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APPLICATIONS SOFTWARE AND ORGANIZATIONAL CHANGE: 
ISSUES I N  THE REPRESENTATION OF KNOWLEDGE 

Ronald M .  Lee 

I .  THE PROBLEM: SOFTWARE FOR ORGANIZATIONAL CHANGE 

It is a commonplace observation that  organizations, to survive, must adapt 

to changes in their environment. Those that  do not are forced out of business, if 

they are companies in a competitive market;  have their budgets canceled,in the 

case of government bureaucracies; or are overthrown, in the case of govern- 

ments themselves. 

Just how an organization should be designed to accommodate change is, of 

course, a much more difficult mat ter ,  and has been the subject of many volumes 

of organizational theory. 

What I want to examine here is one aspect of this general problem that 

seems to have been neglected, namely the effect of information technology on 

the  organization's ability to adapt and change. 

Certainly, there are numerous clear cases where the installation of a infor- 

mation system adds to the organization's flexibility. For instance, the installa- 

tion of a centralized database may allow data to be accessed and combined in a 



variety of ways that would have been practically impossible whcn  that  data was 

recorded in paper files scattered throughout the company 

The flexibility of a given computer application obviously depends on the 

foresight of its designers. To this end, programming students are generally 

taught to seek the most general definition of the problems they are given so that  

the  resulting program can handle not only the immediate problem but also vari- 

ants of it that  might arise. 

This strategy has obvious limitations. In seeking to find a generalized solu- 

tion, the programmer may waste undue amounts of time on conditions that  will 

never arise. (S)he must therefore make a choice as to how much flexibility to 

encode into the program logic. 1 will refer to the level of flexibility chosen as the 

"designed flexibility" of the system. 

Selecting the appropriate level of designed flexibility is, however, difficult 

and, almost certainly, new requirements will later arise that were not planned 

for originally, so that  the program must be modified. This is where the  problem 

arises. 

Anyone who has written even small programs will know that  it is much 

easier to incorporate a given feature in the program logic in its original writing 

rather than try to add this feature afterwards. T h s  difficulty rises exponentially 

with the complexity of the original program or system. (By "system." I mean a 

collection of programs and data files with interdependent functions.) Indeed, 

the cost and effort of modifying such systems often exceeds that  of their origi- 

nal development. For instance, Wulf (1977) refers to: 

the extreme difficulty encountered in attempting to modify 
a n  existing program. Even though we frequently believe that  
we know what we will want a piece of software to do and will be 
able to specify if precisely, i t  seems to be invariably true that  
after we have it we know better and would like to change it. 
Examination of the  history of almost every major software 



system shows that so long as it is used it is being modified! 
Evolution stops only when the system is dead. The cost of 
such evolution is almost ncver mcasurcd, but,  rn a t  lcast one 
casc, it excecdcd the original dcveloprnent cost by a factor of 
100. 

Altering existing computer systems is not only expensive, it is also risky. 

De Millo, e t  al. (1979) noted: 

"Every programmer knows that  altering a line or sometimes 
even a bit can utterly destroy a program or mutilate it in 
ways we do not understand and cannot predict . . ."  

Indeed, beyond expense and risk, there seems to be an  eventual limit to the 

number of modifications these systems can undergo. Winograd (1979) remarks 

"Using current programming techniques, systems often reach 
a point a t  which the accretion of changes makes their struc- 
ture so baroque and opaque that  further changes are  impossi- 
ble, and the performance of the system is irreversibly 
degraded." (p.392) 

To summarize, the basic problem with current application systems is tha t  

they are "brittle;" i .e . ,  they cannot easily be reformed to adapt to changing cir- 

cumstances. This brittleness has profoundly disturbing consequences as more 

and more organizations, ranging from small and medium size companies to 

immense governmental agencies, convert their information processing to com- 

puter  software. The immediate gains of increased efficiency, speed of process- 

ing, rapid access to centralized data files, e tc . ,  are clear (or the investment 

would not be justified) 

However, there may be a long term,  possibly devastating hidden cost as the 

organization finds its ability to adapt and respond to new environmental condi- 

tions hampered by its inability to modify its information systems accordingly. 



