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ABSTRACT

This paper discusses the formulation and numerical develop-
ment of an algorithm for the estimation of the domain of
attraction of a general nonlinear autonomous dynamical system.
The method is based on stability analysis using Lyapunov's
direct method with quadratic Lyapunov functions. It requires
the nesting of an unconstrained and a constrained optimization
problem--both highly nonlinear. The Powell '64 conjugate direc-
tion algorithm and the BFGS quasi-Newton algorithm may be used
as alternatives at the outer loop, while the recent Powell-Han
projected Lagrangean algorithm is used for the inner loop non-
linear programme. Difficulties intrinsic to the Powell-Han
algorithm, in obtaining global constrained minima and in pro-
viding sensitivity analysis of the inner loop problem in order
to use BFGS at the outer loop are discussed in the context of
stable control of large angle manoeuvres for astronomical

satellites.

Keywords: Dynamical systems, nested optimization, sensitivity
analysis of nonlinear programming, Lyapunov's direct
method, satellite large angle manoeuvres, stability

analysis, unconstrained optimization.

- iii -



CONTENTS

ABSTRACT

INTRODUCTION 1
STABILITY OF DYNAMICAL SYSTEMS 3
THE DOMAIN OF ATTRACTION ESTIMATION ALGORITHM 5
THE DOMATT SYSTEM AND NUMERICAL EXPERIMENTS 11

AEROSPACE APPLICATION TO SPACECRAFT LARGE ANGLE MANOUEVRES 18
CONCLUSIONS AND DIRECTIONS FOR ALGORITHM DEVELOPMENT 28
ACKNOWLEDGEMENTS 34

REFERENCES 35



1. INTRODUCTION

This paper investigates the feasibility of the Lyapunov
function approach to stability analysis of a (poessibly controlled)
dynamical system through the development of suitable software to
estimate the domain of attraction (DO4A) of the (target) equili-
brium point of the system. It describes the theoretical and
computational development of a technique for assessing the
stability behavior of two satellite attitude control schemes,
based on Lyapunov's second or direct method. This approach is
a generalization of "energy" sink ideas involving "energy-like"
functions and their time rate of change along motions of the
system under investigation. 1In qualitative terms, system stability
is assured if the total "energy" decreases as the system motion
evolves in time (ef. Lasalle & Lefschetz, 1961; Rouche et al,
1977).

In order to make this paper self-contained the concepts
necessary for an understanding of the stability analysis tech-
nique developed are outlined briefly in the next two sections

of the paper.



The practical implementation of the technique for the sta-
bility analysis of engineering,econcomic and public policy control
systems requires the solution of two sets of optimization
problems: an inner-loop constrained problem and an outer-
loop unconstrained problem. The complex nonlinear nature of
the problems involved requires that the algorithms for finding
the optima be carefully selected. The performance of the
three methods chosen were first carefully tested on an experi-
mental design of appropriate test problems (see Dempster et al,
1979). A similar design of dynamical system test problems
was used for preliminary evaluation of the overall Lyapunov
stability technique developed. It will be discussed in Section
b,

A computer system--DOMATT--which involves the selected
optimization procedures and implements the stability evaluation
technique was developed and applied to the test dynamical
systems. It will be described briefly in Section 4 along with
the numerical experiments performed with it. Section 5 describes
the preliminary application of the stability analysis technique
developed to two spacecraft large angle attitude control systems
designed in the study on which this paper partially reports.

In the study digital simulations of various large angle slew
manoeuvres were first performed to check the specification and
stability behaviour of the attitude control systems analyzed
(cf. Dempster et al, 1979; Dempster, 1980).

Utilization of the latest optimization techniques makes
the Lyapunov function approach to stability analysis of general
realistic models of satellite large angle manoeuvre--and other
complex--control systems potentially feasible for the first
time. Sources of difficulties experienced with the Powell-Han
inner loop optimization technigue~-recently independently en-
countered by other researchers--are precisely identified in
Section 4 and 5. Directions to overcome these and other
difficulties in order to establish definitely the usefulness

of the method in applications are indicated in Section 6.



In this regard, it should be noted that numerical DOA
estimation, as investigated 1in this paper, currently provides
the only hope of proof of global (asymptotic) stability of
satellite large angle attitude control systems. Indeed, cas-
caded nonlinearities in several dimensions--as incorporated in
the reaction wheel attitude control system -- are currently beyond
the reach of frequency domain stability analysis techniques.:
Moreover, simulation studies can never establish stability

properties beyond doubt -- even at immense computational cost.

