
NOT F O R QUOTATION
WITHOUT P E R M I S S I O N
O F T H E AUTHOR

A P P L I C A T I O N S SOFTWARE AND O R G A N I Z A T I O N A L
CHANGE: I S S U E S I N T H E R E P R E S E N T A T I O N O F
KNOWLEDGE

R o n a l d !.I. L e e

D e c e m b e r 1 9 8 0
W P - 8 0 - 1 8 2

Working P a p e r s are i n t e r i m r epor t s on w o r k of t h e
I n t e r n a t i o n a l I n s t i t u t e f o r A p p l i e d S y s t e m s A n a l y s i s
and have received o n l y l i m i t e d r e v i e w . V i e w s o r
o p i n i o n s expressed h e r e i n do n o t n e c e s s a r i l y repre-
s e n t those of t h e I n s t i t u t e o r of i t s N a t i o n a l M e m b e r
O r g a n i z a t i o n s .

I N T E R N A T I O N A L I N S T I T U T E F O R A P P L I E D S Y S T E M S A N A L Y S I S
A - 2 3 6 1 L a x e n b u r g , A u s t r i a

TABLE O F CONTENTS

I. T H E PROBLEM: SOFTWARE FOR ORGANIZATIONAL CHANGE 1

11. ANOTHER PROBLEM: TRANSPORTABILITY O F KNOWLEDGE 4

111. T H E PROBLEM WITH PROGRAMS: PROCEDURAL LANGUAGES VS. PRODUCTION
SYSTEMS 7

IV. T H E PROBLEM WITH DATA: DATA F I L E S VS. PREDICATE CALCULUS 1 3

V. COMBINING T H E APPROACHES: PRODUCTION SYSTEMS AND PREDICATE CAL-
CULUS 1 9

VI. CONCLUDING REMARKS

R E F E R E N C E S

APPLICATIONS SOFTWARE AND ORGANIZATIONAL CHANGE:
ISSUES I N THE REPRESENTATION OF KNOWLEDGE

Ronald M . Lee

I . THE PROBLEM: SOFTWARE FOR ORGANIZATIONAL CHANGE

It is a commonplace observation that organizations, to survive, must adapt

to changes in their environment. Those that do not are forced out of business, if

they are companies in a competitive market; have their budgets canceled,in the

case of government bureaucracies; or are overthrown, in the case of govern-

ments themselves.

Just how an organization should be designed to accommodate change is, of

course, a much more difficult mat ter , and has been the subject of many volumes

of organizational theory.

What I want to examine here is one aspect of this general problem that

seems to have been neglected, namely the effect of information technology on

the organization's ability to adapt and change.

Certainly, there are numerous clear cases where the installation of a infor-

mation system adds to the organization's flexibility. For instance, the installa-

tion of a centralized database may allow data to be accessed and combined in a

variety of ways that would have been practically impossible whcn that data was

recorded in paper files scattered throughout the company

The flexibility of a given computer application obviously depends on the

foresight of its designers. To this end, programming students are generally

taught to seek the most general definition of the problems they are given so that

the resulting program can handle not only the immediate problem but also vari-

ants of it that might arise.

This strategy has obvious limitations. In seeking to find a generalized solu-

tion, the programmer may waste undue amounts of time on conditions that will

never arise. (S)he must therefore make a choice as to how much flexibility to

encode into the program logic. 1 will refer to the level of flexibility chosen as the

"designed flexibility" of the system.

Selecting the appropriate level of designed flexibility is, however, difficult

and, almost certainly, new requirements will later arise that were not planned

for originally, so that the program must be modified. This is where the problem

arises.

Anyone who has written even small programs will know that it is much

easier to incorporate a given feature in the program logic in its original writing

rather than try to add this feature afterwards. T h s difficulty rises exponentially

with the complexity of the original program or system. (By "system." I mean a

collection of programs and data files with interdependent functions.) Indeed,

the cost and effort of modifying such systems often exceeds that of their origi-

nal development. For instance, Wulf (1977) refers to:

the extreme difficulty encountered in attempting to modify
a n existing program. Even though we frequently believe that
we know what we will want a piece of software to do and will be
able to specify if precisely, i t seems to be invariably true that
after we have it we know better and would like to change it.
Examination of the history of almost every major software

system shows that so long as it is used it is being modified!
Evolution stops only when the system is dead. The cost of
such evolution is almost ncver mcasurcd, but, rn a t lcast one
casc, it excecdcd the original dcveloprnent cost by a factor of
100.