11. ANOTHER PROBLEM: TRANSPORTABILITY OF KNOWLEDGE 

I will use the term "application system" (or sometimes simply "application") 

to refer to a computer system composed of various programs and data files 

which together perform some identifiable organizational task-e .g . ,  sales order 

processing, inventory control, etc. The focus will, therefore, be on the software 

that  deals directly with the organization's operations and not, e .g. ,  operating 

systems etc. ,  which service the internal operations of the computer. 

Applications software of this sort is by and large custom made for each 

organization usually by an  in-house data processing (DP) department. More 

importantly, these applications are typically written "from scratch." That is to 

say, they do not make use of previously developed program code pertinent to 

the problem domain. 

The exception to this is the use of "off-the-shelf" program packages and, 

occasionally pre-written subroutines which the new program can call a t  the 

appropriate point. 

For instance, numerous packages exist to do statistical analyses and quan- 

titative algorithms and are used quite frequently in scientific applications. Like- 

wise, off-the-shelf packages exist to do such organizational tasks as payroll pro- 

cessing, inventory control, etc. This latter class of pre-written software has, 

however, been less successful. 

The problem, once again, has to do with the "designed flexibility" of the 

package. In scientific applications, the contexts in which a particular analysis 

or algorithm is used is relatively well specified. For instance, in any application 

of a linear programming algorithm one must specify the objective function, con- 

straints and technological co-efficients and one receives as  a result, the values 

of the decision variables. For most organizational applications, however, the 



problems are less standardized. Probably the most regular of these is payroll 

processing, but even there considerable variations may exist from one firm to 

another as to benefits to be added, automatic deductions, classifications of 

labor, etc.  

In order to  make use of an  off-the-shelf package for such applications, the  

particular characteristics of the organization's problem must fall within the  

designed flexibility of the package. When this does not occur the DP department 

may sometimes try to modify the package. However, the general experience is 

tha t  it is usually easier and more reliable to re-program the whole thing from 

scratch.  

I will refer to this aspect of application software development as the prob- 

lem of "transportability of knowledge" from one application to another. As 

observed, this is generally a n  all or nothing proposition. One may transport 

chunks of knowledge from one system or program to another only in the case 

tha t  the chunk corresponds to a whole program or subroutine. There seems to 

be no middle ground; that  is, where one could make use of an  arbitrary part  of 

one program function in developing another. 

The consequence of this is that software for organizational information pro- 

cessing is not a smooth evolution; it does not build naturally from previous 

experience. Thus, for instance, after a quarter century of automated payroll 

processing, firms still often have to write new payroll programs. 

By contrast, knowledge in the form of human expertise is easily transport- 

able. For instance, when company X hires a new bookkeeper, it is doubtful X's 

accounting system exactly fits the bookkeeper's training or previous experi- 

ences. However, provided the new person is reasonab1.y competent,  (s)he can 

adapt to the new system af ter  a brief orientation period. The situation with 

applications software is as if  a complete re-education, starting with grammar 



school, would be necessary. 

Let me summarize my arguments thus far. My basic claim is that  a funda- 

mental. problem exists in the basic architecture of applications systems, namely 

that they are too "brittle" and resistant to change. To me,  this has two impor- 

tant  consequences. One, as discussed in the last section, is tha t  as  an organiza- 

tion becomes increasingly reliant on its information system, it too becomes brit- 

tle and unable to adapt easily to new situations. The other consequence, the 

point of this section, applies not just to individual organizations, but to informa- 

tion system technology a t  large: current software a rch tec tu re  does not provide 

the proper framework for a smooth evolution of problem solving capability. We 

are  forced to repeatedly re-invent wheels. Progress (what little can be seen) has 

always been in the form of someone's coming up with a bigger wheel. That this 

is wasteful of money and effort is the smaller part of the problem. The deeper 

difficulty is that  when someone finds an improved method for some organiza- 

tional task, these advances cannot easily be promulgated to other software for 

related tasks. The industry of applications software development thus cannot 

build on its accomplishments, and must  continually re-start from the ground. 

