formula provides the factor by which unit costs would have changed between 

any two years in the dataset due to unit capacity changes between them- all else equal 

(See McNearney 2011 for an example of its use in this manner). The α parameter in 

formula (1) refers to the percent decrease in unit costs arising from a one percent increase 

in scale- an elasticity. This parameter is negative and is estimated econometrically with 

the more negative the number representing greater economies of scale. This is not to be 

confused with the more traditional economies of scale coefficient used in engineering 

assessments of various energy technologies. A more detailed account of this distinction 

in scale coefficients is found in section 3.3. 

Using the factor (SFt), the dollar amount by which scale contributed to the cost change 

between any two years (call this the scale impact-SI(t)) was obtained by multiplying the 

scale factor by the preceding year’s cost and then subtracting the resulting product from 

the preceding year value as per the following formula: 

 

SI(t)= C(t-1) - [SF(t)*C(t-1)]  (2) 

Where: 

SI(t) = Scale Impact 

SF(t) = scale ratio for the current period 

C(t-1) = previous year’s average investment cost 

 

Assuming there are economies of scale (negative alpha coefficient), positive values 

for this scale impact term indicate an increase in unit scale between the two periods and, 

if not for the scale effect, current year costs would otherwise be higher. Conversely, if 

average scale decreased between the two periods, then this value will be negative 

indicating that present costs would be lower if scale effects were omitted. 

This value is then used to calculate the residual cost change- the year-on-year cost 

change after scale is factored out of the dataset.  However, one must first calculate the 

actual cost change occurring between the periods: 

ΔC(t)= C(t) - C(t-1)  (3) 

Where: 

ΔC(t)= Actual change in cost for a given period 

C(t)= current year’s average investment cost 

 C(t-1)=  previous year’s average investment cost 

 

Subtracting (2) from (3) then gives the residual- the change in cost due to all factors 

other than scale. By subtracting this value from the previous year’s cost, the first point of 

the de-scaled dataset is obtained.  Repeating the process for each year generates a dataset 
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where scale has been removed as a source of cost decline/increase. Figure 2a below 

provides an example of the original costs, prior to descaling, and the de-scaled costs for 

coal, while Figure 2b does the same for heat pumps as an opposing example where unit 

scale has actually been decreasing over time. Average annual unit scale values for coal 

increases from 14.5 MW in 1913 to 467 MW by 2000. Unit costs decrease by about 24% 

over this period. Conversely, average annual unit scale values for heat pumps decrease 

from 18.82kw in 1983 to 9.35kw in 2008, with costs decreasing by 49% over the 

timeframe.  

Figure 2a: Actual vs. De-scaled (Coal)            Figure 2b: Actual vs. De-scaled (Heat Pumps) 

   

For the base case, the median of the range of scale estimates obtained from the 

literature is used to de-scale the data. However, a sensitivity analysis was also performed 

by taking other values from this range of estimates for de-scaling.  

3.2 Learning Curve Calculation 

Once the de-scaled datasets have been calculated, 4 learning effects were calculated- 

i) original unit costs vs. cumulative installed capacity , ii)  original unit costs vs. 

cumulative units, iii) de-scaled unit costs vs. cumulative installed capacity, and iv) de-

scaled unit costs vs. cumulative units. As mentioned in the introduction, two measures of 

experience, capacity and units, were used. However, only the latter measure (cumulative 

units) provides a better means of separating the confounding effects of unit scale and 

cumulative capacity. To calculate the learning rate under each specification, the 

relationship between experience and unit cost were plotted on logarithmic scale and a 

linear curve was then fitted to the data, obtaining the elasticity of cost with respect to 

experience. Using this coefficient, the learning rate is then calculated as follows:    

Learning Rate= [(1- 2^Coefficient)]*100 (4) 

3.3 Scale Parameter Calculation 

Scaling parameter estimates for the various technologies were predominantly 

obtained from econometric studies, where a log-log specification of a typical costing 

equation explained average unit costs as a function of multiple variables influencing costs. 

In this context, the scale parameter corresponds to the α term in equation (1) above. 
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However, for several technologies, econometric estimates were unavailable and instead 

more traditional economies of scale estimates, given by the below formula, were used. 

 

Cost2= Cost1*(Size2/Size1)
Scale (5) 

Where:  

Cost = total cost (rather than unit cost) 

Size = size of the plant/unit in MW 

 

 Unlike the negative values for the α coefficient, the scale coefficient here is positive, 

and usually between 0 and 1. The closer the value is to zero, the greater the economies of 

scale effect.  Rooted in the engineering literature, these estimates were simply given by 

the authors in most studies to reflect the standard working engineering estimate for scale 

for that technology. I then converted these to the econometric estimate described above 

(obtaining an α parameter) using the formula: 

α=-1 + scale (6) 

In addition to the econometrically and engineering provided scale estimates, two other 

sources of estimates were obtained from the literature. Firstly, the unit scale and cost for 

two data points which represented the range of possible unit scale values for a given 

technology were provided. With these values, the scale and α parameters were calculated 

using the formulae above. The second approach involved estimating α parameters from a 

graphic depiction relating unit costs with unit scale. Reading the co-ordinates from the 

graph provided a set of unit cost values and a corresponding set of unit scale values. 

Taking the natural logarithms of these values allowed the fitting of a curve and the 

estimation of a scale factor for this technology. An implicit assumption in this is that the 

scale-cost relationship depicted with the curve controls for all other sources of cost 

decline, and thus actually is an isolated scale effect. While some of the studies using this 

approach looked at multiple sources of cost decline, others likely did not. The results of 

this latter method of estimating scaling coefficients are thus deemed less reliable than 

those obtained from the econometric estimation technique. Table A-1 in appendix A 

provides the method for which the respective sources obtained their scale estimate and, 

irrespective of how they were calculated, the equivalent scale exponent as per equation 4.  

This methodological pluralism in obtaining estimates of economies of scale effects was 

used in order to more appropriately capture uncertainties compared to the more restricted 

data sample available for econometric estimation. 

Finally, Table 1 below provides the scale factor used for each technology at the 

median, upper bound, and lower bound of the range of estimates derived from the 

literature. Figure 3 then depicts this range graphically for the technologies in the study. 