Altering existing computer systems is not only expensive, it is also risky.

De Millo, e t al. (1979) noted:

"Every programmer knows that altering a line or sometimes
even a bit can utterly destroy a program or mutilate it in
ways we do not understand and cannot predict . . ."

Indeed, beyond expense and risk, there seems to be an eventual limit to the

number of modifications these systems can undergo. Winograd (1979) remarks

"Using current programming techniques, systems often reach
a point a t which the accretion of changes makes their struc-
ture so baroque and opaque that further changes are impossi-
ble, and the performance of the system is irreversibly
degraded." (p.392)

To summarize, the basic problem with current application systems is tha t

they are "brittle;" i .e . , they cannot easily be reformed to adapt to changing cir-

cumstances. This brittleness has profoundly disturbing consequences as more

and more organizations, ranging from small and medium size companies to

immense governmental agencies, convert their information processing to com-

puter software. The immediate gains of increased efficiency, speed of process-

ing, rapid access to centralized data files, e tc . , are clear (or the investment

would not be justified)

However, there may be a long term, possibly devastating hidden cost as the

organization finds its ability to adapt and respond to new environmental condi-

tions hampered by its inability to modify its information systems accordingly.

11. ANOTHER PROBLEM: TRANSPORTABILITY OF KNOWLEDGE

I will use the term "application system" (or sometimes simply "application")

to refer to a computer system composed of various programs and data files

which together perform some identifiable organizational task-e .g . , sales order

processing, inventory control, etc. The focus will, therefore, be on the software

that deals directly with the organization's operations and not, e .g. , operating

systems etc. , which service the internal operations of the computer.

Applications software of this sort is by and large custom made for each

organization usually by an in-house data processing (DP) department. More

importantly, these applications are typically written "from scratch." That is to

say, they do not make use of previously developed program code pertinent to

the problem domain.

The exception to this is the use of "off-the-shelf" program packages and,

occasionally pre-written subroutines which the new program can call a t the

appropriate point.

For instance, numerous packages exist to do statistical analyses and quan-

titative algorithms and are used quite frequently in scientific applications. Like-

wise, off-the-shelf packages exist to do such organizational tasks as payroll pro-

cessing, inventory control, etc. This latter class of pre-written software has,

however, been less successful.

The problem, once again, has to do with the "designed flexibility" of the

package. In scientific applications, the contexts in which a particular analysis

or algorithm is used is relatively well specified. For instance, in any application

of a linear programming algorithm one must specify the objective function, con-

straints and technological co-efficients and one receives as a result, the values

of the decision variables. For most organizational applications, however, the

problems are less standardized. Probably the most regular of these is payroll

processing, but even there considerable variations may exist from one firm to

another as to benefits to be added, automatic deductions, classifications of

labor, etc.

In order to make use of an off-the-shelf package for such applications, the

particular characteristics of the organization's problem must fall within the

designed flexibility of the package. When this does not occur the DP department

may sometimes try to modify the package. However, the general experience is

tha t it is usually easier and more reliable to re-program the whole thing from

scratch.

I will refer to this aspect of application software development as the prob-

lem of "transportability of knowledge" from one application to another. As

observed, this is generally a n all or nothing proposition. One may transport

chunks of knowledge from one system or program to another only in the case

tha t the chunk corresponds to a whole program or subroutine. There seems to

be no middle ground; that is, where one could make use of an arbitrary part of

one program function in developing another.

The consequence of this is that software for organizational information pro-

cessing is not a smooth evolution; it does not build naturally from previous

experience. Thus, for instance, after a quarter century of automated payroll

processing, firms still often have to write new payroll programs.