In the sections to follow, I examine the technical reasons why applications 

systems are so brittle. I see this as having two closely related aspects: the first 

arising from the way program logic is structured; the second due to the ways 

data is organized in data files and data bases. An alternative architecture for 

applications software will be proposed that  avoids these problems, albeit not 

without certain costs. 



I l l .  THE: PROULEM WIT11 I-'ItOGTIAMS: 
PROCEDURAL LANGUAGES VS. PRODUCTION SYSTEMS 

Statements in a programming language are in the form of commands to the 

machine--i.e., add t h s ,  move this data from here to there,  print t h s  on the ter-  

minal, etc.  

A computer program is thus a sequence of such statements, e .g. ,  

10 LETX = 2 
20 LET Y = 3 
30 LET Z = X + Y 
40 PRINT Z 

Here, the statements have been numbered for identification purposes. 

Importantly, the ordering of the statements in t h s  program indicates the 

sequence in which the commands are to be performed by the machine 

This otherwise linear sequence of execution can be modified by what are 

called "control statements". Consider, for instance, the program: 

10 LETX= 0 
20 ADD 1 TO X 
30 PRINT X 
40 IF X = 100 GO TO 60 
50 GO TO 20 
60 STOP 

When executed, this program prints the numbers from 1 to 100. Here, 

statements 40 and 50 are control statements. In statement 40, if X has reached 

100, program control jumps to statement 60 where it stops. Otherwise, state- 

ment 50 directs the program control back to statement 20 where X is again 

incremented, printed, etc. 

Thus, the execution sequence in such computer programs normally follows 

the  top to bottom ordering of the statements, except when superceded by the 

effects of control statements. 



Computer languages of this type are called "procedura l . "  These are basi- 

cally the only type used in commercial practice, and include all the well known 

languages for data processing and scientific applications4 .g. ,  COBOL, FORTRAN, 

PL/I, BASIC, ALGOL, etc.  

In these cases, the "knowledge" embodied in the computer program is 

expressed as the specific steps for doing it. A key thing to recognize is that this 

procedurality makes the statements of the program inter-dependent. Generally 

(though not always) changing the order of any two statements makes a serious 

change to the program's operation. 

While it may not be patently obvious from the two tiny examples above, it is 

this inter-dependence that makes computer programs so difficult to modify. 

As a result of an interesting blend of computer science and formal linguis- 

tics, an alternative approach has emerged over the last decade or so. This 

approach is based on so-called "production systems" (PS's) which enable the 

knowledge of the program to be expressed in a form that is independent of its 

execution sequence. 

The concept of production. systems was first proposed by the linguist Post in 

1943 to  aid in the formal specification of natural language grammars. The basic 

idea is extremely simple. A single production is a rule of the form: 

IF <pattern> THEN <action>, 

or, in the more usual notation, 

A production system consists of a "data base" and a collection of such produc- 

tion rules. (Ths  is a database in a fairly restricted sense, not to be confused 

with those maintained by database management systems.) 



The pattern in each rule is some condition to be matched by the database 

and the action is typically some modification to the database. In the "purest" 

form of a production system, the rules are arranged in a linear order. Starting 

from the beginning the patterns are compared to the database until a successful 

match is found. The corresponding action is then performed and the process is 

then repeated, starting once again from the beginning comparing the patterns 

to the database. 

Consider for instance the following example for recognizing a certain type 

of English declarative sentence. 

1 THE -> DET 8 N -> NP 

2 ON -> PREP 9 ADJ NP -> NP 

3 HUNGRY -> ADJ 10 DET NP -> NP 

4 BIT -> VT 11 PREP NP -> PP 

5 DOG -> N 12 VT NP -> VP 

6 CAT -> N 13 VPPP -> VP 

7 NECK -> N 14 NPVP -> S 

The production rules on the left represent a "lexicon" indicating the gram- 

matical categories of various words. The rules on the right indicate the  gram- 

mar  proper. When the terminal symbol "S" is reached, the sentence is accepted 

as grammatical. Thus, suppose we have the following sentence: 

"The hungry dog bit the cat on the neck." 