Table 1: Scale Estimate by Technology 
Technology Scale Factor- 

Midpoint 

Scale Factor- 

Upper Bound 

Scale Factor- 

Lower Bound 

Coal -0.15 -0.48 0 

FGD 0.09 0.09 0.09 

Geothermal -0.104 -0.134 -0.077 

Solar Thermal- Dataset1 -0.192 -0.218 -0.050 

Solar Thermal-Dataset2 -0.192 -0.218 -0.050 

Wind-Dataset1 -0.089 -0.134 0.148 
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Wind-Dataset2 -0.089 -0.134 0.148 

CCGT-Dataset1 -0.220 -0.520 -0.120 

CCGT-Dataset2 -0.220 -0.520 -0.120 

Nuclear-Dataset1 -0.245 0.145 -0.75 

Nuclear-Dataset2 -0.245 0.145 -0.75 

Nuclear-Dataset3 -0.245 0.145 -0.75 

PV System -0.235 -0.420 -0.180 

PV Module -0.130 -0.160 -0.050 

Hydro -0.255 -0.290 0.078 

Brazilian Ethanol- Dataset1 -0.350 -0.400 -0.300 

Brazilian Ethanol- Dataset2 -0.350 -0.400 -0.300 

LNG -0.36 -0.50 0.07 

Heat Pumps -0.490 -0.680 -0.100 

 

Figure 3: Scale Estimates by Technology  

 
 

Evident from Table 1 is the wide range of scale estimates found for some of the 

technologies. For instance, unit scale coefficients for nuclear range from 0.15 to -0.75 

across 14 observations. Wide ranges are also found for coal and heat pumps.  While some 

of this variance is due to different samples from which the estimates are drawn, another 

key factor is the methodology used to calculate the scale coefficient. Figure 4 below 

demonstrates the range of estimated coefficients after grouping them by methodology. 

Clearly there are some substantial differences, with scale coefficients estimated from 2 

data points having the lowest range, while econometrically driven and graphically derived 

estimates show a wider range of estimates.  
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Figure 4: Scale Estimates by Source 

 

4 Data 

4.1 Sources 

Most of the raw data for costs and cumulative capacity were obtained from the Santa 

Fe Performance Curve Database, http://pcdb.santafe.edu/team.php , a repository of 

uploaded cost and cumulative capacity data for public use. Unit size data, as well as 

cumulative unit data, were obtained from a variety of sources. The largest of these was 

the database compiled by Wilson (Wilson, 2009) and the 2011 Platts Powerplant 

database. Unit size was measured in MW, MWh, or an equivalency. Table 2 below 

provides the data source for the various technologies, the years and jurisdiction covered, 

and the number of observations per dataset. For some technologies there are multiple 

datasets.  

Table 2: Cost and cumulative capacity/output Data Sources 
Technologies Included  Source Years Jurisdiction N 

PV System 

(Residential/Commercial) 

Barbose et al., 2012-Tracking the 

Sun V (cost data compiled by 

author from reading off graph) 

1998-2011 US 14 

Wind Turbines US-

Cost/Cumulative 

Capacity 

Wiser and Bollinger, 2013 

 

1985-2011 US 27 

Wind Turbines US-

Cumuative Units/Unit 

Size 

Compiled by author using data 

from: American Wind Association  

1985-2011 US 27 

Wind Turbines DEN-

Cost/Cumulative 

Capacity 

Santa Fe performance curve data-

Taken from Neji, L. and Andersen, 

P. D. and Durstewitz, M. and 

Helby, P. and Hoppe Kilpper, M. 

and Morthorst, P. E. (2003) 

1981-2000 Denmark 21 

Wind Turbines DEN-

Cumuative Units/Unit 

Size 

Wilson, 2009 1981-2000 Denmark 21 

Heat pumps Kiss et al, 2012 1982-2008 Switzerland 26 
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Hypropower plants 

Cost/Cumulative 

Capacity 

POLES database 1971-1997 OECD 

 

27 

Hypropower plants 

Cumulative Units/Unit 

Size 

Compiled by author using data 

from: Platts 2011 (Large Hydro- 

Plants>30MW) 

1971-1997 Global 27 

Nuclear reactors OECD- 

Cost/Cumulative 

Capacity 

Santa Fe Performance Curve Data: 

Kouvankis et. al in McDonald, A., 

and Schrattenholzer, L. (2001) 

1975-1993 OECD 19 

Nuclear reactors US- 

Cost/Cumulative 

Capacity 

Santa Fe Performance Curve Data: 

Nemet 2009 

1970-1996 US 25 

Nuclear reactors France- 

Cost/Cumulative 

Capacity 

Grubler, 2010 1972-1990 France 19 

Nuclear reactors OECD-

Cumulative Units/Unit 

Size 

Wilson, 2009 1975-1993 OECD 19 

Nuclear reactors 

US/France- Cumulative 

Units/Unit Size 

Compiled by author from Platts, 

2011 

1970-1996; 

1972-1990 

US, France 19 

Ethanol-Cost Grubler et al., (2013) 1998-2011 Brazil 14 

Ethanol-Cumulative 

Units 

Statistic Yearbook of Agrienergy 

2012. Brazilian Ministry of 

Agriculture (MAPA), 2013 

 

1998-2011 Brazil 14 

Ethanol-Cumulative 

Capacity, Unit Size 

Different sources. Historical data 

mostly from  Ramos, Pedro; 

"Agroindustria Canavieira e 

Propriedade Fundiaria no Brasil". 

Book, Editora Hucitec, Sao Paulo, 

Brasil, 1999. 

Recent data mostly from CONAB 

1998-2011 Brazil 14 

Coal power plants- 

Cost/Cumulative 

Capacity/Cumulative 

Units 

McNearney et al., 2011 1910-2000 Global 58 

Coal power plants- Unit 

Size 

Wilson, 2009 1910-2000 OECD 58 

Gas combined cycle- 

Cost/Cumulative 

Capacity 

Santa Fe performance curve data-

Taken from The Economics of the 

Combined Cycle Gas Turbine: An 

Experience Curve Analysis by 

Colpier, U., and Cornland, D. 