2. STABILITY OF DYNAMICAL SYSTEMS

Consider the autonomous nonlinear dynamical system given

by the vector differential equation

(1) x = £(x)

where x is an n-vector in the (Euclidean) state space Rr" of the
system, f is a continuously differentiable n-vector valued func-
tion of an n-vector argument (f:Rp-ﬁmp, fe:C1) and dot denotes

time derivative.

A state vector x is an equilibrium point of the system

(1) if, and only if,
(2) fx,) =0

Without loss of generality, we may translate the origin of the
state space to Xg and take xe:==0. (In large angle attitude

control system analysis the equilibrium point of interest will
be a point of zero body rates and zero attitude errors relative

to a prescribed inertial target attitude for the spacecraff.)

The origin 0 of state space is an asymptotically stable
equilibrium point of the system (1) with respect to a domain @
in state space if, and only if, for all intitial points x(0):==x0
in @ the corresponding solution trajectories of (1) tend to 0 as
t tends to infinity. That is, the system eventually returns to
equilibrium from any initital point in the domain @ , which is

termed a region of asymptotic stability (RAS) of 0 for the system.



The maximal RAS of 0 is called the domain of attraction

(DOA) of 0 for the system.

In order to apply Lyapunov's second or direct method to the
identification of an RAS for the system (1) an appropriate
definition of an "energy-like" function is needed. A real
valued function V defined on a domain Q2 of state space (V: Q-+ R)
is positive definite on @ if, and only if, V(x) >0 for all non-
zero state vectors x in € . Such a function V is negative

definite if, and only if, -V is positive definite.

The following theorem, due to Lasalle, gives a method for
using more closely specified "energy-like" functions to identify
regions of asymptotic stability, see Lasalle & Lefschetz (1961),
Chapter 2, §9.

THEOREM: (Lasalle). Let Q be a domain in R" and let
V be a real valued function of an n-vector argument which
is continuously differentiable and positive definite. Con-

sider the open region
(3) 0* = {zeQ:V(x)<v}

inside the contour of V at level v>0. If Q* 18 bounded --

i.e. V has closed contours--and the time derivative V,

given by

(4) Viz):=9V(z)f(z)

of V is negative definite on Q% except at the origin 0,
then 0 ts an asymptotically stable equilibrium point of

the dynamical system (1) and Q* is an RAS of 0.

In expression (4) VV(x) denotes the gradient of the function

V, i.e., the n-row vector of partial derivatives of V given by

(5) VV(x):==(8V(x)/8x1...3V(x)/8xn) .



Figure 1:

Illustration of the Use of an "Encrgy-Llike"
Lyapunov Function tc Determine an RAS

of a Dynamical System Using Lasalle's Theorem
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The function V of Lasalle's theorem is the required "energy-
like" function; it is called a Lyapunov function for the systen
(1) in honour of its creator. The situation is illustrated in
Figure 1. ote that a trajectory which begins at a point Xq
inside the RAS decreases the value of V--"energy"--as it converges
to the origin, while a trajectory beginning at a point X, outside

the RAS need not converge.

3. DOMAIN OF ATTRACTION ESTIMATION

If the dynamical system (1) is not globally (asymptotically)
stable, i.e. stable from an initital position anywhere in the
state space, or "stable-in-the~large", Lasalle's theorem implies
that there exists a state vector x at which V(x) = VV(x)f(x) > 0 --

that is, the time rate of change of "energy" is increasing. Since



the Lyapunov function V is assumed continuously differentiable,

it follows that there must exist a nonlinear man<ifold
(6) M: = {x eR": V(x) = 0, x# 01}

on which V vanishes. This manifold is in general multibranched
(see Figure 1) and it is a practically important open mathe-
matical problem to completely characterize the manifold M. for
suitable classes of Lyapunov functions and dynamical systems

relevant to aerospace and other applications, ¢f. Shields (1973).

