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PREFACE 

The ever increasing complexity of the systems to be modeled 

and analyzed, taxes the existing mathematical and numerical tech- 

niques far beyond our present day capabilities. By their intrin- 

sic nature, some problems are so difficult to solve that at best 

we may hope to find a solution to an approximation of the original 

problem. Stochastic optimization problems, except in a few special 

cases, are typical examples of this class. 

This however raises the question of what is a valid "approx- 

imate" to the original problem. The design of the approximation , 

must be such that (i) the solution to the approximate provides 

approximate solutions to the original problem and (ii) a refine- 

ment of the approximation yields a better approximate solution. 

The classical techniques for approximating functions are of little 

use in this setting. In fact very sirriple examples show that 
classical approximation techniques dramatically fail in meeting 

the objectives laid out above. 

What is needed, at least at a theoretical level, is to de- 

sign the approximates to the original problem in such a way that 

they satisfy an epi-convergence criterion. The convergence of the 

functions defining the problem is to be replaced by the convergence 

of the sets defined by these functions. That type of convergence 

has many properties but for our purpose the main one is that it 

implies the convergence of the (optimal) solutions. 

-iij.- 



This article is devoted to the relationship between the epi- 

convergence and the classical notion of pointwise-convergence. 

A strong semicontinuity condition is introduced and it is shown 

to be the link between these two types of convergences. It pro- 

vides a number of useful criteria which can be used in the design 

of approximates to difficult problems. 



CONVERGENCE OF FUNCTIONS: EQUI-SEMICONTINUITY 

Given a space XI by 3 we denote the space of all functions 
defined on X and with values in E, the extended reals. We are 

interested in the relationship between various notions of conver- 

gence in 9, in particular between pointwise convergence and that 
induced by the convergence of the epigraphs. We extend and refine 

the results of De Giorgi and Franzoni (1975) (collection of "equi- 

Lipschitzian" functions with respect to pseudonorms) and of 

Salinetti and Wets'(1977) (sequences of convex functions on a re- 

flexive Banach space). The range of applicability of the results 

is substantially enlarged, in particular the removal of the con- 

vexity, reflexivity (Salinetti and Wets 1977) and norm dependence 

(De Giorgi and Franzoni 1975) assumptions is significant in many 

applications. The work in this area was motivated by: the search 

for "valid" approximations to extremal statistical problems, var- 

iational inequalities and difficult optimization prok)lems, cf., 

the ahove mentioned articles. Also by relying only on minimal 

properties for the topology of the domain space and for the class 



of functions involved, the derivation itself takes on an elemen- 

tary and insightful character. 

By their nature the results are asymmetric; semicontinuity 

is a one-sided concept. We have chosen to deal with lower semi- 

continuity and epigraphs rather than upper semicontinuity and hy- 

pographs. Every assertion in one setting has its obvious counter- 

part in the other. This choice however, does condition the addi- 

tion rule for the extended reals, viz. (+a) + a = -1- for all ,a E fi: 

and (-a) + a = -a for all a E [-a,+ a[. Also, note that we are work- 

ing with the extended reals, thus every collection of elements of 
- 
R has lower and upper bounds in E; all limits involving extended- 

real numbers must be interpreted in that sense. 

I LIMIT FUNCTIONS 

Let (X,?) be a topological space and f a generic element of 

-x R . The effective domain of f is 

dom f = {x ~ X l f  (x) < +a) 

and its epigraph is 

epi f = {(x,rl) E X x~lf(x) - <TI) . 

The function f is T-lower semicontinuous (T-Z.sc.) if epi f is a 

closed subset of X x R, or equivalently if 

(do) to each x E dom f and to each E > 0, there 

corresponds a T-neighborhood V of x such that 



(-d ) t o  e a c h  x  +dam f  and t o  each  a  E R ,  t h e r e  
0 

c o r r e s p o n d s  a  T-neighborhood V o f  x  such t h a t  

Note t h a t  i f  O > T ,  i . e . ,  a i s  f i n e r  t h a n  T ,  t h e n  f  T - l . s c .  i m p l i e s  

f  a - l . s c .  . 
To d e f i n e  l i m i t s  o f  c o l l e c t i o n  o f  f u n c t i o n s ,  i . e . ,  e l emen t s  

o f  9, w e  adop t  t h e  f o l l o w i n g  framework: N i s  an  i ndex  space  and 

tl i s  a  f i l t e r  on  N.  ( I f r  h a s  a  l o c a l  c o u n t a b l e  b a s e  a t  each  p o i n t ,  

it would be  s u f f i c i e n t  t o  c o n s i d e r  l i m i t s  i n  t e r m s  o f  sequences ,  

u n f o r t u n a t e l y  many i n t e r e s t i n g  f u n c t i o n a l  s p a c e s  do  n o t  have  t h i s  

p r o p e r t y . )  .The e T - L i m i t  i n f e r i o r  o f  a f i l t e r e d  c o l l e c t i o n  o f  func-  

t i o n s  { f v , v E ~ )  i s  deno t ed  by li f  and i s  d e f i n e d  by 
T v 1  

(1 .1)  ( l i T f v )  ( X I  = SUPGEG (.,) S U P ~ ~ t l  i n f  vEH i n f  
T 

y€G f v ( y )  

where G ( x )  i s  t h e  f a m i l y  o f  (open)  T-neighborhoods o f  x .  The 
T 

e - l i m i t  s u p e r i o r  i s  deno ted  by 1s f  and i s  d e f i n e d  s i m i l a r l y ,  
T T v f  

I n  t h e  l i t e r a t u r e  on r -convergence ,  t h e s e  two f u n c t i o n s  a r e  known 

r e s p e c t i v e l y  a s  t h e  r- ( T )  - l i m i t  i n f e r i o r  and t h e  r- ( T )  - l i m i t  
1 

s u p e r i o r ,  c f .  D e  G i o r g i  and ~ r a n z o n i  (1975) . By f f  w e  deno t e  t h e  

g r i l l  a s s o c i a t e d  w i t h  t h e  f i l t e r  H I  i . e .  t h e  fami ly  of  s u b s e t s  of  

N t h a t  m e e t  e v e r y  s e t  H i n  H .  Given any c o l l e c t i o n  {av€ii. VEN), 

it i s  ea sy  t o  v e r i f y  t h e  i d e n t i t y  

. . 
i f  w e  obse rve  t h a t  H i s  t h e  " g r i l l "  o f  H I  i . e .  t h e  c o l l e c t i o n  o f  

a l l  s u b s e t s  of  N t h a t  m e e t  eve ry  set  i n  f f .  From t h i s  it f o l l o w s  

t h a t  



Since tl C; it follows directly that 

( 1 . 5 )  li f < lsTfv . T V -  

The collection { f v , v ~ ~ )  admits an eT-limit, denoted by lmTfvt if 

in which case the fv are said to epi -converge  to lm f . This 
T v 

terminology is justified by the fact that epi lmTfv is the limit 

of the epigraphs of the fv; this is made explicit here below. 