(2002) 

1981-1996 Global 16 

Gas combined cycle- 

Cumulative Units/Unit 

Size 

Compiled by author using data 

from: Platts 2011 

1981-1996 Global 16 

LNG Production- 

Cost/Cumulative 

Capacity 

Greaker and Sagen, 2004 1964-2007 Global 40 

LNG Production- 

Cumulative Units/Unit 

Size 

Greaker and Sagen, 2004 1964-2007 Global 40 

Geothermal- 

Cost/Cumulative 

Capacity 

Santa Fe performance curve data- 

Taken from Schilling & Esmundo, 

2009 

1980-2005 US 26 
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Geothermal- Cumulative 

Units/Unit Size 

Compiled by author using data 

from: Geothermal Energy 

Association- http://geo-

energy.org/plants.aspx 

1980-2005 US 26 

FGD Healey, 2013 1969-2010 US 41 

Solar Thermal 

Price/Cumulative 

Capacity 

Santa Fe performance curve data- 

Taken from Hayward, 2009 

1984-1990 US 7 

Solar Thernal 1,2 

Cumulative Units/Unit 

Size 

SEGS Plants- My calculation from 

graph in Nemet, G. (2012). 

Technological Improvements of 

Solar Thermal Electricity in the 

US, and the Role of Public Policy. 

Historical Case Studies of Energy 

Technology Innovation in: Chapter 

24, The Global Energy 

Assessment. Grubler A., Aguayo, 

F., Gallagher, K.S., Hekkert, M., 

Jiang, K., Mytelka, L., Neij, L., 

Nemet, G. & C. Wilson. 

Cambridge University 

Press: Cambridge, UK.4 

1984-1991 US 8 

Solar PV (Module)* Nemet, 2006 1975-2001 Global 26 

* Unit Size was estimated given annual cell area, assumed solar energy input per cell area, and average 

conversion efficiency of the stock of solar cells per year. Cumulative Units were calculated by then 

backing out units from annual unit size and annual changes in total capacity (in MW).  

4.2 Description 

Tables 3 and 4 below summarize some key aspects of the costing and diffusion data 

respectively including the initial and final cost value for both the original and de-scaled 

time series, the cost improvement factor for both, the number of cumulative doublings for 

both cumulative capacity and units, as well as the initial and final cumulative capacity 

and unit values. The de-scaled data shown here were estimated using the median of the 

compiled range of scale estimates. The cost values shown in the table were prior to taking 

the natural logarithm of cost, the latter being a necessary a transformation when 

calculating learning rates. Appendix B provides a graphic depiction of the learning curves 

(original and de-scaled) for each technology. 

Table 3: Data Description-cost 
Technology Initial/Final Cost Value-

Original Data 

Initial/Final Cost 

Value-De-scaled 

Cost Improvement Factor 

 1st Last 1st Last Original De-scaled 

Coal 

(2000US$/kW) 
1835 1,394.4 2,291 2,407 1.32 1.17 

FGD (1982US 

$/kW) 
25,921 158,351 25,921 130,187 0.165 0.2 

Geotherm ($/kwh) 11.7 3.6 11.74 2.28 3.24 5.14 

Sthrm 

(2006US/kW) 
5,989.5 4,360.4 6,633 5,842 1.37 1.14 

Wind (2010 

US/Kw) 
3,554.6 2,024 3,555 2,315 1.76 1.54 

Wind (DKK/Kw) 11,075 5,563 11,271 7,840 1.99 1.44 

http://geo-energy.org/plants.aspx
http://geo-energy.org/plants.aspx
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CCGT (1990US 

c/kwh)4 4.28 3.41 4.29 3.96 1.26 1.08 

CCGT (1990US 

$/kW) 
515 432.6 515.8 513.5 1.21 1 

Nuke OECD 

(1990US $/kW) 
3200 2,768 3,248.5 2,973.5 1.16 1.09 

NukeUS 

(2004US$/kW) 
401.5 3,243.8 405.6 3,359 0.12 0.12 

NukeFrance 

(2004US $/MW) 
1472.3 5538.1 1292.08 5727.70 0.265 0.23 

PV System 

(2011US $/W) 
61.1 6 59.14 7.95 13.53 7.44 

PV Module 

(2004US $/W) 
61.1 3.85 62.33 13.47 15.84 4.63 

Hydro 

(1990US$/kW) 
3,680 3,325.9 3,859 3,513 1.11 1.1 

Brazilian Ethanol 

(R2010/GJ) 
28.71 53.58 28.05 54.31 0.54 0.52 

LNG ($/Mty) 0.219 0.213 0.25 0.38 1.02 0.66 

Heat Pumps 

(CH2008$/kW) 
3,642.5 2,074.7 3,644 1,140 1.7 3.2 

 

Table 4: Data Description- Market Diffusion (in MW unless otherwise noted) 
Technology # of Cumulative 

doublings 

 

Initial/Final Cumulative 

Capacity 

Initial/Final Cumulative 

Units 

 Cap Unit 1st Last 1st Last 

Coal  7.2 3.1 2,826 310,197 2,134 3,334 

FGD  10.4 7.3 104 152,037 2 330 

Geothermal  3.6 3.2 31,672,312 

Kwh 

334,775,957 

kwh 

6 59 

Sthrm  4.2 3.1 30 287 2 9 

WindUS  8.5 4.8 108 42,255 1,119 31,747 

WindDen 9.5 3.8 10 7,710 509 5,997 

CCGTkwh 3.5 3.67 247 Twh 2,580 Twh 178 1,060 

CCGTKW  2.7 3.67 15,269 105,127 178 1,060 

Nuke1-OECD 2.1 1.4 75 GW 332 GW 151 376 

Nuke-US 3.2 2.4 13,784 114,440 31 133 

Nuke-France  5.12 4.17 3.73 (GW) 65.88 (GW) 3 56 

PV System  13.3 11.9 1 2,224.4 226 152,311 

PV Module 9.35 9.03 1.1 1,373 5703,792 1,092,793,087 

Hydro 1.27 1.03 290393 716,469 3,088 5,797 

Brazilian 

Ethanol 

1.01 1.04 14.8 29.26 225,036 439,650 

LNG  8.1 5.25 64.4 18965 2 40 

Heat Pumps  5.7 6.5 0.03 (GW) 1.75 (GW) 3,514 166,695 

 

                                                 

4 Additional time series data on CCGT costs/kWh were used to estimate a second set of LRs as a 

comparison point. LRs expressed over output include the cost impacts of fuel prices, efficiency and 

capacity factors, and so are not directly comparable with LRs expressed over capacity. Consequently, this 

data point is included for illustrative purposes, and is not included in the meta-analysis. 
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As expected, the cost improvement factor is generally higher for the original cost 

variable relative to the de-scaled cost variable- and so removing the effects of scale on 

cost in the de-scaled sample reduces the cost variation. Likewise, units see fewer 

cumulative doublings than capacity, meaning that for technologies with a given cost 

improvement factor, we should see higher learning rates for units over capacity. 