By contrast, knowledge in the form of human expertise is easily transport-

able. For instance, when company X hires a new bookkeeper, it is doubtful X's

accounting system exactly fits the bookkeeper's training or previous experi-

ences. However, provided the new person is reasonab1.y competent, (s)he can

adapt to the new system af ter a brief orientation period. The situation with

applications software is as if a complete re-education, starting with grammar

school, would be necessary.

Let me summarize my arguments thus far. My basic claim is that a funda-

mental. problem exists in the basic architecture of applications systems, namely

that they are too "brittle" and resistant to change. To me, this has two impor-

tant consequences. One, as discussed in the last section, is tha t as an organiza-

tion becomes increasingly reliant on its information system, it too becomes brit-

tle and unable to adapt easily to new situations. The other consequence, the

point of this section, applies not just to individual organizations, but to informa-

tion system technology a t large: current software a rch tec tu re does not provide

the proper framework for a smooth evolution of problem solving capability. We

are forced to repeatedly re-invent wheels. Progress (what little can be seen) has

always been in the form of someone's coming up with a bigger wheel. That this

is wasteful of money and effort is the smaller part of the problem. The deeper

difficulty is that when someone finds an improved method for some organiza-

tional task, these advances cannot easily be promulgated to other software for

related tasks. The industry of applications software development thus cannot

build on its accomplishments, and must continually re-start from the ground.

In the sections to follow, I examine the technical reasons why applications

systems are so brittle. I see this as having two closely related aspects: the first

arising from the way program logic is structured; the second due to the ways

data is organized in data files and data bases. An alternative architecture for

applications software will be proposed that avoids these problems, albeit not

without certain costs.

I l l . THE: PROULEM WIT11 I-'ItOGTIAMS:
PROCEDURAL LANGUAGES VS. PRODUCTION SYSTEMS

Statements in a programming language are in the form of commands to the

machine--i.e., add t h s , move this data from here to there, print t h s on the ter-

minal, etc.

A computer program is thus a sequence of such statements, e .g. ,

10 LETX = 2
20 LET Y = 3
30 LET Z = X + Y
40 PRINT Z

Here, the statements have been numbered for identification purposes.

Importantly, the ordering of the statements in t h s program indicates the

sequence in which the commands are to be performed by the machine

This otherwise linear sequence of execution can be modified by what are

called "control statements". Consider, for instance, the program:

10 LETX= 0
20 ADD 1 TO X
30 PRINT X
40 IF X = 100 GO TO 60
50 GO TO 20
60 STOP

When executed, this program prints the numbers from 1 to 100. Here,

statements 40 and 50 are control statements. In statement 40, if X has reached

100, program control jumps to statement 60 where it stops. Otherwise, state-

ment 50 directs the program control back to statement 20 where X is again

incremented, printed, etc.

Thus, the execution sequence in such computer programs normally follows

the top to bottom ordering of the statements, except when superceded by the

effects of control statements.

Computer languages of this type are called "procedura l . " These are basi-

cally the only type used in commercial practice, and include all the well known

languages for data processing and scientific applications4 .g. , COBOL, FORTRAN,

PL/I, BASIC, ALGOL, etc.

In these cases, the "knowledge" embodied in the computer program is

expressed as the specific steps for doing it. A key thing to recognize is that this

procedurality makes the statements of the program inter-dependent. Generally

(though not always) changing the order of any two statements makes a serious

change to the program's operation.

While it may not be patently obvious from the two tiny examples above, it is

this inter-dependence that makes computer programs so difficult to modify.

As a result of an interesting blend of computer science and formal linguis-

tics, an alternative approach has emerged over the last decade or so. This

approach is based on so-called "production systems" (PS's) which enable the

knowledge of the program to be expressed in a form that is independent of its

execution sequence.

The concept of production. systems was first proposed by the linguist Post in

1943 to aid in the formal specification of natural language grammars. The basic

idea is extremely simple. A single production is a rule of the form:

IF <pattern> THEN <action>,

or, in the more usual notation,

A production system consists of a "data base" and a collection of such produc-

tion rules. (Ths is a database in a fairly restricted sense, not to be confused

with those maintained by database management systems.)

