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FOREWORD 

How to solve dynamic discrete-time optimization problems is important in applied 
systems analysis. For example , such problems occur in analyses of future energy supply, 
forest industry development, and agricultural production. 

Thus, IIASA has investigated methods of solving such problems, particularly when 
they have a large scale and involve decomposition. 

This paper presents a new approach to these problems of dynamic discrete-time 
optimization that is based on the techniques of nondifferentiable optimization. Specific
ally, this approach first represents the nonlinear discrete-time state equations by means 
of an exact penalty function, then decomposes the resulting large-scale problem, and 
finally uses nondifferentiable optimization algorithms to coordinate the solutions to the 
subproblems. 
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AN APPLICATION 
OF NONDIFFERENTIABLE OPTIMIZATION 

IN OPTIMAL CONTROL 

E.A. Nurminski 

The problem of optimal control for the nonlinear 
dynamic system with discrete time is considered. 
Using a nondifferentiable penalty function it is 
possible to transform the initial problem into 
an unconditional one. Special stru c ture of this 
problem makes it possible to develop the specific 
method which is some composition of the gradient
like method of nondifferentiable optimization and 
the method of coordinate minimization. 

1 . INTRODUCTION 

We consider here the problem of optimal control of the system which 

is governed by the equations 

x(t + 1) = g(x(t),u(t)),t 0,1, .. ,T- l (1) 

where x(t) is the phase vector of the system at some discrete instant 

t, u(t) is the corresponding control vector. Both x(t) and u(t) are 

the elements of the finite dimensional spaces En and Em respectively. 

In x-space En we shall sometimes use the norm 

I x I max (2) 
i = 1, .. , n 

preserving the usual notation for the euclidean norm 

llall= la. = (a,a) 
( 

n y~ ~ 
i= 1 

1 

We shall consider the problem of optimal control in the sense that 

there is some objective function f:En + E1 and control variabl·es are 

to be chosen in a way that a minimum 

min f(x(T)) (3) 

is achieved. We will not put any constraints on the control variables 

u ( t) , t = 0, 1, ... , T-1. 
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Problem (1), (3) has been studied by many authors and great 

efforts have been undertaken to develop computational procedures 

for this problem . Monographs [ 1, 2, 3, 4] give examples of the develop-

ment . The aim of this paper is to describe some ideas in optimal 

control which originate from nondifferentiable optimization - the 

special field in mathematical programming which deals with the prob

lem of minimizing the functions which do not have existing derivatives 

everywhere. The close relationship between these two problems stems 

from the fact that under some reasonable conditions the problems (1), 

(3) and the problem of minimizing the function 

f(x(T))+ /.. max lx(t+l)-g(x(t),u(t)ll ( 4) 
t=O,l, .. ,T-1 

over the variables 

x (x(l), ... ,x(T)) EEnT 

u (u(O), ... ,u(T - 1)) E EmT 

are equivalent for /.. large enough. 

A proof of this fact is given in Section 2 of the present paper. 

This equivalence opens, at least in principle, the possibility 

of using the methods of nondifferentiable optimization [ 5,6] to solve 

(1),(3). A direct application of these methods is hampered, however, 

by the size of the resulting problem: 

in the problem 

the total number of variables 

(5) 

is equal to (n + m)T a possibly huge number even for low-dimensional 

systems. 

Therefore, the second idea consists of using the specific struc

ture of the function (4) and it gives the possibility of taking into 

account the equations (l)and excluding the state variables from the 

problem (5) as independent ones. 

Finally, the iterative procedure for finding the optimal control 

u* is a modification of subgradient search which is widely used in 
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nondifferentiable optimization for the different kinds of nondiffer-

entiable functions. The corresponding statement on the convergence 

of this method is given in Section 4. 

The numerical aspects of this approach are considered in Section 

5. Within the framework of the method an auxiliary extremum problem 

appears and the solution to this problem satisfies a specific system 

of linear equations. 

dynamic-like way. 