Table 5 below provides similar information pertaining to unit scale by technology. 

Please note that while there is quite a large variation is the unit scale improvement factor 

across technologies, there is similarly high variation in the timeframe examined by 

technology. Hence coal, with the largest unit scale improvement factor, also has the 

largest time series of data, 90 years, in which to achieve those increases. A technology 

with such a large time series will likely also cover the full technology life cycle, from the 

early formative phase to maturity. For other technologies, the dataset likely does not have 

comparable early estimates, and hence the ultimately realized scale increase might be 

underestimated. 

Table 5: Data Description-Scale 
Technology Initial Value Final Value Improvement 

Factor 

Period  

Coal 14.5 467 32.2 1913-2000 

FGD 52.1 460.7 8.84 1970-2010 

Geothermal 49.5 23.4 0.47 1981-2005 

Solar Thermal 22.5 45 2.0 1985-1990 

Wind-US 0.15 1.79 12.2 1986-2011 

Wind-Den 0.04 0.79 18.2 1981-2000 

CCGT-All 

Datasets 

56.33 123.1 2.19 1982-1996 

Nuclear-OECD 815 1,030.5 1.26 1976-1993 

Nuclear-US 721.1 1,210 1.68 1971-1996 

Nuclear-France 945 1,560 1.65 1978-1999 

PV System 0.004 0.02 5.1 1999-2011 

Hydro 116.2 125.6 1.08 1972-1997 

Brazilian Ethanol 123.1 128 1.04 1999-2011 

LNG 64.4 818.15 12.7 1965-2007 

Heat Pumps 18.81(KW) 9.34(KW) 0.5 1983-2008 

PV Module5 31.2(W) 126.8(W) 4.0 1976-2001 

 

5 Results 

5.1 Base Results 

Table 6 below provides the results for the base case, where median values from the 

range of scale estimates were used to de-scale the learning rates. The technologies here 

are ordered by their respective absolute changes in unit scale from high (increases in 

scale) to low (decreases in scale).  As expected, the learning rate across all technologies 

for the de-scaled data is considerably lower, by more than half, than the original learning 

                                                 

5 Unit Scale for PV Module data were provided in Nemet, 2006, but were in cm2. These were converted to 

capacity units by linking Solar PV’s unit size in cm2 for 2000 to its average capacity in watts for the same 

year, also provided by Nemet, 2006. Using this reference point, I adjusted annual capacity based off of the 

proportionate difference of each year’s unit size in cm2 from the 2000 value.  
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rate, suggesting that the traditional method of estimating learning rates overstates actual 

learning as it conflates learning and economies of scale. These decreases in the learning 

rate after de-scaling can be considerable, such as the decline seen for coal-fired boilers. 

By contrast, some learning rates end up higher after de-scaling. In these cases, the 

technologies in question have either a positive scale coefficient representing negative 

economies of scale, as with FGD units, or witness decreasing average unit scale6 over the 

time series, as with heat pumps and geothermal power.  

The final two columns in Table 6 highlight the percentage point change between the 

original and de-scaled learning rates as a proportion of the size of the original learning 

rate. This measure seeks to capture the proportionate change in the learning rate from de-

scaling. Using this metric, we see a large relative de-scaling effect for Combined-Cycle 

Gas Turbines, Solar Thermal, LNG, Ethanol, and Heat Pumps, and to a lesser extent coal 

and nuclear. Formally, the relative impact is calculated as follows: 

     Relative Impact = [abs(de-scaled learning rate – original learning rate)/original 

learning rate] (6) 

 

Table 6: De-scaled vs. Non-de-scaled Learning Rates (medians) 
 Non De-

scaled-

Capacity 

Non De-

scaled-

Units 

De-scaled-

Capacity 

De-scaled-

Units 

Relative 

impact-

Capacity 

Relative 

impact- 

Units 

FGD -18.92% -23.11% -18.10% -22.18% 4.34% 4.05% 

Coal 13.43% 34.33% 4.74% 13.55% 64.72% 60.54% 

NukeUS -75.69% -147.94% -76.79% -117.50% 0.48% 1.16% 

NukeOECD 5.53% 9.37% 1.79% 3.07% 65.21% 65.09% 

NukeFr -28% -32% -30% -34.7% 6.32% 8.68% 

CCGTKW 4.47% 4.54% -1.33% -1.61% 129.65% 135.41% 

Solar 

Thermal 8.04% 9.19% 2.73% 2.26% 66.01% 75.38% 

Hydro 6.96% 9.87% 3.61% 5.13% 48.14% 48.03% 

LNG 4.41% 8.49% -4.61% -3.81% 204.61% 144.92% 

WindUS 4.15% 6.57% 1.79% 2.46% 56.93% 62.47% 

WindDen 7.92% 18.38% 4.54% 10.56% 42.68% 42.55% 

Solar PV-

System 17.75% 20.83% 15.62% 18.38% 12.03% 11.77% 

Solar PV-

Module 22.62% 30.26% 12.34% 16.49% 45.45% 45.51% 

Ethanol 6.05% -7.18% 1.38% -13.29% 77.24% 85.14% 

Heat Pumps 13.79% 11.67% 24.79% 21.38% 79.82% 83.21% 

Geoth 28.60% 26.24% 35.38% 32.64% 23.72% 24.41% 

       

Medians 6.5% 9.3% 2.4% 2.9% 64% 68% 

 

It should be noted that some of the calculated learning rates experienced very poor fits 

in some cases where an outlier has a very strong effect on an otherwise clear pattern. 