The l i m i t  i n f e r i o r  Li Cv and l i m i t  s u p e r i o r  Ls Cv of a fil- 

tered collection {C VEN) of subsets of a topological space are v 
defined by 

and 

Since H c i  and thus we always have that 

The filtered collection {C~,V€N} is said to have a l i m i t , L m  C 
v ' 

if the limits inferior and superior coincide, i.e., 

All these limit sets are closed as follows directly from their 

definitions. 



Proposition 1.9. (Mosco 1969) Suppose t h a t  {f v E  N} c E~ i s  . v' .. . 
a  f i l t e r e d  c o l l e c t i o n  o f  f u n c t i o n s  Then 

(I .lo) epi li f = Ls  epi fv 
T V 

and 

(1.11) epi lsTfv = L i  epi f v 

P r o o f .  We first derive 1.10) . From the definition (1 .7) of 

Ls epi fv, it follows that (x,a) E L s  epi f if and only if v 

(x,a) E cl (uvEH epi fv) for all H E  14,  

or equivalently--because the sets involved are epigraphs--if and 

only if for all E > 0 and G E GT (x) such that 

G x  ]a-E, +a [ 
('VEH epi fv) z 0 for all H ~ f f  

or still, if and only if for to every H EH, E > 0 and G E Gi (x) 

there correspond v E H  and y E G  such that 

This holds, if and only if 

and, as follows from (1.1), if and only if a - > (li f ) (x) or equi- 
T v 

valently, if and only if (x,a) E epi liTfv. 



In view of (1.4), the proof of (1.11) follows from exactly 

the same argument with the grill f i  replacing H. 

Corollary 1.12 Given any f i l t e r e d  c o l l e c t i o n  o f  f u n c t i o n s  

{fv,v~l C E', t h e  f u n c t i o n s  liTfv, lsTfv, and lmTfv i f  i t  e x i s t s ,  

a r e  T- lower  s e m i c o n t i n u o u s .  

Proof .  The lower semicontinuity follows directly from (1.10) and 

(1.11) since they imply that the epigraphs are closed. El 

We shall be interested in the implications of a change in 

topology for X. In particular, we have the following: 

Proposition 1'.1 1. Suppose t h a t  a and T a r e  two t o p o l o g i e s  d e f i n e d  

on X such t h a t  U > T .  Then 

and 

Proof .  This follows from the definitions (1.1) and (1.2) and the 

fact that o 3 T implies that Gu (x) 3 GT (x) . 

In some applications, in particular those involving varia- 

tional inequalities, it is useful to use a stronger notion of limit 

function. Again, let a and T be two topologies defined on X, the 

e - l i m i t  of a collection of functions {f ,V EN) CE'~ denoted by 
Tta v 

f exists if lmTfu v t  



The c a s e  of i n t e r e s t  i s  a > r ,  t h i s  models t h e  s i t u a t i o n  when X i s  

a  normed l i n e a r  ( f u n c t i o n a l )  space ,  and a  and r  a r e  r e s p e c t i v e l y  

t h e  s t r o n g  and weak t o p o l o g i e s ;  i n  t h i s  s e t t i n g  t h i s  l i m i t  f u n c t i o n  

i s  c a l l e d  t h e  Mosco l i m i t ,  c f .  Mosco ( 1  969) and Attouch (1979) ,  

f o r  example. 

P r o p o s i t i o n  1.17. Suppose t h a t  a  and r  a r e  two t o p o l o g i e s  d e f i n e d  

on X such  t h a t  o > r .  Moreover suppose  t h a t  lm,,afv e x i t s .  Then 

Proo f .  Thi s  fo l lows  d i r e c t l y  from P r o p o s i t i o n  ( 1  -13.) , i n e q u a l i t y  

(1 .  5 )  and t h e  d e f i n i t i o n  (1.16) of l n T t a f v .  

A s  a l r e a d y  i n d i c a t e d  i n  S e c t i o n  I ,  we a r e  i n t e r e s t e d  i n  ex- 

p l o r i n g  t h e  r e l a t i o n s h i p  between t h e  l i m i t  f u n c t i o n s  of a  c o l l e c -  

t i o n  of f u n c t i o n s  i f  v E N }  C ax, when X i s  equipped wi th  d i f f e r e n t  v '  

t opo log ie s ,  say  o  and r .  The q u e s t i o n  of  t h e  e q u a l i t y  between l m r  

and lmawaSalready r a i s e d  i n  connec t ion  wi th  t h e  e x i s t e n c e  of t h e  

Mosco 1 imit l m ,  , R e c a l l  a l s o  t h a t  f o r  v a r i a t i o n a l  problems e p i -  

convergence e s s e n t i a l l y  imp l i e s  t h e  convergence of t h e  s o l u t i o n s ,  

it i s  t h u s  u s e f u l  t o  have c o n d i t i o n s  t h a t  a l low us  t o  p a s s  from 

epi-convergence i n  a  g iven  topology t o  epi-convergence i n  a  f i n e r  

topology because s t r o n g e r  c o n t i n u i t y  p r o p e r t i e s  
of t h e  of 

t h e  s o l u t i o n  of t h e  l i m i t  problem, c o n s u l t  Attouch (1979) ,  Theorem 

2.1, f o r  example. F i n a l l y ,  a  s p e c i a l  and extreme c a s e  i s  when 



a =  I, the discrete topology. The study of the connections between 

lm and lmI becomes that of the relationship between epi-convergence 
T 

and pointwise-convergence. This is particularly useful in the de- 

sign of approximation schemes for optimization problems. We deal 

with this special case of pointwise-convergence at the end of this 

section. 

The inequalities (1.14) and (1.15), relating the eT-limits 

inferior and superior, become equalities if the family of func 

tions {fv,v EN} is r/o-equi-lower semicontinuous. This property, 

defined below, is not only sufficient (Theorem 2.3) but is also 

necessary (Theorem 2.10). It constitutes in fact a sort of com- 

pactness condition, this is clarified in Section IV. 