Remarkably, this solution can be found in a 

2. THE CONDITIONS FOR THE EQUIVALENCE OF THE OPTIMAL CONTROL PROBLEM 
AND THE NONDIFFERENTIAL EXTREMUM PROBLEM 

A well-known method of solving conditional extremum problems is 

the penalty function approach which reduces the problem 

min f(x) 
g.(x)<O 

i -

to the unconditional one 

1,2,. . .,I 

min {f(x) +l/\(gi(x), i=l,..,I)} 
x 

(6) 

( 7) 

The different aspects of this approach are discussed for instance 

in ( 7). Recently, due to the development of nondifferentiable optim-

ization methods, the nondifferentiable penalty functions became the 

object of many studies. A great advantage of this function is the pos-

sibility of constructing for the conditional problem (6) the exactly 

equivalent unconditional problem (7). Equivalence here means that the 

solution of one problem is the solution to the other and vice versa. 

A typical example of such penalty functions is 

where 

positive part of gi (x) 

Amax g:(x) 
i 

i=l,.,I 
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For this and similar penalty functions it was proved by many 

authors that under some mild conditions for A> 0 large enough every 

solution of (7) is a solution of (6). There were also many attempts 

to estimate the lower bounds for such A . Usually such estimates in-

volve values of dual variables or Lagrange multipliers at the extremum 

point. Fortunately in our case it is possible to derive more useful 

and constructive bounds. 

Let us denote for fixed control u 

the state variables which satisfy the equations (1) with given initial 

state x (0). We start by establishing the following result. 

Theorem 1. If in the region Z x V CEn x Em g(z,v) satisfies a 

Lipschitz condition on z with the constant L, i.e. 

lg(z',v) - g(z",v) I < Liz' - z"I 

for all v EV, z' ,z" Ez and f(z) satisfies in Z a Lipschitz condition 

with the constant M respectively then for 

and 

min ~A (x,u) =~A (xu,u) 
x 

f(xu(T)) 

Proof. First we estimate the distance between x(T) and xu(T) 

in a recursive way. For some instant t 

lg(xu(t) ,u(t)) - x(t + 1) I < 

< lg(xu(t),u(t)) - g(x(t),u(t))I + lx(t + 1) -g(x(t),u(t))l2_ 

< L lxu(t) - x(t) I+ max I x(t + 1) - g(x(t) ,u(t)) I 
t=O,l,.,T-1 
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Let us denote 

max x(t+l)-g(x(t),u(t)) J=y 
t 0,1, .. ,T-l 

Then in this notation 

'\+12.Ll:it+y 

Inequality (8) together with the initial condition ti
0 

= 0 

establishes an upper bound for tit It is easy to verify that 

T - 1 
tiT 2_ y l Lt 

t = 0 

y(LT - 1) (L- 1)-l 

Now the completion of the proof presents no difficulties: 

f(x(T)) - f(xu(T)) + A y ~ 

Q.E.D. 

It immediately follows from the theorem that 

min f(x (T)) 
u 

u 
min min <l> ;,. (x,u) 

u x 
min <l>;,. (x,u) 
x,u 

and hence the problem (1), (3) and (5) are equivalent . 

141 

(8) 

We shall suppose that the conditions of this theorem are valid 

throughout the paper and that A is large enough for the conclusions 

of the theorem to hold. 
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3. SOME DISCRETE MIN-MAX THEORY 

Problem (5) is a problem of nondif ferentiable optimizations 

because of specific features of the max operation. It is worth re-

marking that function (4) in general does not satisfy convexity 

conditions in the nonlinear case. There are many classes of non-

differentiablity. The collection[6]gives several examples of these 

types of nondifferentiabilty. Another example of the different 

classes on nondifferentiable functions are [ 8 - 11] and this list may 

be extended. 

A sufficiently general class of nondifferentiable functions that 

c ontains under rather mild conditions the f u n c tion (4) is a c lass of 

weakly convex functions as it was defined in [ 9 ] • A similar c lass 

of nondifferentiable functions was considered also in [ 8 ] . 

The definition of the weakly convex fun c tion is given below . 