The learning rates, in other words, were calculated “blind” as a first-order assumption- 

whereby the learning rate estimated from the corresponding best-fit line was taken at 

                                                 

6 While this entails a cost penalty (increases in unit cost), such declines in unit scales can widen market 

applications significantly. For instance, originally heat pumps were so large as to preclude their application 

in residential buildings limiting their market potential to office buildings largely. 
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face value and added to the meta-analysis, rather than using a minimum R2 as a cutoff 

for inclusion. The implication is that the learning rates are sensitive to the time period, 

data selection, and outliers. 

5.2 Sensitivity Analysis 

This section tests the robustness of the results in the previous section under different 

specifications of de-scaling. Firstly, Table 7 below repeats the de-scaling exercise using 

the lower and upper bound of the range of scale factors found in the literature. Taking the 

lower bound of this range (the scale factor representing the highest economies of scale 

effect), the difference between the original and de-scaled learning estimates becomes 

visibly greater- with median values for learning across the technologies of 0.86% and 1% 

for capacity and units respectively. Clearly, de-scaling using this scale factor leaves very 

little residual cost decline that can be attributable to other factors, such as learning-by-

doing.  

Conversely, de-scaling with the upper bound of the range of scale factors has the 

opposite effect-actually increasing the learning rate relative to the original cost data. This 

is due to the upper bound of the range of scale factors for many technologies being 

positive, representing diseconomies of scale. The combination of diseconomies of scale 

with a trend of increasing scale for these technologies results lower de-scaled costs 

relative to the original data and, consequently, a higher learning rate. Figure 5 below 

provides a visualization of this phenomenon for US Wind, whose upper bound is a 

positive scale value of 0.148. 

Table 7: De-scaled vs. Non-de-scaled Learning Rates (Upper and Lower Bounds) 
Technology De-scaled-Capacity 

(UBound) 

De-scaled-Units 

(UBound) 

De-scaled-Capacity 

(LBound) 

De-scaled-Units 

(LBound) 

FGD NA NA NA NA 

Coal 10.87% 28.55% 1.03% 3.41% 

NukeUS -60.21% -146.23% -70.53% -137.84% 

NukeOECD 8.04% 13.55% -2.81% -5.34% 

NukeFR -26% -30% 35% 40% 

CCGTKW 1.24% 1.10% -6.81% -7.62% 

Solar 

Thermal 6.44% 7.15% 2.06% 1.45% 

Hydro 8.81% 12.34% 3.47% 4.87% 

LNG 7.79% 12.94% -6.14% -6.00% 

WindUS 10.00% 16.26% 0.69% 0.55% 

WindDen 17.98% 39.50% 3.14% 7.34% 

Solar PV-

System 16.90% 19.84% 15.21% 17.93% 

Solar PV-

Module 14.14% 18.77% 8.62% 12.34% 

Ethanol 2.06% -12.43% 0.69% -14.08% 

Heat Pumps 15.33% 12.94% 33.10% 28.70% 

Geoth 33.10% 30.74% 39.71% 36.27% 

Median 8.81% 12.94% 1.03% 1.45% 
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Figure 5: Three learning curves for WindUS - Original, De-scaled Low, and De-scaled 

High7 

 

In addition to de-scaling using the upper and lower bound of scale coefficients, Table 

8 shows the results after de-scaling costs according to a subjective best estimate of the 

de-scaling rates found in the literature. The subjective best estimate, as the name 

indicates, was chosen based on the author’s opinion the most reliable estimate from the 

range of scale estimates. The main criterion of selection was method, with econometric 

estimates deemed the most reliable. For technologies with multiple scale coefficients 

estimated from econometric studies, the study that was felt would best apply to the 

underlying data was chosen. For example, wind had multiple studies with econometric 

scale estimates, however only one used a dataset of Danish wind turbines, the most 

significant initial market for this technology. Hence, that econometric estimate was used 

to de-scale the cost data for Danish wind turbines in the sample of this study. 

For cases such as French nuclear, the original midpoint of the range of scale estimates 

found in the literature was kept as the subjective best estimate. This was because while 

there were no econometric estimates of scale calculated from French nuclear data, there 

were a large number of good quality studies that derive scale econometrically with 

datasets from other jurisdictions. Finally, some technologies did not have any of their 

estimated scale coefficients coming from econometric studies. In these cases, scale 

estimates from studies that were deemed to be found in higher quality academic sources 

were used. 

Table 8: Subjective best estimate of scale coefficients and resulting learning rates 
 Subjective 

Best estimate-

Scale Value 

Method De-trended 

Learning Rate- 

Subjective Best 

Estimate 

Original Learning 

Rate 

   CCAP Units CCAP Units 

FGD 0.09 Econometric -18.1% -22.2% -18.92% -23.11% 

Coal -0.183 Econometric 4% 11% 13.43% 34.33% 

NukeUS 0.145 Econometric 8% 13.5% -75.69% -147.94% 

                                                 

7 Multiple observations for the first data point appear graphically due to there being minute differences in 

cumulative capacity between the first two years in the sample, yet substantial differences in cost. 
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NukeOECD -0.245 Midpoint (mostly 

econometric 

studies) 

1.79% 3.07% 5.53% 9.37% 

NukeFr -0.245 Midpoint (mostly 

econometric 

studies) 

-30% -34.7% -28% -32% 

CCGTKW -0.21 Graphic Data -1% -1% 4.47% 4.54% 

Solar Thermal -0.2 2 data points 2% 2% 8.04% 9.19% 

Hydro -0.22 Graphic Data 4% 5.5% 6.96% 9.87% 

LNG 0.068 Econometric 7.8% 12.9% 4.4% 8.49% 

WindUS -0.008 Econometric 3.9% 6.2% 4.15% 6.57% 

WindDen 0.148 Econometric 18% 39.5% 7.92% 18.38% 

Solar PV-System -0.16 Graphic Data 14.3% 17.9% 17.75% 20.83% 

Solar PV-Module -0.18 Cited in Literature 14.1% 18.8% 22.62% 30.26% 

Ethanol -0.35 Cited in Literature 1.38% -13.3% 6.05% -7.18% 

Heat Pumps -0.49 Graphic Data 24.8% 21.4% 13.79% 11.67% 

Geoth -10.4 Midpoint 35.38% 32.64% 28.60% 26.24% 

       

Median  4.00% 6.20% 6.05% 9.19% 

 