This is analyzed as follows: 

DET ADJ N VT DET N PREP DET N Rules 1-7 

DET ADJ NP VT DET NP PREP DET NP 3 x rule B 

DET NP VT DET NP PREP DET NP 1 x rule 9 

NP VT NP PREP NP 3 x rule 10 

NP VT NP PP 1 x rule 11 

NP VP PP 1 x rule 13 

S 1 x rule 14 

The initial application of production systems in computer science were in 

the area of compiler theory, i .e. ,  in specifying the syntax and interpretation of 

programming languages (as opposed to  natural languages). Subsequently, it has 

been recognized that PS's have a potential much broader range of usefulness. 

For instance, one classic application was the Logical Theorist of Newell, Shaw 

and Simon (1963). Beginning with the initial axioms and rules of inference of 

Russell and Whitehead's Principa Mathematics, the Logical Theorist successfully 

proved all the theorems of this massive text.  Indeed, in several cases it found 

original proofs, simpler than the original. 

Another famous example of the use of production systems was Shortliffe's 

MYCIN system (1976). The purpose of MYCIN is to perform medical diagnosis. In 

this case, the database is the patient's symptoms, as revealed by various labora- 

tory tests, etc. The production rules are  thus the sort of medical deductions a 

doctor might make based on these symptoms. Within the area of Artificial Intel- 

ligence (A]) numerous other applications of production systems have been 

explored. 

Davis and King (1 975), is an  excellent survey article on production systems, 

comment on the types of applications where PS's are best suited: 



where the emphasis of a task is on recognition of large 
numbers of distinct s tates,  PS's provide an advantage. In a 
procedurally-oriented approach, lt is both difficult to organ- 
ize and troublesome to update the repeated checking of large 
numbers of state variables and the corresponding transfers of 
control.. . . 

[PS's are] characterized by the principle that "any rule can 
fire a t  any time," whch  emphasizes the fact that a t  any point 
in the computation, any rule could possibly be the next to be 
selected, depending only on the state of the database a t  the 
end of the current cycle. Compare this to the normal situa- 
tion in a procedurally oriented language, where such a princi- 
pal is manifestly untrue: it is simply not the case that,  
depending on the contents of the database, any procedure in 
the entire program could potentially be the next to be 
invoked. 

PS's therefore appear to be useful where it is important to 
detect and deal with a large number of independent states, in 
a system which requires a broad scope of attention and the 
capability of reacting to small changes. 

With regard to the ease of modification of PS's, they continue (p.20): 

We can regard the m o d u l a r i t y  of a program as the degree of 
separation of its functional units into isolatable pieces. A pro- 
gram is h i g h l y  m o d u l a r  if any functional unit can be changed 
(added, deleted, or replaced) with no unanticipated change to 
other functional units. Thus program modularity is inversely 
related to the strength of coupling between its functional 
units. 

The modularity of programs written as pure production sys- 
tems arises from the important fact that the next rule to be 
invoked is determined solely by the contents of the database, 
and no rule is ever called directly. Thus the addition (or dele- 
tion) of a rule does not require the modification of any other 
rule to provide for (delete) a call to it. W e  might demonstrate 
t h s  by repeatedly removing rules from a PS: many systems 
will continue to display some sort of "reasonable" behavior, 
up to a point. By contrast,  adding a procedure to an  ALGOL- 
like program requires modification of other parts of the code 
to  insure that  it is invoked, while removing an arbitrary pro- 
cedure from such a program will generally cripple it . . .  

Thus where the ALGOL programmer carefully chooses the 
order of procedure calls to create a selected sequence of 
environments, in a production system it is the environment 
which chooses the next rule for execution. And since a rule 
can only be chosen if its criteria of relevance have been met ,  
the choice wlll contlnue to be a plausible one, and syst,enl 
behavior remain "reasonable," even as rules are successively 



deleted 

As dcscribcd so far, pattcrn malching procceds from lhe beginning of the 

rule sct  each time until a match is found, in which case that corresponding 

action is taken and the process is repeated. 

However, in the notion of a "pure" PS, each rule supposedly has an  equal 

chance of firing--i.e., its position in the rule set  should not affect its chances of 

firing. 