The pattern in each rule is some condition to be matched by the database

and the action is typically some modification to the database. In the "purest"

form of a production system, the rules are arranged in a linear order. Starting

from the beginning the patterns are compared to the database until a successful

match is found. The corresponding action is then performed and the process is

then repeated, starting once again from the beginning comparing the patterns

to the database.

Consider for instance the following example for recognizing a certain type

of English declarative sentence.

1 THE -> DET 8 N -> NP

2 ON -> PREP 9 ADJ NP -> NP

3 HUNGRY -> ADJ 10 DET NP -> NP

4 BIT -> VT 11 PREP NP -> PP

5 DOG -> N 12 VT NP -> VP

6 CAT -> N 13 VPPP -> VP

7 NECK -> N 14 NPVP -> S

The production rules on the left represent a "lexicon" indicating the gram-

matical categories of various words. The rules on the right indicate the gram-

mar proper. When the terminal symbol "S" is reached, the sentence is accepted

as grammatical. Thus, suppose we have the following sentence:

"The hungry dog bit the cat on the neck."

This is analyzed as follows:

DET ADJ N VT DET N PREP DET N Rules 1-7

DET ADJ NP VT DET NP PREP DET NP 3 x rule B

DET NP VT DET NP PREP DET NP 1 x rule 9

NP VT NP PREP NP 3 x rule 10

NP VT NP PP 1 x rule 11

NP VP PP 1 x rule 13

S 1 x rule 14

The initial application of production systems in computer science were in

the area of compiler theory, i .e. , in specifying the syntax and interpretation of

programming languages (as opposed to natural languages). Subsequently, it has

been recognized that PS's have a potential much broader range of usefulness.

For instance, one classic application was the Logical Theorist of Newell, Shaw

and Simon (1963). Beginning with the initial axioms and rules of inference of

Russell and Whitehead's Principa Mathematics, the Logical Theorist successfully

proved all the theorems of this massive text. Indeed, in several cases it found

original proofs, simpler than the original.

Another famous example of the use of production systems was Shortliffe's

MYCIN system (1976). The purpose of MYCIN is to perform medical diagnosis. In

this case, the database is the patient's symptoms, as revealed by various labora-

tory tests, etc. The production rules are thus the sort of medical deductions a

doctor might make based on these symptoms. Within the area of Artificial Intel-

ligence (A]) numerous other applications of production systems have been

explored.

Davis and King (1 975), is an excellent survey article on production systems,

comment on the types of applications where PS's are best suited:

where the emphasis of a task is on recognition of large
numbers of distinct s tates, PS's provide an advantage. In a
procedurally-oriented approach, lt is both difficult to organ-
ize and troublesome to update the repeated checking of large
numbers of state variables and the corresponding transfers of
control.. . .

[PS's are] characterized by the principle that "any rule can
fire a t any time," whch emphasizes the fact that a t any point
in the computation, any rule could possibly be the next to be
selected, depending only on the state of the database a t the
end of the current cycle. Compare this to the normal situa-
tion in a procedurally oriented language, where such a princi-
pal is manifestly untrue: it is simply not the case that,
depending on the contents of the database, any procedure in
the entire program could potentially be the next to be
invoked.

PS's therefore appear to be useful where it is important to
detect and deal with a large number of independent states, in
a system which requires a broad scope of attention and the
capability of reacting to small changes.

With regard to the ease of modification of PS's, they continue (p.20):

We can regard the m o d u l a r i t y of a program as the degree of
separation of its functional units into isolatable pieces. A pro-
gram is h i g h l y m o d u l a r if any functional unit can be changed
(added, deleted, or replaced) with no unanticipated change to
other functional units. Thus program modularity is inversely
related to the strength of coupling between its functional
units.