Overall, while this method reduced the magnitude of the de-scaling compared to when 

sample midpoints were used, a substantial de-scaling effect is still found. By comparing 

the median of the de-trended learning rate using subjective best-estimates, columns 4 and 

5 of Table 8, to the medians of the original learning rates without de-scaling, we observe 

an estimated de-scaled learning rate that is 2.05 and 2.99 percentage points lower for 

cumulative capacity and units respectively. This corresponds to approximately a 34% and 

33% decline in the learning rate after de-scaling.8  

5.3 Non-Linear Learning Effects 

An interesting possibility is that there exists a non-linear or kinked learning curve, 

and a corresponding non-linear impact of de-scaling, due to differences in the rate of 

change in unit scale for a given technology over time. Wilson (2012) divides a 

technology’s life cycle into a formative or “de-bugging” stage that is then followed by a 

rapid upscaling stage, where average unit size sees its major increases, and finally a 

“levelling off” or growth stage where the unit scale frontier is achieved and larger 

numbers of units are constructed at larger unit capacities. Figure 6 below demonstrates 

this process for coal whose dataset is long enough to capture all these phases.   

                                                 

8 In addition, it was suggested by a reviewer to calculate the econometrically estimated learning rate from 

a multivariate specification where cost is regressed as a function of both cumulative capacity/units and unit 

scale. This was to control for scale econometrically and test the robustness of the de-scaling methodology. 

The econometrically estimated learning rate was then compared to the range of de-scaled learning rates 

calculated using the upper and lower bounds of the scale factors from Table7. If the econometrically derived 

rate lies within this range, it is deemed to correspond to the de-scaled learning rates. After testing, however, 

the results were both negative and inconclusive.  This is because most of the technologies, especially those 

where the econometrically estimated learning rate lies outside the de-trended range, also tend to show very 

high correlation coefficients between unit size and cumulative capacity/units- with many over 0.9. 

Generally, when one gets multicollinearity of such a magnitude (over +/- 0.7), it becomes very difficult for 

the statistical package to isolate the effect of each independent variable on the dependent variable, and the 

estimated coefficients should be viewed suspiciously. Thus, model specification is an issue when trying to 

isolate the effects of learning from unit scale econometrically.  
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In addition, we see with coal a descaling and “2nd upscaling” stage following the 

initial leveling. While this final round of de-scaling is not unique to coal among the 

technologies examined, it is also not inevitable, with its occurrence likely the result of 

idiosyncratic features of a given technology. With coal, Yeh and Rubin (2007), noted how 

lower demand for new capacity in the late 1970s favored smaller plants. The authors also 

noted the decline of supercritical coal technologies and a return to subcritical units at this 

time due to performance issues with the former (Yeh and Rubin, 2007). These 

supercritical units were more cost-effective at larger capacities, and so, as their 

preponderance in the preceding decade may have driven increases in unit scale, their fall 

into disfavor could have reversed these trends. Increased pollution control requirements 

and decreased capacity factors were also observed for coal in the decade preceding the 

decline in unit scale (McNerney et al., 2011). Both of these trends could have contributed 

to the desire to build smaller units. 

Figure 6: Stages of average unit size-Coal 

 

The general hypothesis explored here is that the magnitude of de-scaling differs for 

each stage of the above cycle.  The formative and “leveling off” stages, for instance, see 

little absolute change in scale, and so it is likely that the impact of economies of scale on 

cost would be less pronounced than when compared to the upscaling stage. This implies 

less conflation of economies of scale with other causes of cost decreases and hence, less 

of a de-scaling effect during these timescales. Conversely, time series’ covering the 

upscaling phase would witness a greater conflation of scale and learning and thus, should 

see a greater relative de-scaling effect.  

Figures 7a, b, and c below show the scale dynamics of technologies that exemplify 

three types of scaling patterns witnessed in the analysis:  

a) Coal- Mature technology where there is a full cycle of formative, upscaling, de-

scaling and second upscaling phases (represents mature technologies) 

b) FGD- where the scale frontier is achieved rapidly and there is early negative 

learning as a result (represents FGD, LNG) 

M
W

Upscaling

Levelling Off

Formative De-scaling 

and 2nd 
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c) Danish Wind- A long formative phase followed by rapid upscaling (represents 

emerging technologies such as wind and solar)9 

The different time phases and learning rates corresponding to each phase are clearly 

delineated on the graph.  

Figure 7a: Coal Unit Scaling (MW) 

 

                                                 

9 Some of the technologies only had data covering one of the aforementioned phases, and thereby not 

allowing such a comparison between phases to be made. These include geothermal, heat pumps, solar 

thermal, ethanol, and hydro. 
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Figure 7b: FGD Unit Scaling (MW) 

 

Figure 7c: Danish Wind Unit Scaling (MW) 

 

Some key findings from these figures: 

a) As expected, the de-scaling effect on the learning rate was greatest during periods of 

rapid upscaling compared to periods without. This is intuitive as the former is the 

phase where most of the conflation with economies of scale occurs. Consequently, 

after de-scaling, the cost declines attributable to other factors such as learning-by-

doing are nowhere near as impressive for this phase in the technology life cycle.  

b) Also as expected, the original learning rates (prior to de-scaling) differ according to 

the period examined for most of the technologies. For coal and solar, the original 

learning rate appears highest during the upscaling phase due to economies of scale 

effects occurring simultaneously with other influences on cost. For coal, only the 

upscaling phase has a positive learning rate, while all other timeframes actually see 
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negative learning. The aggregate learning rate for the entire coal sample, which is 

positive, masks these important temporal differences.  

c) FGD witnesses both negative learning and rapid upscaling almost immediately 

following its introduction. The rapid upscaling phase for FGD (and also LNG, which 

follows a similar pattern) coinciding with cost increases shortly following its 

introduction, is a considerably different dynamic than that seen for most 

technologies. Yeh and Rubin (2012) noted this phenomenon for both LNG and FGD. 

This price increase could be interpreted as the economic price to pay for extremely 

rapid upscaling. With these technologies, the lack of a “formative phase” prior to 

upscaling could lead to less experimentation and de-bugging of design flaws 

occurring for these technologies before settling on a dominant design (Wilson, 2012). 

Instead, for these technologies the de-bugging and upscaling are occurring 

simultaneously, possibly resulting in costly errors along the way. 