This only causes difficulty when the patterns of more than one rule match 

the database, in which case a choice must be made which action to take. A 

variety of approaches have been used to resolve such rule contention, for 

instance: 

rule order -- use the first matching rule. 

data order -- data elements are assigned priority: pick the 
rule whose match gives the highest priority. 

generality order -- use the most specific rule 

recency order -- use the most recently executed rule. 

Recall that each rule is matched against the entire database and that two 

simultaneously activated rules may have matches on completely separate parts 

of the database. Clearly, rule contention is only problematic when the firing of 

one rule would disable the database match of the other candidate rule(s). 

Thus, in the "pure form of a PS, all of the rules should be tested against the 

database on each cycle, the subset of matching rules selected, and a choice 

made (by same criterion) which of those should be allowed to fire. 

However, as the  database and/or  number of rules gets large, the system 

degrades for lack of efficiency. 

In face of this, a number of production system implementations have 



allowed some degree of control structure to creep back in. Thus, various stra-  

tegies or "heuristics" have been employed to increase the likelihood that ,  for 

certain contexts, the applicable rules will be found quickly and that  the entire 

rule se t  need not be examined without danger of ignoring an applicable rule. 

Thus, a number of PS implementations exhibit a greater  or  lesser degree of 

"partial procedurality" as production systems augmented with a control struc- 

ture mechanism. The design of such control s tructures,  so as to provide 

efficient search without nullifying the advantages of flexibility offered by the 

basic PS orientation, has become a mat ter  of intense interest and debate within 

computer science (see, e .g. ,  Winograd 1975; Kowalski 1979). 

This is a n  interesting development for the context of this paper since it pro- 

vides a framework for examining various styles of rule organization and manage- 

ment along a c o n t i n u u m  of procedurality, instead of a flat choice between the 

two extremes. 

N .  THE PROBLEM WITH DATA: 
DATA FILES VS. PREDICATE CALCULUS 

Most application software used in organization centers around the  process- 

ing of large amounts of data (as opposed to, for instance, optimization routines 

which are  much more computation intensive on relatively small amounts of 

data). Hence, inflexibilities introduced by the way data  is organized in data files 

and databases are equally (if not more) important than those introduced in the 

design of procedural programs. At any rate,  as will be seen shortly, the prob- 

lems are highly inter-related. 

A note on terminology. In the last section, the term database was used to 

designate the  data repository of a production system. In this section, the term 



dill,abasr! w i l l  bc uscd more in thc sc!nsc associatcd with databasc management 

(DM). Somewhat later I will return to compare the two views at  which point they 

will be distinguished a s  PS databases and DM databases. 

A t  the moment, however, I want to talk about the general view of data main- 

tained in data processing applications, whether this data is accessed through a 

database management system or not. I will, therefore, use the term "data file" 

to indicate a conventional data processing file or a logical segment of a database 

(e.g., the tuples of a single relation in a relational database; the  instances of a 

single record type in a CODASYL database). The term database will then be used 

to refer to a collection of such data files with inter-related subject matter  (e.g.,  

sales file, inventory file, back-order file), whether or not the access to  these is 

coordinated by a DBMS. 

Data files are  usually organized as a rectangular table with labeled columns 

called "fields." For instance, a file on employees might have fields for the 

employee's name, address, age, salary, etc.  

EMPLOYEE FILE 

Sometimes data files have more complicated organizations--e.g., some 

colunlns may have multiple entries for a given data item. This tabular view is 

sufficient for the purposes here,  however. Also, this is the basic view maintained 

I Name I 
Age 

30 

45 

37 

Salary 

20,000 

18,000 

24,000 

Address 

5 Pine Street  

101 Broadway 

3 Park Place 

1 

Adams 

Peters 

Smith 



by lhc more popular dalabase managemcnl models ( i .c . ,  Nclwork, Rclalional) 

Nolc Lhat each dala file has Lhrec lcvels of descriplion: lhe d a t a  file n a m e  

(e.g. ,  EMPLOYEE), the f i e ld  n a m e s  (e.g. ,  NAME, AGE), and the d a t a  v a l u e s  (e.g. ,  

Smith, 37). It is important to note also that  a data file represents a m o d e l  of 

some aspect of the organization, in this case, what are considered to be the 

important features of employees. 