Definition. A continuous function f(x) is said to be the weakly 

convex function if for any fixed x a nonempty set G(x) of ve c tors g 

exists such that for every y 

f(y) - f(x) > (g,y - x) + r(x,y) ( 9) 

where the residual term r(x,y) has uniform smallness with respect to 

the difference llx - yll, that is in every compact set K 

r(x,y) llx - yll-l -+ O (10) 

when II x - y II -+ o, x, y EK ~./ Th e vector g in the equality (9) we 

shall c all subgradient of the weakly c onvex functi o n f(x) by analogy 

with convex functions. 

The class of weakly convex functions has a remarkable property 

that it is closed under the operation of finite maxima, i.e. if a 

finite family fi (x), i EI of the weakly convex functions is given 

then the function 

f(x) max f.(x) 
i EI 1 

1/ Note: llx - yll -+ 0 does not mean that y-+x for some fixed x 

(11) 
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is also a weakly convex function. So far as the problem (1),(3) 

is concerned the differentiability of the right parts of the equations 

(1) and the weak convexity of the objective function f will guarantee 

the weak convexity of the function (4). It allows the consideration 

of the sufficiently general class of dynami c system (1), (3) and 

guarantees the wide applicability of the theoretical developments. 

Another advantage is that for the weakly con v ex functions the con

vergence of the gradient-like meth o ds has already been proved in [ 9 ). 

An important question whi c h immediately arises is the calculation 

of subgradients g which satisfy the inequality (9). In the general 

case this problem is rather difficult but for the special c lasses o f 

functions it is possible to develop some kind of differential calculus 

and get some constructive rules for computing the subgradients. Par-

ticularly important is the class of maximum functions (11). In this 

case it is easy to show that if Gi (x) is a subgradient set for the 

function f i (x) at the point x then subgradient set G(x) for the func 

tion ~ at the same point is given by the expression 

G(x) co { G i ( x ) , i E I ( x )} , I ( x ) {i:f . (x) 
l 

f(x)} 

Taking into account that for smooth functions a subgradient co

incides with the usual gradient it defines subgradients for a fairly 

large set of functions. 

What we are going to do is to use the fact that the function 

¢ A(x,u) is a finite maximum of differentiable functions. In the 

sequel we shall assume that the objective f(x(T)) is continuously 

differentiable. Then the function ¢A(x,u) may be represented in the 

following way (~i(·) is defined below): 

max ~i(x,u) 
i = 1,. , N 

and one can obtain some useful results on the structure and properties 

of the subgradient set G(x,u) 

For the notational simplicity we replace the pair (x,u) E EnTx 

EmT by z E E(n + m)T which yields 

max 
i = 1,. , N 

~. ( z) 
l 

(12) 
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and consider the set 

Z* = {z*: <Pi (z*) = <!>A (z*), i =l, •. ,N} 

For the exact coincidence of (12) and (4) we may choose N 2nT 
and 

for 

k = nt + i i = 1, . . . , n t=O,l, . .,T-1; 

for 

k=T-1 nt+i i l, .. , n t=O,l, .• ,T-1. 

It is useful to notice that if z E Z* then the state and control 

variables are linked by the dynamic equations: 

x(t+l) g(x(t) ,u(t)), t=O,l, •. ,T-1 

Moreover for the z E Z* the subgradient set G(z) is given by the 

expression: 

G(z) co{¢ i_ (z), i = 1, . . ,N} 

. 
It follows from the co ntinu i ty of <P i (z) that G(z) is continuous on Z*. 

The continuity of the G(z), z E Z* in turn induces the cont inuit y of 

the value of the problem 

max 
gEG(z) 

min (g,g') =v(z,z') 
g'EG(z') 

* * on the product set Z x Z 

(13) 

It is well known that the problem (13) for z' 

external solution g* such that 

z has the same 

min (g*,g') 
g' E G(z) 

as the problem 

min llgll
2 

g E G (z) 

max 
gEG(z) 

min i., (g,g') 
g' EG(z') 

(14) 



NONDIFFERENTIABLE OPTIMIZATION IN OPTIMAL CONTROL 145 

Due to the strict convexity of the problem (14) the solution g* 

is a continuous function of z and if we denote by g* the solution of 

(14) for z = z' then 

v(z,z') > min (g*,g') 
g' E G(z') 

min (g~ + g* - g~,g') > 
g'EG(z') 