6 Implications and Conclusion: 

The results of the de-scaling exercise provide some insights into the appropriateness 

of using conventional learning rates in a forecasting role. Firstly, we see that unit scale 

effects matter. After de-scaling, we get a residual learning rate that is substantially below 

the original rate for a number of energy technologies. This indicates that much of the 

historic cost decline for energy technologies has been due to unit economies of scale and 

not learning in the traditional sense.  This holds true whether cumulative capacity or 

cumulative units is used as the dependent variable, although this de-scaling effect seems 

to be slightly higher when cumulative units are used.    

In addition, disaggregating the time series according to the technology’s stage in its 

life cycle reveals some substantial differences in the absolute learning rate across periods. 

This implies that using a single aggregate learning rate in energy models will understate 

the cost decline in periods of upscaling (where cost declines from learning and unit 

economies of scale are occurring simultaneously), while overstating cost declines in 

periods where growth in unit sizes has halted.  Likewise, the impact of de-scaling remains 

higher for technologies during their upscaling phase, where the impact of scale economies 

on cost is most prominent. 

Therefore, the use of simplistic, one-period learning curve models in energy-economy 

models is highly problematic as confounding classical economies of scale effects and 

learning effects proper, potentially misguiding policy along trivialized demand-pull “cost 

buy down” policy concepts. Evidently, both effects can be stimulated by policies, but 

require different instruments and complementary measures. Consider for instance that a 

classical demand-pull policy such as subsidies or mandated (high) feed-in tariffs promises 

limited impact on realization of economies of scales in cases where technological scale 

frontiers have already been reached, or if complementary innovation incentives (R&D), 

required for upscaling technologies, are lacking. 

Instead, the results of this study suggest that models should separate strictly between 

economies of scale and learning effects proper. Economies of scale and their economic 

impacts can be considered via traditional exogenous technology-specific modelling 

assumptions, whereas learning effects can be treated endogenously by using de-scaled 

learning rates as estimated here applied to cumulative units installed as measure to 

approximate cumulative experience gained. The demand-pull effects of policies on 



 21 

technology costs, will necessarily be smaller in such a modeling formulation, but much 

better founded theoretically as well as in historical experience. 
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Appendix A: Scale Estimates by Source 

Table A1 below provides estimates of the alpha estimated scale elasticity, the data 

source, the method utilized to estimate the elasticity, and the equivalent exponential scale 

coefficient (the engineering estimate). 

Please note that there are multiple estimates provided for some of the sources. This is 

due to some of these papers providing multiple econometric estimates from various model 

specifications, from providing estimates for slightly different technology makes, or for 

providing estimates of different timeframes. 

Table A1: Source and Scale Estimate by Technology  
Technology Estimate Source Method Equivalency 

Coal -0.380 McCabe, 1996 Econometric 0.62 

Coal -0.183 Joskow and Rose, 1985 Econometric 0.817 

Coal -0.044 Komanoff, 1981 Econometric 0.956 

Coal -0.029 Komanoff, 1981 Econometric 0.971 

Coal -0.15 Lee, 1976 Given 0.85 

Coal 0 Stewart, 1979 Econometric 1 

Coal -0.48 Nieves et al., 1980 Given 0.52 

Coal -0.2 Perl, 1982 Econometric 0.8 

Coal -0.08 US Department of Labor, 

1982 

Econometric 0.92 

FGD 0.09 Healey, 2013 Econometric 1.09 

Geothermal -0.077 Lovekin, 2000 2 points 0.923 

Geothermal -0.130 Sanyal, 2004 2 points 0.87 

Solar 

Thermal 

-0.200 Price & Carpenter, 1999 2 points 0.8 

Solar 

Thermal 

-0.210 Price & Carpenter, 1999 2 points 0.79 

Solar 

Thermal 

-0.184 Price & Kearney, 1999 Given 0.816 

Solar 

Thermal 

-0.218 Encyclopedia of Energy, 

2004 

Given 0.782 

Solar 

Thermal 

-0.050 Charles et al., 2005  2 Points- Forecast 

Data 

0.95 

Solar 

Thermal 

-0.160 Charles et al., 2005  2 Points- Forecast 

Data 

0.84 

Wind 

(Turbine) 

-0.008 Berry, 2009 Econometric 0.992 

Wind 

(Turbine) 

0.027 Berry, 2009 Econometric 1.027 

Wind (Farm) -0.100 Berry, 2009 Econometric 0.9 

Wind (Farm) -0.100 Berry, 2009 Econometric 0.9 

Wind (Farm) -0.089 Qiu and Anadon, 2012 Econometric 0.911 

Wind (Farm) -0.134 Qiu and Anadon, 2012 Econometric 0.866 

Wind (Power) 0.148 Ek and Soderholm, 2010 Econometric 0.852 

CCGT -0.52 Locatelli and Mancini, 2010 Given 0.48 

CCGT -0.12 Locatelli and Mancini, 2010 Given 0.88 

CCGT -0.210 Rodrigues, 2003 Graphic Depiction 0.79 

CCGT -0.230 Kehlholfer et al, 1999 Graphic Depiction 0.77 

Nuclear 0.145 Cantor and Hewlett, 1988 Econometric 1.145 

Nuclear -0.170 Zimmerman, 1982 Econometric 0.83 

Nuclear -0.260 Zimmerman, 1982 Econometric 0.74 
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Nuclear -0.300 McCabe, 1997 Econometric 0.7 

Nuclear -0.200 Komanoff, 1981 Econometric 0.8 

Nuclear -0.152 Komanoff, 1981 Econometric 0.848 

Nuclear -0.38 Locatelli and Mancini, 2010 Given 0.62 

Nuclear -0.350 Mooz, 1978 Econometric 0.65 

Nuclear 0.000 Mooz, 1979 Econometric 1 

Nuclear -0.230 Marshall and Navaro, 1991 Econometric 0.77 

Nuclear -0.200 Marshall and Navaro, 1991 Econometric 0.8 

Nuclear -0.750 Nieves et al., 1980 Given 0.25 

Nuclear 
-0.370 

US Department of Labor, 

1982 

Econometric 0.67 

Nuclear -0.510 Perl, 1982 Econometric 0.49 

Solar PV-

System 

-0.160 Feldman et al., 2012 2 points- From 

Graph 

0.84 

Solar PV-

System 

-0.130 Feldman et al., 2012 2 points- From 

Graph 

0.87 

Solar PV-

System 

-0.050 Chaurey and Kandpal, 2010 Given 0.95 

Hydro 0.078 Kumar et al., 2011 Graphic Depiction 1.078 

Hydro (Small) -0.29 Kosnik et al, 2010 2 Points 0.71 

Hydro (Small) -0.220 IRENA, 2012  Graphic Depiction 0.78 

Hydro -0.290 Alverado-Ancieta, 2009 Graphic Depiction 0.71 

Ethanol Range: -0.3 

to -0.4 

Van den Wall Bake et al., 

2009 

 