The structure of the data f le  often carries certain implicit information as 

well. Often, as in this example, each row of the data f l e  implies the existence of 

some entity in the environment, in this case an employee associated with the 

company. The converse assumption is also sometimes made, e.g.,  if a person's 

name does n o t  appear in the file, then (s)he is not an employee. 

Other data files, however, might have different existence assumptions. for 

instance a f l e  for parts inventories. 

PART FILE 

This file indicates the identification number (ID#), color, weight (WT) and quan- 

tity (QTY) on hand of various manufactured parts. In this case, each row of the 

file does not imply the existence of a part ,  but only elaborates the features of 

each generic part type. The existence of actual parts is instead indicated by the 

ID# 

3 

12 

7 

T 

Color WT 1 QTY 

R 

B 

W 

10 

8 

13 

200 

65 

0 



QTY field. 

These might be called the existential assumptions associated with a file 

Other assumptions refer to the possible data values that  may appear in a given 

field, e.g., that  SALARY must be less than 50,000. 

The basic point, however, is that the data file structure itself is not 

sufficient to convey all these assumptions. Instead, these appear in the logic of 

the programs that  interpret these data files. Thus, the model of the organiza- 

tion represented in the application system is found not only in the data fYes but 

also in the code of the various application programs. This is a problem that  has 

been recognized for some time in database management, and has led to a 

number of proposals for the separate specification of so called "data base con- 

straints," conditions that the data in the database must always fulfill. Such con- 

straints are maintained in a separate table, and verified by each updating pro- 

gram. However, these approaches do not go far enough. There is a basic prob- 

lem that  remains, which has to do with the very notion of "data" itself. 

In al l  data processing files and database management systems, there is a 

distinction between d a t a  s t m c t u r e  and the  data itself. What I have called the 

datafile names and field names, are  the data structure elements of the view 

presented here. (other views of data may have further structural elements.) 

Thus, for instance, in the above data file for parts,  we have in the first row: 

COLOR = "RED," where the th.ree character string "RED" is the value of the field 

COLOR. The point is that  these data values are  regarded as  stTi7Lgs of c h a r a c t e r s  

r a t h e r  t h a n  as p r o p e r t i e s  of ob jec t s  in the  e n v i r o n m e n t .  Viewed only as  charac- 

ter  strings, one is unable to specify even very commonplace inter-relationshps 

between these properties; for instance, that  if a th.ing has a color, it must be a 

physical object, hence, having weight, physical extension, geographcal location, 

etc. 



The basic problem is that the variables in data management models range 

over sets of charac ter  s t r i n g s  (so-called "attribute domains" in the relational 

model), rather than over objects  in the environment. 

For instance, a database constraint that  all parts are either red,  blue or 

white would look something like: 

PART.COLOR = "RED" OR "BLUE" OR "WHITE" 

To recognize that these are properties of objects in the environment, a predi- 

cate calculus notation might be used, introducing the variable x to  range over 

these objects: 

1. Vx PART (x) --> RED (x) OH BLUE (x) OR WHITE (x) 

( the symbol " V  is read "for all"). The point is that  in t h s  form, one can begin to 

elaborate more general properties, i .e. ,  not just of parts,  but of anythng that 

has a color. 

2. Vx RED (x) OR ORANGE (x) OR YELLOW (x) OR GREEN (x) OR . . .  

OR BLACK (x) <--> COLORED (x) 

3. VX COLORED (x) --> PHYSICAL-OBJECT (x) 

4. Yx PHYSICAL-OBJECT (x) --> 3 n n > 0 & WEIGHT (x) = n. 

( the symbol "3" is read "there exists"). 

Statement (2) is a disjunct of all color names used in the organization, indi- 

cated that any of these implies the general feature of being colored, and vice 

versa, that being colored implles one of these properties. Statement (3) says 

that  anythng that is colored is also a physical object (though some physical 

objects-e.g.,  glass, mirrors--may not be colored). Statement (4) says that  for 

any physical object there exists some positive number that  is its weight 

(presuming some unit of weight measure). 



l'he direction intended by this example should begin to become clear. 