> min (g~,g')-Rg*-g~U max g'l=V(z',z')-
g'E G(z') g'EG(z') 

- u g* - g~ I max I g I a 
g' EG(z') 

Let us now· assume that OEG(z) and consequently OEG(z') for z' 

close enough to z. In that case we may suppose that 

v(z,z) > 4o , v(z' ,z') > 2o 

and 

for z' close enough to z and z' EZ*. 

exists an E > 0 such that 

min (g*,g')>o>O 
g' EG(z') 

for 

Hz-z'D<E,z'EZ* 

The latter means that there 

(15) 

We are also interested in developing an analogous inequality for 

all neighbors z' not only for z' EZ*. As G(z) for zEZ* is in a 

certain sense a maximal set it is easy to prove that (15) holds for 

all z close to z. 
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We start our proof with the statement that for every y > 0 exists 

such £ > 0 that for all z' E Z* and for al 1 z" such that 

Hz• -zll < E, llz"-zU < E 

holds 

G(z') + y S ::lG(z") 

where S - unit ball. 

ces 

where 

In fact if we suppose the contrary then there exist such sequen-

z' z" -+ z 
n n 

z' E Z* 
n 

and there exists gnE G(z~) such that 

for some y > 0 

Without any loss of generality we may assume that gn-+ g" and 

for g" two inclusions hold: 

(i) g" E int (G(z) + y S) 

It follows from (16) and c ontinuity of G(z) on Z* and 

(ii) g" E G (z) 

which follows from uppersemicontinuity of G(z). 

Obviously (i) and (ii) contradict each other which proves (15). 
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4. SUBGRADIENT-COORDINATE METHOD 

On the basis of the results obtained above the following method 

for solving the problem (1), (3) may be developed: 

STEP O. 

0 
u 

Set some initial control variables 

and compute through 

system. The initial 

(1) the corresponding trajectory of the dynamic 

point x
0

(o) is given. The counter k of iterations 

set equal to zero: k 0 

STEP 1. Compute for given k 
u 

tion <l> A(x,u) defined by (4) at the 

and xk the subgradient 

point xk,uk 

of the f unc-

STEP 2. 

formula 

k+l 
u 

Change the control variables 

k 
u 

where pk -step multipliers specified below. 

k 
u in accordance with the 

STEP 3. 
k+l 

Compute the new trajectory xk+l from the equations (1) 

for u = u 

STEP 4. Set k:= k + 1 and go to STEP 1. 

From the general point of view the proposed method is a composi

tion of two well-known methods for which a convergence was proved be-

fore. In fact STEP 2 is a gradient-like method which has been investi-

gated under the different assumptions. Due to Theorem 1, STEP 3 may be 

considered as a coordinate optimization method which also has well

known convergence properties. At this stage we compute the exact mini-

mum of the function <l>A(x,u) with respect to x. Due to Theorem 1, this 

computation can be performed through dynamic equations (1) rather than 

by minimizing this function. This stage of the method is similar to 

the iteration of the cyclic coordinate optimization method, the classi

cal version of which belongs to Gauss - Zaidel, where the sequential 

calculations of the exact minimum of the objective with respect to 

different variables are performed. In this case, special measures 

should be undertaken to guarantee the convergence of the whole process. 

Generally this process will not converge as it is shown on Figure 1 

where the level sets of the function <!>A are drawn in the case of single 

dimensional x and u. 
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STEP 2 

-P go 
0 u 

STEP 3 
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FIGURE 1 

x 

u 

It is easy to see that for the given subgradient 0 
g ' calculated 

at the origin any shift in the control variable 

-go will result in the transition to some point 
u 

u in the direction 

(x 1 ,u 1 ) where 

and x 1 satisfies the corresponding equations (1) 
1 0 0 

u = u - Pogu 

u = uland the value of objective function 

1 1 
<l>>..(x ,u) f(x 1 (T)) 

is larger thanat the initial point. At the point (x1,u 1 ) this 

for 

situation may repeat and as a result we will have a sequence {uk} 

which does not converge to the solution of (1),(3). 