The modularity of programs written as pure production sys-
tems arises from the important fact that the next rule to be
invoked is determined solely by the contents of the database,
and no rule is ever called directly. Thus the addition (or dele-
tion) of a rule does not require the modification of any other
rule to provide for (delete) a call to it. W e might demonstrate
t h s by repeatedly removing rules from a PS: many systems
will continue to display some sort of "reasonable" behavior,
up to a point. By contrast, adding a procedure to an ALGOL-
like program requires modification of other parts of the code
to insure that it is invoked, while removing an arbitrary pro-
cedure from such a program will generally cripple it . . .

Thus where the ALGOL programmer carefully chooses the
order of procedure calls to create a selected sequence of
environments, in a production system it is the environment
which chooses the next rule for execution. And since a rule
can only be chosen if its criteria of relevance have been met ,
the choice wlll contlnue to be a plausible one, and syst,enl
behavior remain "reasonable," even as rules are successively

deleted

As dcscribcd so far, pattcrn malching procceds from lhe beginning of the

rule sct each time until a match is found, in which case that corresponding

action is taken and the process is repeated.

However, in the notion of a "pure" PS, each rule supposedly has an equal

chance of firing--i.e., its position in the rule set should not affect its chances of

firing.

This only causes difficulty when the patterns of more than one rule match

the database, in which case a choice must be made which action to take. A

variety of approaches have been used to resolve such rule contention, for

instance:

rule order -- use the first matching rule.

data order -- data elements are assigned priority: pick the
rule whose match gives the highest priority.

generality order -- use the most specific rule

recency order -- use the most recently executed rule.

Recall that each rule is matched against the entire database and that two

simultaneously activated rules may have matches on completely separate parts

of the database. Clearly, rule contention is only problematic when the firing of

one rule would disable the database match of the other candidate rule(s).

Thus, in the "pure form of a PS, all of the rules should be tested against the

database on each cycle, the subset of matching rules selected, and a choice

made (by same criterion) which of those should be allowed to fire.

However, as the database and/or number of rules gets large, the system

degrades for lack of efficiency.

In face of this, a number of production system implementations have

allowed some degree of control structure to creep back in. Thus, various stra-

tegies or "heuristics" have been employed to increase the likelihood that , for

certain contexts, the applicable rules will be found quickly and that the entire

rule se t need not be examined without danger of ignoring an applicable rule.

Thus, a number of PS implementations exhibit a greater or lesser degree of

"partial procedurality" as production systems augmented with a control struc-

ture mechanism. The design of such control s tructures, so as to provide

efficient search without nullifying the advantages of flexibility offered by the

basic PS orientation, has become a mat ter of intense interest and debate within

computer science (see, e .g. , Winograd 1975; Kowalski 1979).

This is a n interesting development for the context of this paper since it pro-

vides a framework for examining various styles of rule organization and manage-

ment along a c o n t i n u u m of procedurality, instead of a flat choice between the

two extremes.

N . THE PROBLEM WITH DATA:
DATA FILES VS. PREDICATE CALCULUS

Most application software used in organization centers around the process-

ing of large amounts of data (as opposed to, for instance, optimization routines

which are much more computation intensive on relatively small amounts of

data). Hence, inflexibilities introduced by the way data is organized in data files

and databases are equally (if not more) important than those introduced in the

design of procedural programs. At any rate, as will be seen shortly, the prob-

lems are highly inter-related.

A note on terminology. In the last section, the term database was used to

designate the data repository of a production system. In this section, the term

dill,abasr! w i l l bc uscd more in thc sc!nsc associatcd with databasc management

(DM). Somewhat later I will return to compare the two views at which point they

will be distinguished a s PS databases and DM databases.

A t the moment, however, I want to talk about the general view of data main-

tained in data processing applications, whether this data is accessed through a

database management system or not. I will, therefore, use the term "data file"

to indicate a conventional data processing file or a logical segment of a database

(e.g., the tuples of a single relation in a relational database; the instances of a

single record type in a CODASYL database). The term database will then be used

to refer to a collection of such data files with inter-related subject matter (e.g.,

sales file, inventory file, back-order file), whether or not the access to these is

coordinated by a DBMS.

Data files are usually organized as a rectangular table with labeled columns

called "fields." For instance, a file on employees might have fields for the

employee's name, address, age, salary, etc.