Definition 2.1. A filtered collection of functions Ifv, v EN} CR' 

is ~/a-eqz~i-Zower semicontinuous (~/a-equi-Z.sc.) if there exists 

a set D C X  such that 

(d) given any x ED, to every E > 0 and every WEG~(X) 

there correspond H E  ff and V E G  (x) such that for 
T 

all v E H 

and 

(--d) given any X E D ,  to every a ~ i ?  there correspond 

H Eff and V E GT (x) such that for all v E H 



We call D the reference se-l;. If o C T ,  then (d) holds with V = W 

and H arbitrary, and hence any collection is ~/a-equi-l.sc. with 

D F X .  In applications,.as far as we can tell, the only case of 

genuine interest is when a is finer than T ;  however, the results 

2 are derived for arbitrary-topologies . 

Proposition 2.2. Suppose that o2 > a 1  and r2 c - r l .  Then for any 

collection of functions, r2/02-equi-lower semi-continuity implies 

~ l / a l - e q u - l o w e r  semicontinuity. 

Proof. Follows simply from the definition (2.1) and the inclusions 

G (x) > G (x) and G (x) C G, (x) . 
*2 a 1 ,2 1 

Theorem 2.3. Suppose that the filtered collection o f  functions 

{fv,v E N )  CE' is T/O-equi-2. sc. . Then 

and 

Proof. W e  start with the proof of (2.4) . Given x E D  and E > 0, it 

follows from the definition of liafv that there exists GEEG,(x) 

and H EH such that for all vEHE 
E 



I n  t u r n j  ( d )  g u a r a n t e e s  t h e  e x i s t e n c e  of  V E G ( x )  and H '  E  H s u c h  
T 

a l l  v E H ' 

and hence  f o r  a l l  v EH '  n H E (  EH) w e  have  t h a t  

(li f ) (x) < i n f v E H  
0 v  - i n £  

Y W  f v ( y ) + 2 €  . 
E 

T h i s  y i e l d s  

(liofv) ( X I  - < SUPVEG ( X )   SUP^^^ i n £  vEH 
i n £  

y  E'v f v  ( Y )  + 2 ~  
T 

= ( l i T f v )  ( x )  + 2 ~  . 

S i n c e  t h i s  h o l d s  f o r  e v e r y  E > O f  w e  have t h a t  l i o f v  - < l i T f v  on  D.  

If x  $D, c o n d i t i o n  (-d) i m p l i e s  t h a t  f o r  e v e r y  a E R ,  t h e r e  

e x i s t s  Va € G T  ( x )  and HaE H such  t h a t  

(liofv) ( x )  - > i n £  i n £  
VEH, YEV, f v  ( y )  2 a . 

Hence (li f  ) ( x )  = +w f o r  e v e r y  x  i n  X \ D and t h e  i n e q u a l i t y  
T v .  

l i O f v  - < l i T f v  i s  t r i v i a l l y  s a t i s f i e d .  

I n  view o f  ( 1 . 4 ) ,  t h e  same argument  can  be  used t o  d e r i v e  

(2 .5 )  r e p l a c i n g  s imply  li by 1s and H by f f .  



Corollary 2.6. Suppose t h a t  t h e  f i l t e r e d  c o l l e c t i o n  o f  f u n c t i o n s  

{f ,V EN} CE' i s  T / O - e q u i - 2 .  s c .  . Then v 

and 

Moreover dom liofv = dom liTfv i s  t h e  s m a l l e s t  o f  a l l  s u b s e t s  D 

o f  X w i t h  r e s p e c t  t o  which b o t h  (d) and (-d) ho ld  for  t h e  c o l l e c -  

t i o n  {fv,v EN}, i . e . ,  dom liofv i s  t h e  s m a l l e s t  p o s s i b l e  r e f e r -  

ence  s e t .  

Proof .  The equalities follow directly from Theorem 2.5 and 

the Proposition (1.131. To obtain the last assertion, we note 

that if C CD, liufv = +a on D\C and the collection {fv,v EN} is 

T/U-equi-l.sc. with respect to D, it is also -c/o-equi-l.sc. with 

respect to C. Clearly dom liofv is the smallest such set C since 

for any strictly smaller set C'Cdom liofv, (-d) will fail on 

(dom liofv)\C1 . 



Corollary 2.9. (Convergence Theorem). Suppose that o > T  and that 

the filtered coZZection of functions {f v E N )  is -c/o-equi-2. sc. 
v' 

then 

if and only if 

Proof. From f = lmrf and Proposition 1.1 3 it follows that 

f - < li,fv - < liofv . 

On the other hand from the Theorem, more precisely (2.51, the 

-c/o-equi-l.sc. yields 

f - > ls,fv - > lsofv , 

and hence f = lmofv = liofv = lsofv as follows from (1. 5) 

If f = lmofv, then Proposition 1.13 implies that 

f > lsofv > li,fv . . - - 

and -c/o-equi-lower semicontinuity yields via (2.4) 

f - < li f < li,fv . o v -  

To complete the proof we again appeal to (1. 5). 

The next Theorem shows that -c/o-equi-semicontinuity is a 

minimal condition that allows to pass from the epi-convergence in 

one topology to the epi-convergence in another topology. 



Theorem 2.10. Suppose that {fv,v E N ]  CE' is a filtered collection 

of functions such that -m<ls f <lirfv. o v -  T h e n  the collection 

{fv,v EN] is r/o-equi-7,. sc. . Moreover if o 3 r ,  then also 

Proof. The equality (2.10) follows from the assumptions via (1. 5) 

and Proposition 1.13. For brevity, let f = li,fv. To prove equi- 

l.sc. we argue by contradiction. First suppose that xadom f and 

(-d) fails, i.e., there exists a E R  such that for every V E G, (x) 

and H E H  there exists v E H  and y E V  with 

Then f (x) = i f v  x - < a contradicting the hypothesis that 

x €! dom f . 