This example also gives an answer to the question in what way 

the process Step 0- Step 3 has to be modified. It is clear that we 

need to make a special choice of the subgradient gk in the Step 1. 

For the above example the set of the subgradients G(O,O) calculated 

at the origin is plotted in Figure 2 as an interval AB. 
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FIGURE 2 

x 

There are many possible choices of the vector gk which will 

guarantee the convergence of the process and some of them are already 

known. Remarkably, if we choose a vector gk which has a zero x

component, namely: 

then the u-component gk will coincide with the derivative of the ob
u 

jective f(xu(T)) as a complex function of u and may be obtained in a 

traditional way with the help of the conjugate (or adjoint) system 

/..(t-1) g'(x (t),u(t)) A(t), 
x u 

with the terminal condition /..(T) 

t=T,T-1, .. ,1 
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It is useful to notice that when xk realizes 

min 
x 

k 
<l> A(x u) 

then such a vect o r gk always exists. This approach is widely known 

and thus we will not discuss here its advantages and disadvantages. 

Our aim is to prop o se some alternative for this choice and to express 

the hope that the future research will make comparison possible. 

The idea is to c hoose vector gk E G( x k ,uk) in the Step 1 as a 

ve c tor of the minimal length in this set that is 

UgkU
2 

= min k k UgU
2 

gEG(x ,u) 
(17) 

The corresponding choice of g from the set G(O) is shown on the 

Figure 2. 

·The convergence of the method is stated in the following theorem: 

Theorem 2. In STEP 1 the subgradient gk be chosen as (17), let 

the sequence of step multipliers satisfy the conditions 

and assume the sequence {(xk,uk)} generated by this method to be 

bounded. Then every limit point of the sequence {uk} realizes the 

minimum of the function 

f(xu(T)) min <l>A (x,u) 
x 

Proof. Consider the set (which might be empty) 

min <l>A (x,u)} 
x,u 

We shall prove that all limit points of the sequence lie in this set. 

Because the sequence {uk} has a nonempty set of limit points the 

* following is a constructive proof of nonemptiness of the set U as 

well. 
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First assume that the limit point u' of the sequence exists such 

that u E U * 

OEG{xu 1 ,u') 

and consequently 

(18) 

for (xk,uk) which are close enough to (x' ,u'). In fact it is enough 
k u 

to require the closeness of u' and u If u' is a single limit point 

of the sequence {uk} then (18) holds for all k large enough and all 

(xk,uk) lie in an arbitary small neighborhood of the point (x~,u') 
for k large enough. In that case the results of the Section 2 are 

applicable which gives the possibility to estimate a decrease of the 

objective function: 

¢,(xk+l uk+l) ¢ ( k k k k)< 
A < .A. x - pk gx ' u - pk gu -

where g EG(xk - pkg:, uk+l) and the weak convexity of the function 

~A (x,u) was used. Under the suppositions of the proof an inequality 

similar to (15) holds 

k 
{g ,g) ~Ii> 0 

k k uk+l) for any g from the set G(x - pk gx' and for k large enough 

so 

k k Ii 
x 'u ) _::_ 2 pk 

~ ( k+l k+l) ~ ( k k) Ii 
"'.A. x ,u _::_.,.A. x ,u -Zpk,k~K 

Summing (19) from k> K to N-1 we get 

N N K K Ii N-l 
¢.A. (x 'u ) < ¢.A. (x 'u ) - 2 l 

s=K 
p -+ -oo 

s 

(19) 
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when N +"' This obviously contradicts the boundness of the ¢A and 

proves that the point u' is not a single limit point of the sequence 

{uk}. 