EMPLOYEE FILE

Sometimes data files have more complicated organizations--e.g., some

colunlns may have multiple entries for a given data item. This tabular view is

sufficient for the purposes here, however. Also, this is the basic view maintained

I Name I
Age

30

45

37

Salary

20,000

18,000

24,000

Address

5 Pine Street

101 Broadway

3 Park Place

1

Adams

Peters

Smith

by lhc more popular dalabase managemcnl models (i .c . , Nclwork, Rclalional)

Nolc Lhat each dala file has Lhrec lcvels of descriplion: lhe d a t a file n a m e

(e.g. , EMPLOYEE), the f i e ld n a m e s (e.g. , NAME, AGE), and the d a t a v a l u e s (e.g. ,

Smith, 37). It is important to note also that a data file represents a m o d e l of

some aspect of the organization, in this case, what are considered to be the

important features of employees.

The structure of the data f le often carries certain implicit information as

well. Often, as in this example, each row of the data f l e implies the existence of

some entity in the environment, in this case an employee associated with the

company. The converse assumption is also sometimes made, e.g., if a person's

name does n o t appear in the file, then (s)he is not an employee.

Other data files, however, might have different existence assumptions. for

instance a f l e for parts inventories.

PART FILE

This file indicates the identification number (ID#), color, weight (WT) and quan-

tity (QTY) on hand of various manufactured parts. In this case, each row of the

file does not imply the existence of a part , but only elaborates the features of

each generic part type. The existence of actual parts is instead indicated by the

ID#

3

12

7

T

Color WT 1 QTY

R

B

W

10

8

13

200

65

0

QTY field.

These might be called the existential assumptions associated with a file

Other assumptions refer to the possible data values that may appear in a given

field, e.g., that SALARY must be less than 50,000.

The basic point, however, is that the data file structure itself is not

sufficient to convey all these assumptions. Instead, these appear in the logic of

the programs that interpret these data files. Thus, the model of the organiza-

tion represented in the application system is found not only in the data fYes but

also in the code of the various application programs. This is a problem that has

been recognized for some time in database management, and has led to a

number of proposals for the separate specification of so called "data base con-

straints," conditions that the data in the database must always fulfill. Such con-

straints are maintained in a separate table, and verified by each updating pro-

gram. However, these approaches do not go far enough. There is a basic prob-

lem that remains, which has to do with the very notion of "data" itself.

In al l data processing files and database management systems, there is a

distinction between d a t a s t m c t u r e and the data itself. What I have called the

datafile names and field names, are the data structure elements of the view

presented here. (other views of data may have further structural elements.)

Thus, for instance, in the above data file for parts, we have in the first row:

COLOR = "RED," where the th.ree character string "RED" is the value of the field

COLOR. The point is that these data values are regarded as stTi7Lgs of c h a r a c t e r s

r a t h e r t h a n as p r o p e r t i e s of ob jec t s in the e n v i r o n m e n t . Viewed only as charac-

ter strings, one is unable to specify even very commonplace inter-relationshps

between these properties; for instance, that if a th.ing has a color, it must be a

physical object, hence, having weight, physical extension, geographcal location,

etc.

The basic problem is that the variables in data management models range

over sets of charac ter s t r i n g s (so-called "attribute domains" in the relational

model), rather than over objects in the environment.

For instance, a database constraint that all parts are either red, blue or

white would look something like:

PART.COLOR = "RED" OR "BLUE" OR "WHITE"

To recognize that these are properties of objects in the environment, a predi-

cate calculus notation might be used, introducing the variable x to range over

these objects:

1. Vx PART (x) --> RED (x) OH BLUE (x) OR WHITE (x)

(the symbol " V is read "for all"). The point is that in t h s form, one can begin to

elaborate more general properties, i .e. , not just of parts, but of anythng that

has a color.

2. Vx RED (x) OR ORANGE (x) OR YELLOW (x) OR GREEN (x) OR . . .

OR BLACK (x) <--> COLORED (x)

3. VX COLORED (x) --> PHYSICAL-OBJECT (x)

4. Yx PHYSICAL-OBJECT (x) --> 3 n n > 0 & WEIGHT (x) = n.

(the symbol "3" is read "there exists").