If f(x) = (liTfv) (x) - > (lsafv) (x) is finite and (d) fails, 

it means that there exists E > 0 and WEGa(x) such that for every 

H E H  and V E G ~  

for some vEH. In particular, this must hold for some v'EH1 with 

the pair (H1,GE) constructed as follows. From the definitions of 

liT and is,, it follows that 

(i) there exist GE E GT ( x )  and HE E H such that 

and 



(ii) t o  w E G o  ( x )  , t h e r e  c o r r e s p o n d s  H W  E  H such  t h a t  

Now s i m p l y  d e f i n e  H E  nHW = H I  (Eli) and b e c a u s e  ( d )  f a i l s ,  f o r  some 

V I E  H I  

and t h u s  

~ + i n f ~ ~ ~ ~  i n £  
YEGE 

f ( Y )  < SUPVEH' i n f  YEW £ v ( y )  

Hence 

f  (x)  + 3 ~ / 4  = E + (li f  ) ( x )  - E/LI  - < E + i n £  i n £  
vEH 

f v  ( Y )  
'C v YEG 

< E + i n f v E H l  - i n £  y , -~  f v  ( Y )  < SUPvEH I i n f  
E 

YEW v ( y )  

i n £  E E 

- < S U P v ~ ~ W  YEW f v ( ~ ) ' ( l s o f v ) ( x )  + $  - < f ( x )  + $  , 

a c l e a r  c o n t r a d i c t i o n .  

  he pointwise-Zimit functions of  a  f i l t e r e d  c o l l e c t i o n  o f  

f u n c t i o n s  { f v , v E N }  a r e  d e n o t e d  by li f  and 1s f v  and a r e  d e f i n e d  v 

by 

li f  . ( x )  = s u p  
V HEM inf vEH f v  

and 



The last equality follows from (1.3). 

Let I denote the discrete topology on X, then GI (x) consists of 

all subsets of X that contain x. From this it follows that 

li fv = liIfv and 1s fv = Is,£, 

and thus the preceding results also yield the relationship be- 

tween epi-convergence and pointwise-convergence, for example, 

(1.14) and (1.15) become 

(2.13) liTfv - < li fv 

and 

When a =  I it is possible to replace (d) by : 

(d ) given any x E D, to every E > 0 there corresponds 
P 

H E H and v E GT (x) such that for all v E H  

This condition is easier to verify and is in fact equivalent to 

(d) as we show next. Clearly (d) implies (d ) since {XI E GI (x) . 
P 

On the other hand 

given x ED, and any E > 0 and WEG, (x) (any set containing x ) , 

we always have that 



If ($) is satisfied, there then exists H € H and V E GT (x) such 

that 

. . 

for all v 11. 'Combining the two preceding inequalities we get 

(d). In this setting, Theorem 2.3 and its corollaries, and 

Theorem 2.10 become: 

Theorem 2.15. Suppose that { f v , v ~ ~ 1 c 2  is a filtered coLlection 

of functions: 

(i) If the collection is r-equi-l.sc., then 

lirfy = li fv and ls,fv = Is fv . 

Also, f = lm fv if and only if f = lmrfv . 

'(ii) If -- < f = lm fv = lm,fv, then the collection 

of functions {fv,V EN] is r-equi-l.sc. . 

By means of Proposition 2.2, we obtain as corollaries to the 

above, a whole slough of convergence results. For example: 

Corollary 2.16. Suppose that o3.r. If f = lm fv and the 

filtered collection {fv,w EN] is r-equi-2. sc., then f = lmr,o fw . 
Also, if f = lmo,rfv and the collection is r-equi-l.sc. then 

f = lm fv . 



The assertions of Theorem 2.15 remain valid with a weakened 

version of r-equi-l.sc., when X is a subset of a linear topological 

space and the {fV,vE~) are convex functions. For (-d) we substi- 

tute the following condition: 

(-dc) given any x8cl D, to every a E R  there corresponds 

H E H and V E Gr (x) such that for all v E H 

inf yEv fv(~) > a - 

Obviously (-d) implies (-dc), the converse also holds in the 

"convex" case, but that needs to be argued. To start with, we 

need the convexity of some limit functions which we obtain as a 

corollary to the next proposition. 

Proposition 2.17. Suppose that {C~,VENI i s  a filtered collection 

of convex subsets of a linear topological space. Then Li Cv is 

convex. 

Proof. From the definition (1.6) of Li Cv, it follows that 

x E L i  Cv if and only if to every neighborhood V of x, there cor- 

responds HEff such that for all v E H  

Now take xO,xl E Li Cv and for X E [O, l] define 

h 
We need to show that if V' is a neighborhood of x , there exists 
X X H E H  such that C v n v # g  for all v E H  . Define 



and 

These are neighborhoods of xo and x1 and thus there exist HO and 

X 0 1 H' such that (2.18) is satisfied. Let H = H nH . Since H is 

X a filter, H E H and clearly for all v E H' we have that 

1 voncV#fl and v ncv+0 , 

from which it follows that for all v EH X 

because all the Cv are convex. 

Corollary 2.19. Suppose t h a t  {fv,vE~l i s  a  f i l t e r e d  c o L Z e c t i o n  

o f  convex  f u n c t i o n s  d e f i n e d  on t h e  L inear  topoZogicaZ space  ( X , ' r ) .  

Then lsrfv i s  a  convex  f u n c t i o n ,  and i f  t h e y  e x i s t  so  a r e  lm,fv 

and lm fv. 

P r o o f .  Recall that a function is convex if and only if its epi- 

graph is convex. Thus the convexity of 1s f follows from (1.11) 
'r v 

and Proposition 2.17 since by assumption all the {epi f VEN) v 

are convex. The rest follows from the facts that if they exist 

1mT = IsT and lm = lml. 



Note however t h a t  i n  g e n e r a l  li f  i s  no t  convex, a l though 
'r v  

t h e  f v  a r e  convex. Consider ,  f o r  example X = R ,  T t h e  n a t u r a l  

( o r  t h e  d i s c r e t e )  topology and f o r  k = 1 , 2 ,  ... t h e  f u n c t i o n s  

and 

Then c l e a r l y  l i T f v  i s  no t  convex, s i n c e  



Proposition 2.20. Suppose t h a t  {fv,vE~} i s  a  f i l t e r e d  c o l l e c t i o n  

o f  convex  f u n c t i o n s  d e f i n e d  on  t h e  l i n e a r  topoZogicaZ space  X. 

Moreover suppose  t h a t  e i t h e r  -(I. < lm f e x i s t s  o r  t h a t  -@ < lm f T v v 

e x i s t s  and i s  T - t . s c .  . Then t h e  c o t l e c t i o n  {fv,v EN} i s  T-equi- 

2 . s ~ .  i f  and o n l y  i f  i t  s a t i s f i e s  (dp) and (-d ), w i t h  t h e  same C 

r e f e r e n c e  s e t  D. 