Reconsider the problem of transportability of knowledge discussed in section 

two. Clearly there are many commonplace connections between properties that  

any organization would agree upon-e.g.,  the simple physics of colors, weights, 

physical extent, etc. These rules will hold for any physical object, from peanuts 

to box cars. Other classes of properties might be restricted to a particular 

social system-e.g. ,  the number of spouses an employee might have, whether 

dual nationalities are recognized. Other classes of properties pertain to specific 

industries within a given social system-e.g. ,  the accounting practices for banks 

vs. those for educational institutions. Lastly, there are clearly those properties 

that  are  organization specific, such as the ranks of personnel or the parts  it 

mariufactures. 

Ideally, the inter-relationship of properties a t  any one of these levels should 

only have to be developed once-e.g.,  commonplace physics by a national or 

world wide bureau of standards, accounting practices by an industry accounting 

board, etc. Then, the task of any particular organization in developing its appli- 

cation software would only be to specify the d i f f e r e n c e s  of its local practice from 

that  of the standardized models 

The proposal here is, therefore, to offer a predicate calculus (PC) notation 

as a replacement for the usual data structure view with the claim that it pro- 

vides a richer framework, capable of specifying the inter-dependence of proper- 

ties of objects, not just structured organizations of character  strings. 

I t  should be mentioned that  this is not necessarily a recommendation that  

facts about the environment actually be s t o r e d  in this form-the underlying 

implementation might actually make use of a more conventional data manage- 

ment model--but ra ther  that the top-most l e v e l  or v i e w  of the database have the  

P C  form. 



It should also be mentioned that a predicate calculus notation is not the 

only candidate! to rncet the objectives of abstracting the relationships of general 

properties. The various graphical representations called "semantic" or "associa- 

tive" network also share this goal. However, the predicate calculus has had a 

longer history of development and study and, in my view a t  least, is a more 

robust representation. The predicate calculus is, however, only a framework, a 

meta-theory in w h c h  more detailed theories can be described. 

It can, for instance, be used to describe theories of mathematics, in which 

case the variables would range over numbers, or to theories in chemistry, where 

the  variables would range over the physical elements. Thus, the real work in 

pursuing this proposed direction would be to develop a predicate calculus spe- 

cialized to the problems of administration. This would involve, among other 

things, identifying a set  of "primitive" properties and relationships (i .e.,  single, 

multi-place predicates) whch  identify special classes of entities like people and 

other physical objects, money, types of contracts, etc.  

A first attempt in this direction was the subject of my dissertation work 

(Lee 1980). There I focused specifically on a predicate calculus notation (called 

CANDID) for the description of "financial contracts," e.g.,  loans, leases, options, 

insurance policies, etc.  I regarded this as a useful starting place for the 

development of a broader theory of administration as  suggested here. 

V. COMBINING THE APPROACHES: 
PRODUCTION SYSTEMS AND PREDICATE CALCULUS 

The point of the previous section was to recommend a predicate calculus 

notation as a richer form of data representation. In section three, I suggested a 

production system approach as a more flexible framework for specifying the 



potential actions of an application system. The final s tep in the proposal here is 

to combine these frameworks, i.e., to use the predicate calculus form of data- 

base as the database of the production system. 

Actually, production systems acting upon predicate calculus databases 

have been in experimental use for some time within the computer science area 

of artificial intelligence (AI). (See e.g.,  Nilsson 1980, for further background 

information.) 

Systems with this design are usually called "theorem provers," in that  the 

function of the production system is to seek and/or prove some "goal" theorem, 

based on a set  of initial axioms in the database. The term "theorem proving" is 

not, however, confined to simply proving mathematical theorems. As noted in 

the previous section, the predicate calculus may be used to represent a wide 

variety of subject domains beyond mathematics. 