Statement (2) is a disjunct of all color names used in the organization, indi-

cated that any of these implies the general feature of being colored, and vice

versa, that being colored implles one of these properties. Statement (3) says

that anythng that is colored is also a physical object (though some physical

objects-e.g., glass, mirrors--may not be colored). Statement (4) says that for

any physical object there exists some positive number that is its weight

(presuming some unit of weight measure).

l'he direction intended by this example should begin to become clear.

Reconsider the problem of transportability of knowledge discussed in section

two. Clearly there are many commonplace connections between properties that

any organization would agree upon-e.g., the simple physics of colors, weights,

physical extent, etc. These rules will hold for any physical object, from peanuts

to box cars. Other classes of properties might be restricted to a particular

social system-e.g. , the number of spouses an employee might have, whether

dual nationalities are recognized. Other classes of properties pertain to specific

industries within a given social system-e.g. , the accounting practices for banks

vs. those for educational institutions. Lastly, there are clearly those properties

that are organization specific, such as the ranks of personnel or the parts it

mariufactures.

Ideally, the inter-relationship of properties a t any one of these levels should

only have to be developed once-e.g., commonplace physics by a national or

world wide bureau of standards, accounting practices by an industry accounting

board, etc. Then, the task of any particular organization in developing its appli-

cation software would only be to specify the d i f f e r e n c e s of its local practice from

that of the standardized models

The proposal here is, therefore, to offer a predicate calculus (PC) notation

as a replacement for the usual data structure view with the claim that it pro-

vides a richer framework, capable of specifying the inter-dependence of proper-

ties of objects, not just structured organizations of character strings.

I t should be mentioned that this is not necessarily a recommendation that

facts about the environment actually be s t o r e d in this form-the underlying

implementation might actually make use of a more conventional data manage-

ment model--but ra ther that the top-most l e v e l or v i e w of the database have the

P C form.

It should also be mentioned that a predicate calculus notation is not the

only candidate! to rncet the objectives of abstracting the relationships of general

properties. The various graphical representations called "semantic" or "associa-

tive" network also share this goal. However, the predicate calculus has had a

longer history of development and study and, in my view a t least, is a more

robust representation. The predicate calculus is, however, only a framework, a

meta-theory in w h c h more detailed theories can be described.

It can, for instance, be used to describe theories of mathematics, in which

case the variables would range over numbers, or to theories in chemistry, where

the variables would range over the physical elements. Thus, the real work in

pursuing this proposed direction would be to develop a predicate calculus spe-

cialized to the problems of administration. This would involve, among other

things, identifying a set of "primitive" properties and relationships (i .e., single,

multi-place predicates) whch identify special classes of entities like people and

other physical objects, money, types of contracts, etc.

A first attempt in this direction was the subject of my dissertation work

(Lee 1980). There I focused specifically on a predicate calculus notation (called

CANDID) for the description of "financial contracts," e.g., loans, leases, options,

insurance policies, etc. I regarded this as a useful starting place for the

development of a broader theory of administration as suggested here.

V. COMBINING THE APPROACHES:
PRODUCTION SYSTEMS AND PREDICATE CALCULUS

The point of the previous section was to recommend a predicate calculus

notation as a richer form of data representation. In section three, I suggested a

production system approach as a more flexible framework for specifying the

potential actions of an application system. The final s tep in the proposal here is

to combine these frameworks, i.e., to use the predicate calculus form of data-

base as the database of the production system.

Actually, production systems acting upon predicate calculus databases

have been in experimental use for some time within the computer science area

of artificial intelligence (AI). (See e.g., Nilsson 1980, for further background

information.)

Systems with this design are usually called "theorem provers," in that the

function of the production system is to seek and/or prove some "goal" theorem,

based on a set of initial axioms in the database. The term "theorem proving" is

not, however, confined to simply proving mathematical theorems. As noted in

the previous section, the predicate calculus may be used to represent a wide

variety of subject domains beyond mathematics.