Proo f .  Since (-d) implies (-dc) , the only thing to prove is the 

converse in the presence of (d ) ,  convexity and the existence of 
P 

a limit function. From the proof of Theorem 2.3, with a = l ,  we 

see that (d ) implies that li fv < liTfv and that 1s fv < lsTfv 
P - - 

on D. Similarly that (-d ) yields the same relations on x\cl D. 
C 

Combining these inequalities with (2.13) and (2.14), we have that 

(dp) and (-dc) imply that 

(2.21) liTfv = li fv and lsrfv = Is fv 

on X\Q, where Q = cl D\D. Moreover, in view of Corollary 2.19, 

Is f is always convex and so are lm f and lmTfv if they exist. 
T V V 

If < f = lm fv exists and is T - l s c .  it follows from the 

above that f = Is f = li f on x\Q. Convexity also yields the 
T V T V 

equality on Q. We argue this by contradiction. Suppose to the 

1 contrary that for some x g Q  

0 Take x ~ d o m  f c D, and without loss of generality, assume that 
0 1 

f(x ) = 0. Given any E > 0, GtGT(x ) ,  H E H ,  the definition of 

liT yields v s H  and y EG such that 
E E 



For X E  [O,11, define 

The convexity of the fv, implies that 

Now note that for any fixed X E [Of 1 ] , xX = (1 - A) xO + Xx' is a limit 

point of the filtered collection {x 1 
(H,G)EHxGT(x)I H,Gf 

. Hence, 

we have that for every X E [Of 1 [ 

Let X 1.1. From the lower semicontinuity of f we get that 

i f(x ) - <a, contradicting our working hypothesis. And thus we have 

shown that lmTfv = lm fv = on X, and hence the collection is T- 

equi-l.sc. as follows from Theorem 2.10, with a = I . 
On the other hand, if f = lmTfv exists and the collection of 

convex functions {f VEN} satisfies (d ) and (-dc) with respect v' P 
to D (necessarily containing dom f) , it follows from (2.21 ) that 

on X\Q, 

Corollary 2.6 implies that D 3dom lmTfv and thus lmTfv = +a on 

Q. By (2.13),on all of X we have that 

f = l m f  < li fv < 1s fv , 
T V -  - 



from which it follows that on Q, f = li f = Is fv = +m . Thus v 
we have shown that on all of X, lmTfv = f = lm f 

V . Again with 

o = I Theorem (2.10) then yields the T-equi-l.sc. of the fv . 0 

When X is a reflexive Banach space and the {f , v € N )  are con- 
V 

vex, the original definition of T-equi-l.sc., as given in ~alinetti 

and Wets (1977), coincides with this weakened version involving 

(dp) and (-dc). Condition (a) of Salinetti and Wets (1977) is 

precisely (d ) . In general (-d ) implies (y) of ~alinetti and 
P C 

Wets (1977) and because the closed balls of a reflexive space are 

weakly compact (y) implies (-dc) . Condition ( 8 )  of Salinetti and 

Wets (1977) is automatically satisfied if the functions f converge 
v 

pointwise (Salinetti and Wets, 1977, Lemma 2.ii) and it is implied 

by (d ) and (--dc) if the f epi-converge. Thus, Theorem 1 . , 2. 
P 

and 3. of Salinetti and Wets (1977) are special cases of Theorem 

2.15 and Corollary 2.16. 

I11 THE HYPERSPACE OF CLOSED SETS 

Let (Y,Q) be a topological space. In this section we have 

collected some facts about the ( h y p e r ) s p a c e  of closed subsets of 

Y equipped with the topology of set-convergence, as defined by 

(1.8). This turns out to be a variant of the Vietoris finite top- 

ology, at least when (Y,Q) is separated (Hausdorff) and locally 

compact. The results found in this section can be extracted from 

articles by Choquet (1 947-48) , and by Michael (1 951 ) aqd from the 

book by Kuratowski (1 958) . 
By FYI or simply F if no confusion is possible, we denote 

the h y p e r s p a c e  o f  c l o s e d  s u b s e t s  of Y. The topology T on F is 

generated by the subbase of open sets: 
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{ F K , K  E K I  and { F G f ~  E GI 

where K and G are the hyperspaces of compact and open subsets of 

Y respectively, and for any Q C Y .  

and 

Proposition 3.1. Suppose t h a t  Y i s  separated and l o c a l l y  compact, 

{ c V , v  EN} i s  a  f i l t e r e d  c o l t e c t i o n  o f  s u b s e t s  o f  Y, and C C Y  i s  

c lo sed .  Then 

(i) C C L i  C v  i f  and o n l y  i f  t o  every  G E G  such t h a t  

C nG # fl, t h e r e  corresponds HG E H such t h a t  for 

every  vEHGl  C v n G # f l  . 

(ii) C 2 L s  C v  i f  and o n l y  i f  t o  eve ry  K E K  such 

t h a t  C nK = Jd , t h e r e  corresponds H K  E H such 

t h a t  for every  V E H ~  , C , E K  = Jd . 
t Moreover C = Lm C v  i f  and o n l y  i f  C = T-lim C v  . 

Proof. It will be sufficient to prove (i) and (ii) since the 

last assertion follows immediately from (i) and (ii) and the con- 

struction of T. 

. .  Suppose first that x E C ,  then C n G # g  for all G E G q ( x ) .  

The "if" part of (i) , implies that C v  nG # j3 for all v EHG with .. 
H G € H .  Every H I  in H meets every H E H  and hence 

. . 
for every H E  and G E G  ( x )  . Thus for every H E  14, x E C ~ ( U ~ , = ~ C ~ )  

11 - 
and consequently by (1 .5)  x E L i  C v ,  i.e., C C L i  C v .  



I f  C C L i  C v ,  t h e n  C n G  f J3 i m p l i e s  t h a t  G n (nfiEi;cl (UvEH c ) ) # % I  

i . e . ,  f o r  e v e r y  H E ;  

o r  e q u i v a l e n t l y  t h e r e  e x i s t s  HGE 14 s u c h  t h a t  f o r  a l l  vEHG,CV n~ 2 8 ,  

a g a i n  b e c a u s e  14 c o n s i s t s  o f  a l l  t h e  s u b s e t s  o f  N t h a t  meet  e v e r y  
. . 

set  i n  14. T h i s  c o m p l e t e s  t h e  p roof  o f  (i) . 
Suppose t h a t  x E L s  C v ,  t h e n  f o r  e v e r y  H E h ,  x E c l ( U  C 1, VEH V 

c f .  ( 1 . 6 ) .  I f  x g C ,  by l o c a l  compactness  o f  Y ,  t h e r e  i s  a compact 

ne ighborhood K o f  x s u c h  t h a t  K n C  = JJ. The " i f "  p a r t  o f  (ii) 

t h e n  i m p l i e s  t h a t  K ~ ( u  C ) = f o r  some HKEH, i .e . ,  
vEHK v 

fz c1 ("vEHK C v )  
c o n t r a d i c t i n g  t h e  a s sumpt ion  t h a t  x E  Ls Cv.  