Let us denote the subsequence converging to u' 
nk 

as {u }. From 

above it follows that for some arbitrary small £ > 0 indices mk exist 

such that 

Then for nk_'.:.m < nk the (19) is valid and thus 

¢,(xm+l um+l)< ¢ ( m m) cS 
" Ax,u -Zpm 

Again summing (20) for 

mk mk) 
<PA (x u 

On the other hand 

mk-1 

< 

£<II l P gm II < 
m 

m=nk 

which yields 

mk-1 

2 Pm~~ 
m=nk 

and finally 

¢A 

nk _'.:. m < mk 

(x 
nk nk 

'u ) 

we 

cS 
2 

6£ 
2C 

Passing to the limit as k +"' we get 

get 

mk-1 

2 
n=.nk 

(20) 

cS 
m 

(21) 
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Inequality (21) guarantees the convergence of the process due to 

the general results of the convergence of iterative processes of non

linear programming obtained in [ 10]. 

5. COMPUTATIONAL ASPECTS 

The application of the proposed method involves through Step 1 

the solution of the problem 

min llgll
2 

gEG(xk,uk) 

(22) 

This problem seems to be a large-scale quadratic problem but 

some considerations allow us to determine an explicit solution. 

If we denote the full derivative of the 

lj!~ ( t) 
l 

in respect to the variables 
k k 

x ,u as lj!ik(t) and - the (n+m) 

Txn matrix with the column lj!ik (t), i=l,. ,n the subgradient set 

G(xk,uk) may be presented in a form 

k k I k 
G (x , u ) = f (x (T)) +,\pk 

where the set Pk has a form 

T-1 
{p p 1. ljJ~(t)6k(t)} 

t=O 

where the n-vectors 

k k k 
6 (t) = (6

1
(t), ... ,6

11
(t)) 

may be represented as 

6~(t) = a~(t) 
l l 

B~ ( t) 
l 
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and 

cx ~(t) . S ~(t) > o 
i i -

T-1 n 

I I 
t=O i=l 

(cx~(t) + i3~(t)) 
i i 

Note that the set Pk has a central symmetry that is if 

p E Pk then - p E Pk as well. It follows from the symmetry of Pk 

that zero belongs to the relative interior of the set Pk : 

(23) 

Let us consider the least linear manif~ld Lk which contains Pk 

and the orthogonal complimentary manifold Lk. Due to (23) any vector 

q belonging to Lk may be absorbed, by the set I- Pk fo; A> 0 ~arge enough. 

Then if we split the derivative f on two vectors f 1 and f
2 

where 

then the problem (22) may be rewritten as 

Due to the absorbing properties of the set Pk for A> 0 large 

enough 

and so the second term is equal zero. Finally we get 

min llg11
2 

gEG(xk,uk) 



NONDIFFERENTIABLE OPTIMIZATION IN OPTIMAL CONTROL 155 

So the problem (22) is equivalent to the problem of finding the 

distance between f' and the linear manifold Lk. 

The linear manifold Lk may be presented in a form 

T-1 
{q:q l 

t=O 

. 
~ (t)A(t)} 

k 

where A(t) E En and the explicit solution of the (22) should satisfy 

the linear system 

• * . 
~k (t) f2 0, t=O,l, ... ,T-1 

where the * means transposition. 

Eventually /.(t) should be chosen in such a way that 

I * I I k 
~k(t) (~k(t)/.(t) + f (x (T))) = 0 (24) 

t=O,l, ... ,T-1 

As far as the matrices ~k(t), t=O, .. .,T-1 have a vast number of 

zeroes the system (24) has a block-diagonal structure shown on the 

Figure 3. 

If we suppose that the vectors /.(t), t = 0,1, .. ,T- 1 are linked 

by the relation 

l.(t+l) (25) 

where Ut - n x n matrices and v(t) - n - vectors then for Ut and v(t) 
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Ao Bo 

AlBICI 

A2B2C2 0 
0 AT-3 8 T-3CT-3 

AT-2BT-2CT-2 

AT-IBT-1 

We have an equation: 

with the terminal condition 

and 

with the terminal condition 

v (T-2) 

FIGURE 3 

/.. (0) 

A (I) 

/.. (T-1) 

0 
f' 

x 

(26) 

(27) 

The equations (26),(27) solved in reverse time permit through 

(25) the recurrent definition of the A(t), t=O,l, ... ,T-2 with the 

initial state /..(0) defined as follows 
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