Whereas the purpose of the database is to describe facts and inter- 

relationships of properties about the environment, the function of the produc- 

tion system in this context is to deduce new facts and relationships. Thus the 

production rules in this design amount to rules of inference for the predicate 

calculus; that  is, they serve to derive new predicate calculus statements from 

the original ones. These inference rules are "truth preserving": if the original 

statements are  true,  so too, will be the deduced ones. 

The general predicate calculus framework provides a number of such rules 

of inference. These rules are "analytic" in that they apply regardless of the 

subject domain. In an "applied" predicate calculus, where the subject domain is 

specified, additional "synthetic" inference rules may apply, specifically to this 

domain.. 

The development of such an  inference structure specific to context of 

or-ganizational administration is thus another task of the research direction 



proposed here 

VI. CONCLUDING REMARKS 

The problems initially set  forth were twofold: the difficulties involved in 

modifying applications software in response to organizational change; and the 

problem of "transportability of knowledge," i.e., the difficulties of using parts of 

previously developed software in the development of new systems. 

The causes for this inflexibility in application systems were diagnosed as the 

procedurality of programs and the view of data as structures of character 

strings. In response to the problem of programs, a production system approach 

was suggested; in response to the problem of data structures, a predicate cal- 

culus formalism was proposed along with a final observation that  the two frame- 

works can feasibly be combined. 

In a short paper such as t h s ,  one is forced to omit certain details and 

perhaps over-simplify others. I have tried to argue that the application software 

architecture suggested here is a potentially feasible solution to the organiza- 

tional problems identified. The major difficulties in this recommendation is the 

development of what might be called a "logic of administrative data," i.e., a 

predicate calculus representation and associated rules of inference whch cap- 

ture the commonplace knowledge involved in the administration of organiza- 

tions. As mentioned, an initial step in thls direction was made in Lee (1980). 

Further elaboration is, however, necessary before practical advantages to 

administrative applications can be demonstrated. 



REFERENCES 

Davis, Randall, and Jonathan &ng . 1975. "An Overview of Production Sys tems," 

Stanford AT Lab Memo AIM-271, Stanford Computer Science Report. 

STAN-CS-75-524, October. 

DeMillo, R .A. ,  R.J. Lipton, and A.J. Perlis. 1979. "Social Processes and Proofs of 

Theorems and Programs." C o m m u n i c a t i o n s  of t h e  ACM, Volume 2 2 ,  No. 

5 (May): 27 1-280. 

Kowalski, Robert. 1979. "Algorithm = Logic + Control," C o m m u n i c a t i o n s  of t h e  

ACM, Vol. 22, No. 7 (July):424-436. 

Lee, Ronald M. 1980. "CANDID: A Logical Calculus for Describing Financial Con- 

tracts ."  Ph.D. dissertation, available as WP-80-06-02, Department of 

Decision Sciences, the Wharton School, University of Pennsylvania, 

June. 

Newell, A., J. Shaw, and H. Simon. 1963. "Empirical Explorations of the  Logical 



Theory Machine," in C o m p u t e r s  a n d  Thought .  E. Feigenbaurn and J .  

1~'cIdnian (cds.) ,  Ncw York: McGraw-I-Iill, pp.109-113. 

Nilsson, Nils J .  1980. P r i n c i p l e s  of Art i f ic ial  In t e l l i gence ,  Palo Alto, CA: Tiogo 

Publishng Co. 

Shortliffe, E.H. 1976. C o m p u t e r -  Based  Medical Consu l ta t i ons :  MYCIN. New 

York: America Elsevier. 

Winograd, Terry. 1975. "Frame Representations and the Declarative/ Pro- 

cedural Controversy." in R e p r e s e n t a t i o n  a n d  U n d e r s t a n d i n g ,  Daniel G. 

Bobrow and Allan Collins (eds.).  New York: Academic Press, pp.185- 

210. 

Winograd, T. 1979. "Beyond Programming Languages," C o m m u n i c a t i o n s  of the  

ACM, Vol. 2 2 ,  No. 7 (July):391-401. Wulf, William A. 1977. "Some 

Thoughts on the Next Generation of Programming Languages," in Per -  

s p e c t i v e s  o n  C o m p u t e r  Sc i ence ,  edited by Anita K. Jones, New York: 

Academic Press. 