Now suppose  t h a t C 3 L s C  C n K  = pl, b u t  f o r  e v e r y  ~ ~ f f  w e  
v  

c a n  f i n d  v such  t h a t  Cv  n K f 8, i .e . .  t h e r e  e x i s t s  Y 'E  H s u c h  t h a t  

Cv nK f JJ f o r  e v e r y  v E H ' .  S i n c e  K i s  compact .  it f o l l o w s  t h a t  

t h e  {C ~ K , V E H ' )  admi t  a t  l e a s t  o n e  c l u s t e r  p o i n t  x E K .  Then f o r  v 
e v e r y  H E II 

X E C ~ ( U  c V )  n~ , VEH 

and c o n s e q u e n t l y  X E  L s C v  nK. But t h i s  c o n t r a d i c t s  t h e  a s sumpt ion  

t h a t  C > L s  C . v 

Thus T i s  i n d e e d  t h e  t o p o l o g y  o f  s e t - c o n v e r g e n c e  as  d e f i n e d  

i n  S e c t i o n  I. The n e x t  P r o p o s i t i o n  y i e l d s  t h e  p r o p e r t i e s  o f  

( F ,  T )  t h a t  are needed i n  t h e  s e q u e l .  

P r o p o s i t i o n  3 . 2 .  Suppose t h a t  Y i s  s e p a r a t e d  (Hausdorff)  a n d  20-  

caZZy compact.  Then ( F , T )  i s  r e g u l a r  and  compact.  



G 
Proof. By construction the sets IFK;KEK} and {F ;GEG} are the 

complements of open (base) sets, and thus are closed. In partic- 

ular, this implies that singletons are closed, since 

G = Y\F is open. 

To see that (FIT) is separated, let F1 and F2 be two subsets 

of F such that F1 # F2 . Then there is some y that belongs to F 1 

but not to F2 (or vice-versa). Since Y is locally compact by as- 

sumption and F is closed, there exists KO, an open precompact 2 

neighborhood of y, such that K = cl KO is disjoint of F2. Iience 

F, E F K ~  and F 2 ~ ~ "  . 

The compactness of (FIT) follows from ~lexander's character- 

ization of compactness in terms of the finite intersection prop- 

erty of a subbase of closed (hyper)sets. Suppose that 

(3.3) G -  
(niEI t FK " (njE JF J ) = B 

i 

where KieK, G . E G  and, I and J are arbitrary index sets. We 
3 

must show that the family of sets {Kit i € I  ; G  ,j EJ} contains 
j 

a finite subfamily that has an empty intersection. Let G = 

G and note that GEG. Now observe that (3.3) holds if and 'j€J j 

only if 

or still, if and only if for some io €1, F~ n F~ = 0 , or 
i 0 



equivalently, if and only if there exists io € 1  such that 

But K. is compact and thus the open cover {G , j  EJ) contains a 
10 j 

finite subcover (G. ,..., G . Hence (3.3) holds if and only if 
J 1 Jq 

Since (F, T )  is compact and separated, it is a.lso regular. 

IV COMPACTNESS CRITERIA FOX SPACES OF SEMICONTINUOUS FUNCTIONS 

The relationship between pointwise- and e -limits through 
T 

equi-semicontinuity suggests a number of compactness criteria for 

spaces of semicontinuous and continuous functions, the celebrated 

~rzels-~scoli Theorem being a special case of these. Our approach 

in fact provides an unconventional proof of this classical result. 

Although a few of the (weaker) subsequent statements remain 

valid in a more general setting, we shall assume henceforth that 

the domain-space (X,T) is separated and locally compact. Let SC(X) 

be the space  o f  T - Z . s c .  f u n c t i o n s  with range i? and domain X. The 

elements of SC(X) are in one-to-one correspondence with the ele- 

ments of E, t h e  hyperspace  o f  e p i g r a p h s ,  i.e. the closed subsets 

E of Y = X  x R such that (x,a) E E  implies that (x,b) E E  for all b >a. - 
Note that ( f l } ~ E  and corresponds to the (continuous) function 

f a  +a. E is a subset of FYI the hyperspace of closed subsets of 



P r o p o s i t i o n  4 . 1 .  Suppose t h a t  (X,T) i s  s e p a r a t e d  and l o c a l l y  com- 

p a c t .  Then E C F y  i s  compact w i t h  r e s p e c t  t o  t h e  T t o p o l o g y .  More- 

o v e r  t h e  T - r e l a t i v e  t o p o l o g y  on E can be g e n e r a t e d  by  t h e  subbase 

o f  open s e t s :  

and 

{ E  G I a  . ; G € G X , a € 8 }  , 

where f o r  any Q CX and a  E  i? 

and 

Proo f .  Suppose F  E Fy\ E ,  t h e n  t h e r e  e x i s t s  x  E X  and a  < b  such  

t h a t  ( x , a )  E F  b u t  ( x , b )  eF. The l o c a l  compactness o f  X y i e l d s  

an  open precompact s e t  KO such t h a t  

w i t h  K = c l  KO and 0 < E: < b  - a ,  i s  an open neighbourh,ood of  F  t h a t  

does  n o t  c o n t a i n  any ep ig raphs .  Thus F \ E  i s  open o r  e q u i v a l e n t l y  

E i s  c l o s e d .  S i n c e  F i s  compact,  s o  i s  E. 

To see t h a t  t h e  T - r e l a t i v e  topo logy  on E can  b e  gene ra t ed  

t h e  subbase  d e s c r i b e d  above,  n o t e  t h a t  t h e  t o p o l o g i c a l  p r o p e r t i e s  

o f  y  = X x R imply t h a t  t h e  sets of t h e  t y p e  



and 

a l s o  a r e  a  subbase  f o r  T on Fy.  The r e s t r i c t i o n  o f  t h i s  s u b b a s e  

t o  E, y i e l d s  

and 

Combining P r o p o s i t i o n s  3.2 and 4.1 w e  g e t :  

C o r o l l a r y  4.2. The t o p o l o g i c a l  space (E,T) i s  r e g u l a r  a n d  compact.  

From P r o p o s i t i o n s  1.9, 3.1 and 4.1, w i t h  eT t h e  t o p o l o g y  o f  

ep i -convergence  i n  SC(X) , we a l s o  g e t :  

C o r o l l a r y  4.3. The t o p o l o g i c a l  space  (SC ( X )  , e ) i s  reguZar  
T 

a n d  compact .  

The above i m p l i e s  t h a t  any c l o s e d  s ' u b s e t  o f  SC i s  compact.  