Whereas the purpose of the database is to describe facts and inter-

relationships of properties about the environment, the function of the produc-

tion system in this context is to deduce new facts and relationships. Thus the

production rules in this design amount to rules of inference for the predicate

calculus; that is, they serve to derive new predicate calculus statements from

the original ones. These inference rules are "truth preserving": if the original

statements are true, so too, will be the deduced ones.

The general predicate calculus framework provides a number of such rules

of inference. These rules are "analytic" in that they apply regardless of the

subject domain. In an "applied" predicate calculus, where the subject domain is

specified, additional "synthetic" inference rules may apply, specifically to this

domain..

The development of such an inference structure specific to context of

or-ganizational administration is thus another task of the research direction

proposed here

VI. CONCLUDING REMARKS

The problems initially set forth were twofold: the difficulties involved in

modifying applications software in response to organizational change; and the

problem of "transportability of knowledge," i.e., the difficulties of using parts of

previously developed software in the development of new systems.

The causes for this inflexibility in application systems were diagnosed as the

procedurality of programs and the view of data as structures of character

strings. In response to the problem of programs, a production system approach

was suggested; in response to the problem of data structures, a predicate cal-

culus formalism was proposed along with a final observation that the two frame-

works can feasibly be combined.

In a short paper such as t h s , one is forced to omit certain details and

perhaps over-simplify others. I have tried to argue that the application software

architecture suggested here is a potentially feasible solution to the organiza-

tional problems identified. The major difficulties in this recommendation is the

development of what might be called a "logic of administrative data," i.e., a

predicate calculus representation and associated rules of inference whch cap-

ture the commonplace knowledge involved in the administration of organiza-

tions. As mentioned, an initial step in thls direction was made in Lee (1980).

Further elaboration is, however, necessary before practical advantages to

administrative applications can be demonstrated.

REFERENCES

Davis, Randall, and Jonathan &ng . 1975. "An Overview of Production Sys tems,"

Stanford AT Lab Memo AIM-271, Stanford Computer Science Report.

STAN-CS-75-524, October.

DeMillo, R .A. , R.J. Lipton, and A.J. Perlis. 1979. "Social Processes and Proofs of

Theorems and Programs." C o m m u n i c a t i o n s of t h e ACM, Volume 2 2 , No.

5 (May): 27 1-280.

Kowalski, Robert. 1979. "Algorithm = Logic + Control," C o m m u n i c a t i o n s of t h e

ACM, Vol. 22, No. 7 (July):424-436.

Lee, Ronald M. 1980. "CANDID: A Logical Calculus for Describing Financial Con-

tracts ." Ph.D. dissertation, available as WP-80-06-02, Department of

Decision Sciences, the Wharton School, University of Pennsylvania,

June.

Newell, A., J. Shaw, and H. Simon. 1963. "Empirical Explorations of the Logical

Theory Machine," in C o m p u t e r s a n d Thought . E. Feigenbaurn and J .

1~'cIdnian (cds.) , Ncw York: McGraw-I-Iill, pp.109-113.

Nilsson, Nils J . 1980. P r i n c i p l e s of Art i f ic ial In t e l l i gence , Palo Alto, CA: Tiogo

Publishng Co.

Shortliffe, E.H. 1976. C o m p u t e r - Based Medical Consu l ta t i ons : MYCIN. New

York: America Elsevier.

Winograd, Terry. 1975. "Frame Representations and the Declarative/ Pro-

cedural Controversy." in R e p r e s e n t a t i o n a n d U n d e r s t a n d i n g , Daniel G.

Bobrow and Allan Collins (eds.). New York: Academic Press, pp.185-

210.

Winograd, T. 1979. "Beyond Programming Languages," C o m m u n i c a t i o n s of the

ACM, Vol. 2 2 , No. 7 (July):391-401. Wulf, William A. 1977. "Some

Thoughts on the Next Generation of Programming Languages," in Per -

s p e c t i v e s o n C o m p u t e r Sc i ence , edited by Anita K. Jones, New York:

Academic Press.