Given 0.6 to 0.7 

LNG 0.068 Greaker and Sagen, 2004 Econometric 1.068 

LNG -0.3 Okimi, 2003  Given 0.7 

LNG -0.42 Cornot-Gandolphe, 2005 Given (adding a 

second train) 

0.58 

LNG -0.5 Lang & Schier 2009  Graphic Depiction 0.5 

Heat Pump* -0.49 Blum et al., 2011-My 

calculation from Figure4 

Graphic Depiction 0.51 

Heat Pump -0.68 Rafferty, 1995 Graphic Depiction 0.32 

Heat Pump -0.6 Rafferty, 1995  Graphic Depiction 0.4 

Heat Pump -0.13 Rafferty, 1995 Graphic Depiction 0.87 

Heat Pump -0.1 Rafferty, 1995 Graphic Depiction 0.9 

*All heat pump sale estimates pertain to Ground Source Heat Pumps 
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Appendix B: Learning Curves 

Figure B1: FGD Original Data (Capacity)       

 

Figure B2: FGD Original Data (Units) 

 

Figure B3: FGD De-scaled (Capacity)      Figure B4: FGD De-scaled (Units) 

 

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14

C
o

st
 (

Ln
)

Cumulative Capacity (Ln)

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7

C
o

st
 (

Ln
)

Cumulative Units (Ln)

0

2

4

6

8

10

12

14

0 5 10 15

Ln
(C

o
st

)-
$

/M
W

Ln(Cumulative Capacity)-MW

0

2

4

6

8

10

12

14

0 2 4 6 8

LN
(C

o
st

)-
$

/M
W

Ln(Cumulative Units)



 28 

 

Figure B5: Nuke3 Original Data (Capacity)    Figure B6: Nuke3 Original Data (Units) 

  

 

Figure B7: Nuke3 De-scaled (Capacity)    Figure B8: Nuke3 De-scaled (Units) 
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Figure B9: Coal Original Data (Capacity) Figure B10: Coal Original Data (Units) 

  

 

Figure B11: Coal De-scaled (Capacity)    Figure B12: Coal De-scaled (Units) 
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Figure B13: Nuke2 Original Data (Capacity)   Figure B14: Nuke2 Original Data (Units) 

 

 

Figure B15: Nuke2 De-Scaled (Capacity)         Figure B16: Nuke2 De-Scaled (Capacity)  
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Figure B17: Nuke1 Original Data (Capacity)   Figure B18: Nuke1 Original Data (Units) 

  

Figure B19: Nuke1 De-scaled (Capacity)     Figure B20: Nuke1 De-scaled (Units)     
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Figure B21: CCGT1 Original Data (Capacity)  Figure B22: CCGT1 Original Data (Units) 

 

Figure B23: CCGT1 De-scaled (Capacity)   Figure B24: CCGT1 De-scaled (Units) 
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Figure B25: CCGT2 Original Data (Capacity)   Figure B26: CCGT2 Original Data (Units) 

 

Figure B27: CCGT2 De-scaled (Capacity)    Figure B28: CCGT2 De-scaled (Units) 
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Figure B29: Sthermal-1 Original Data (Capacity)  Figure B30: Sthermal-1 Original Data (Units) 

  

 

Figure B31: Sthermal-1 De-scaled (Capacity) Figure B32: Sthermal-1 De-scaled (Units) 
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Figure B33: Hydro Original Data (Capacity)    Figure B34: Hydro Original Data (Units) 

  

Figure B35: Hydro- De-scaled (Capacity)       Figure B36: Hydro- De-scaled (Units) 
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Figure B37: Sthermal 2 Original Data (Capacity)   Figure B38: Sthermal 2 Original Data (Units) 

    

 

Figure B39: Sthermal 2 De-scaled (Capacity)       Figure B40: Sthermal 2 De-scaled (Units) 
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B41: LNG Original Data (Capacity)          B42: LNG Original Data (Units) 

  

 

B43: LNG De-scaled (Capacity)                  B44: LNG De-scaled (Units) 
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B45: Wind1 Original Data (Capacity)       B46: Wind1 Original Data (Units) 

 

 

B47: Wind1 De-Scaled (Capacity)             B48: Wind1 De-Scaled (Units) 
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B49: Wind2 Original Data (Capacity)      B50: Wind2 Original Data (Units) 

   

 

B51: Wind2 De-Scaled (Capacity)              B52: Wind2 De-Scaled (Units) 

  

 

 

0

1

2

3

4

5

6

7

8

9

10

0 5 10

Ln
(C

o
st

)-
$

/M
W

Ln(Cumulative Capacity)-MW

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10
Ln

(C
o

st
)-

$
/M

W
Ln(Cumulative Units)

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Ln
(C

o
st

)-
$

/M
W

Ln(Cumulative Capacity)-MW

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10

Ln
(C

o
st

)-
$

/M
W

Ln(Cumulative Units)



 40 

B53: Solar PV Original Data (Capacity)    B54: Solar PV Original Data (Units) 

  

 

B55: Solar PV De-scaled (Capacity)          B56: Solar PV De-scaled (Units) 
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B57: Heat Pump Original Data (Capacity)     B58: Heat Pump Original Data (Units) 

  

 

B59: Heat Pump De-scaled (Capacity)        B60: Heat Pump De-scaled (Units) 
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B61: Geothermal Original Data (Capacity)      B62: Geothermal Original Data (Units) 

   

 

B63: Geothermal De-scaled (Capacity)      B64: Geothermal De-scaled (Units) 
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B65: Ethanol Original Data (Capacity) 

 

B65: Ethanol De-Scaled Data (Capacity) 
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