I n  p a r t i c u l a r ,  n o t e  t h a t  f o r  any a E R  and DCX, t h e  set  

i s  compact.  To s e e  t h i s  s imply  o b s e r v e  t h a t  { f  E sc ( f  ( x )  < a )  - 
i s  c l o s e d  s i n c e  it c o r r e s p o n d s  i n  E t o  t h e  T-c losed set  



Also, for any a E R  and any open GEX, the set 

is closed since it corresponds in E to the T-closed set 

We have just shown that: 

Corollary 4.4. A n y  bounded coZZec t ion  o f  T-2. s c .  f u n c t i o n s  i s  

a  compact s u b s e t  o f  (SC (x) ,eT) . 
The topological space (SC,p) is the space of T-l.sc. functions 

equipped with the topology of pointwise convergence. We already 

know that neither pointwise nor epigraph-convergence implies the 

other. However, in view of Theorem 2.15, these topologies coincide 

on T-equi-l.sc. subsets of SC: 

Definition 4.5. A set A c SC (X) is equi -2 .  s c .  if there exists a 

set D c X such that 

(dSC) 
given any x ED, to every E > 0, there corresponds 

V  E G (x) such that for every f in A 
T 

and 

("dSC) given any x @Dl to every a ER there corresponds 

V E G  (x) such that for all f in A ,  
'I 



Theorem 4.6. Suppose t h a t  (X,T) i s  s e p a r a t e d  and l o c a l l y  compact .  

Then any T-equi -2 .  s c .  f ami ly  o f  T - 2 .  s c .  f u n c t i o n s  c o n t a i n s  a  ( f i l -  

t e r e d )  s u b f a m i l y  c o n v e r g i n g  p o i n t w i s e  t o  a  T - l .  s c .  f u n c t i o n .  

Moreover, i f  t h e  fami ly  o f  f u n c t i o n s  i s  bounded,  it c o n t a i n s  a  

s u b f a m i l y  converg ing  p o i n t w i s e  t o  a  bounded T-l. s c .  f u n c t i o n .  

Proof .  As follows from Theorem ( 2 . 1 5 ) ,  for T-equi-l.sc. subsets 

of SC(X), the ?-closure or e -closure coincide. The first state- 
T 

ment then follows from Corollary 4.3 and the second from Corollary 

Every property derived for (SC(x),eT) has its counterpart 

in (-SC(X),-eT), the space of T-upper  s e m i c o n t i n u o u s  f u n c t i o n s  

(T-u.sc.) with the topology -e of hypo(graphl-convergence. In 
T 

particular, (-SC(X),-e ) is compact and any bounded subfamily is 
T 

precompact. And thus, any T-equ i -u .  s c .  family of (bounded) u. sc. 

functions contains a subfamily converging pointwise to a (bounded) 

T-u.sc. function. 

Given {fv,vEN} a filtered collection of functions, the 

-e - l i m i t  i n f e r i o r  is -(lsT-fv) and the - e T - l i m i t  s u p e r i o r  is 
T 

( 1 - f ) .  The hypographs of these functions being precisely 

L i  hypo fv and Ls hypo fv. We always have that 

and 

1s f <ls fv = -(li-fv) <-(liT-fv) . 
T V -  - 

re.\ 
i 

In each one of the preceding expressions, the first (second resp. ) 

inequality becomes an equality if the collection is T-equi-l.sc. 

(T-equi-u.sc. resp.). 



Let C ( X )  = SC (X) n - S C  (X) be the space of continuous extended- 

real valued functions, te the join of the two topologies eT and 
'I 

-e and again p the topology of pointwise convergence. In general 
'I 

(C(x),+e ) is rot compact but as we shall see, its equi-continuous 
T 

subsets are precompact. A subset A c C (x) is e q u i - c o n t i n u o u s  if it 

is both 'I-equi-l.sc. and 'I-equi-u.sc. with the same reference set 

D being used in the verification of the equi-sc. conditions. (Note 

that necessarily D must be open.) 

Proposition 4.7. Suppose t h a t  X i s  s e p a r a t e d  and ZocaZZy 

compact.  Then A c C(X) i s  precompact ( w i t h  r e s p e c t  t o  + E  ) i f  and 
2 

o n l y  i f  i t  i s  e q u i - c o n t i n u o u s .  

Proo f .  If A is equi-continuous, it is equi-l.sc. and hence every 

subset of A contains a filtered family {f V E N ~  such that lm,fv v' 
= lm fv, but by assumption the {fv.v€~l are also equi-u.sc. and 

thus contain a subfamily (a finer filter on N) such that 

from it follows that A is precompact. 

On the other hand, if A is not equi-continuous, then assume 

for example, that 'I-equi-lower semicontinuity fails. This means 

that for some collection of functions {fv,v EN} and some x, we 

have that 

(lm f ) (x) < (li fv) (x) = -(ls-fv) (x) < -(lsT-fv) (x) . 
'I V - 

Hence there is obviously no subcollection of the {fvl whose hypo- 

graphs converge to lm,fv, since at x the -eT-limit inferior of 

the {fvl is strictly larger than (lm f ) ( x )  . Thus A cannot be 
'I V 

precompact . 



Finally, we consider the space C(X) of continuous real-valued 

functions with the topologies +e p and II 1 1 ,  the last one being 
T I  

the sup-norm topology induced by the pseudo-norm defined by 

This pseudo-norm induces a topology on C, The fundamental system 

of neighborhoods of an element f is defined by the sets 

{g E C ( 11 f - g I( < a with a > 0. Note that if X is compact, then 

11 - 1 1  is a norm on C (X) and the topology II ll c+-e as can easily be 
T 

verified. In general however these two topologies are not com- 

parable. 

Theorem 4.8.  Suppose t h a t  X i s  s e p a r a t e d  and ZocaZZy compact and 

A CC(X) i s  e q u i - c o n t i n u o u s  and bounded. Then A i s  t eT-precompac t .  

Proo f .  This follows from the fact that bounded subsets of SC(X) 

and -SC(X) are eT and -e -compact respectively, cf. Corollary 4 .4 .  
T 

As in Proposition 4 .7  equi-continuity providing the link between 

the limit functions. 

Corollary 4.9.  (Arzel6-Ascoli) Suppose t h a t  X i s  s e p a r a t e d  and 

compact.  Then A i s  precompact ,  w i t h  r e s p e c t  t o  t h e  t e , - topo togy ,  

and c o n s e q u e n t l y  w i t h  r e s p e c t  t o  t h e  11-II t o p o t o g y ,  i f  and onZy i f  

A i s  e q u i - c o n t i n u o u s  and bounded. 

Sufficiency follows from Theorem 4 . 8 .  The necessity of equi- 

continuity is argued as in Proposition 4 . 7 .  Finally, if A is un- 

bounded, there exist {fv, v g N} and {xv,v EN} such that fv (xv) +-a 

(or ++a). The compactness of X implies that the family {x~,VEN) 

admits an accumulation point, say x .  Then (li f ) (x) = -m (or 
T v 

-(li -f )(x)= +a) and hence the -+e -closure of A can not be in 
T 

C (X) if A is unbounded. 



APPENDIX 

There is an intimate connection between the semicontinuity 

properties of multifunctions and the convergence of (filtered) 

families of sets. The appendix is devoted to clarifying these 

relations; most of this can be found in one form or another in 

Choquet (1947-1948) or Kuratowski (1958). 

A map r with domain Y and whose values are subsets of X (pos- 

sibly the empty set) is called a multifunction. The graph of I' is 

grph r = { ( ~ , X ) E Y ~ X ~ X E ~ ( ~ ) }  8 

We recall that the image of A C Y  is TA = u T(y) and the pre- 
YEA 

image of B C X  is r - ' ~  = {y~YIr(y) n ~ = 0 )  . 
A neighborhood base B(yo) of yo EY is a filter base on Y. 

A multifunction r is said to be upper semicontinuous (u.sc.) at 

yo whenever 



0 0 or equivalently if to each x @ T ( y  ) we can associate neighborhoods 

Q of xO and W of yo such that TW nQ = 0 . Note that I. is u.sc. 

(at every y) if and only if grph r is closed. 

In the literature one can find a couple of closely connected 

defintions of upper semicontinuity. A multifunction r is said to 
0 be K-u.sc. at y , if to each closed set F disjoint of T(yo) there 

corresponds a neighborhood W of y  such that TWnF=$, or equi- 
0 

valently if to each open set G that includes T(yo) there corres- 

ponds a neighborhood W of yo such that TWCG . If X is regular, 
then T closed-valued and K-u.sc. at yo implies r u.sc. at yo. 

If X is compact and r is closed-valued at yo then both notions 

coincide. 

A multifunction is said to be C-u.sc. at yo, if to each com- 

pact set K disjoint of T(yo) there corresponds V a nei~hborhood 

of yo such that T v ~ K = ~  . Obviously u.sc. implies C-u.sc. . 
The converse can be obtained with anyone of the following assump- 

tions 

(i) X is locally compact, 

-1 (ii) . is K-u.sc. at every x (for example, if f = Y + X  0 
- 1 is a continuous function and T = f , then T-' is 

K-U.SC.) , 

(iii.) X is metizable, 
Yo has a countable neighborhood base 

and Tyo is closed, cf. Dolecki (1980). 

The proof of the last assertion proceeds as follows: 

Suppose that r is not u.sc. at yo. Then there exists xo & Ty and 
0 

neighgorhood bases { ~ ~ , v = 1 , 2 ,  . . . I  of xo and {Wv,V=l,2, . . . I  of 

Yo such that for all v , 



because Tyo is closed, and for all v 

because I' is not u.sc. at yo. For every v, pick x ErNVnQv. 
V 

 he set K = {x 1,~2,...,~ 1 CX is compact (every subsequence con- 0 

verges to x ) and disjoint of I'yo but meets every rW . This con- 
0 

tradicts the C-u.sc. of I' at yo. 

A multifunction is lower  semicon t inuous  ( 2 . s c . l  at yo if 

where B ( ~  ) is the grill associated to the filter base B(yo), or 
0 

equivalently if I'-'G is a neighborhood of yo whenever G is an open 

set that meets r(yo) . 
For a given set XI we denote by P(X) the power set of X, 

i.e., the hyperspace containing all subsets of X, by F(X) = F 

the hyperspace of closed subsets of X, and oF=F'\ ID}. We now 

consider the multifunction A from P(X) into X defined by AQ=Q. 

We have that A - ~ A  = {Q(Q nn#J3} and (A-~A)' = {F~F CA'} . 
We restrict A to F. The sets {A-'G,G open} form a subbase 

for a topology on F(but not for F). Similarly, the collection 
0 

{ (A-'K) ,K compact } constitutes a subbase for another topology 

on F. The supremum of these two topologies yields a topology T 

on F. It is the coarsest topology for which A is both l.sc. and 

C-u.sc. The topology V ,  the V i e t o r i s  t o p o l o g y ,  on F has a subbase 

-1 c consisting of the collections {A-~G,G open} and ( A  F) ,F closed}. 

It is the coarsest topology for which the multifunction A : Fz X 
is 1,sc. and K-u.sc. . 

-35-  



NOTES 

1 .  When convergence  i n  t h e  -c t o p o l o g y  c a n  b e  d e f i n e d  i n  terms 

o f  s e q u e n t i a l  convergence ,  t h e  l i m i t  f u n c t i o n s  c a n  a l s o  b e  

o b t a i n e d  a s  f o l l o w s :  l e t  N = { 1 , 2 , . . . } ,  t h e n  

( l i T f V )  ( x )  = i n f  l i m  i n £  f v  (x,,) 
{vP} C N  

PEN 1.I 

ana  

( l s T f v )  ( X I  = i n f i x  l i m  s u p  f v  ( x v )  , 
v  v  

where i n  t h e  f i r s t  e x p r e s s i o n  t h e  i n f i n u m  i s  o v e r  a l l  sub-  

sequences  o f  f u n c t i o n s  i f v  , P E N }  and a l l  sequences  {x , P E N }  
1-I 

P 
converg ing  t o  x .  

2. A f u n c t i o n  f  from X t o  R i s  -c/o-Z.sc. i f  ( d )  and (-d) h o l d  

w i t h  U=dom f  and f v = f  f o r  a l l  v E N .  I f  T > a  t h e  c o n c e p t  i s  
-X 

i s  e s s e n t i a l l y  m e a n i n g l e s s  s i n c e  t h e n  any f u n c t i o n  ~ E R  i s  

t h e n  -c/o-1. s c .  . I f  a  IT, t h e n  f  i s  -r/ct-2. s c .  id and o n l y  i f  

T - c l ( a - c l  e p i  f )  = a-cl. e p i  f  . I n  p a r t i c u l a r  i f  a =  I t h e n  

T / I - l . s c .  c o r r e s p o n d s  t o  t h e  u s u a l  n o t i o n  o f  T - l . s c .  . 
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