Now it follows from the above that a maximal RAS Q* corres-
ponding to a specifiec Lyapunov function v may be generated by
isolating the appropriate local solution(s) x¥ of the nonlinear
programming problem

(7) minxV(x) subject to V(x) =0

Note that since V and V vanish at 0, an equilibrium point of the
system, it follows that 0 is a trivial solution of (7). Thus we

actually seek a solution x* of the nonlinear programming problem
(8) minxV(x) subject to V(x) =0, xXx #0
or, using (6),

(8") minxeMV(x)

Figure 2 depicts the state space projection of an actual situa-
tion similar to that shown in Figure 1. The system is the second
order van der Pol equation (represented in canonical form in R?)
and a specific quadratic Lyapunov function is used, ¢f. Davison

& Kurak (1971). The actual DOA is bounded by the dotted
"prismoidal" curve and the maximal ellipsoidal RAS is shown
shaded. Note that the maximal RAS is determined by the oscu-
lation of two radially symmetric branches of the V=0 manifold

M at x* and -x*. In general the discrete solution set of the

programme (8) contains one or more radially symmetric pairs,



Shields & Storey (1975). The other pair of radially symmetric
branches osculates another elliptical level set of the given
Lyapunov function at x0 and —xO, but this lies in part outside
the DOA and hence is not a valid RAS. This illustrates the
general fact that the optimization problem (8) has local (up to
first order) solutions which are not global. In this paper,
methods are devised both for eliminating the trivial solution
of problem (7) at the origin and for locating a global, rather

than a local, solution of the programme (8).

In order to obtain a maximal estimate of the DOA of the
dynamical system (1), we may consider a parametric class of
Lyapunov functions, solve the problem (8) for each of them, and
choose the "largest" with respect to a suitable measure of the
size of the candidate regions of asymptotic stability corres-
ponding to the Lyapunov functions chosen at each step. More

formally, consider a parametric class of Lyapunov functions

Figure 2:

Geometrie Illustration of the Mathematical Programming
Problem Determining a Maximal RAS for the van der Pol

Equation Using a Specific Quadratic Lyapunov Function
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involving a parameter vector z in a set Z. Let the optimal value
of the programme (8) for the Lyapunov function parametrized by z

be denoted by

(10) V; = V_(x*)

Thus to obtain the kest estimate of the DOA using Lyapunov
functions from the class ¥ we must solve the nonlinear

(unconstrained) programming problem

x
(11) maxzezF(Vz,z) ,
where F is a suitable measure of the size of the maximal RAS
corresponding to a specific Lyapunov function given by the solu-

tion to (8).

Thus, combining the problems (8) and (11), we see that in
order to obtain a maximal estimate for the DOA of the dynamical
system (1) using a given class of Lyapunov functions, we must

solve the difficult nested nonlinear optimization problem

(12) maXZEZF(maXXEMVZ(X)' z),

being careful to isolate the global solution of the inner lcop

(RAS) optimization problem (8).

The major difficulty in applying Lyapunov's direct method
for stability analysis of dynamical systems to practical problems
is that in general there is no systematic method for finding
appropriate Lyapunov functions and solving related problems for
various classes of differential equations and systems. A general
review of the properties of dynamical systems relevant to aero-
space applications and of computable Lyapunov function classes
for them was made in Dempster et al (1979). Suffice it to say

here that of the three types treated in the literature:-



1. Quadratic (Rodden, 1965; Weissenberger, 1969;
Geiss ¢t al, 1971; Davison & Kurak, 1971;
Shields & Storey, 1975)

2. Polynomial (Zubov, 1955)

3. Piecewise Linear (Rosenbrock, 1562)

quadratic Lyapunov functions have proved the most reliable to
date.

The use of quadratic Lyapunov functions in turn requires
the generation of arbitrary sign definite matrices and the
sclution of a matrix equation (Lyapunov's equation). Computa-
tionally efficient procedures (and codes) for performing these
operations were carefully selected (and obtained) for the present

work (see Appendix I of Dempster et al, 1979).

The practical advantages of employing quadratic Lyapunov
functions in stahility studies are twofold. First--and of
greatest importance--is that at constant value the Lyapunov fuc-
tion Vp(x) given by the quadratic form x'Px represents a hyper-
ellipse in state space (see Figure 2). Hence it is easy to
visualize and its "size", i.e. a monotone function of its hyper-

volume given at a (global) optimum of the inner loop program (8)

by

(13) h(P):= n log Vg - log detP
where V; denotes the corresponding optimal value, is easy to
compute.

Secondly, quadratic forms are easily generated. Tha method

employed in this paper is to select an arbitrary negative definite

matrix -Q and then solve the Lyapunov matrix equation
(14) A'P+PA = -Q
for the kernel P of the quadratic form. To see how this equation

arises, consicder the dynamical system (1) written in first order

Taylor series expansion as



(15) % = AX + g(x)

where the nxn matrix A := V£(0) and g contains second and higher
order terms. Neglecting g in (15) and computing v directly

yields

(x'Px) = X'Px + x'Pi

<.
®
il
Q.alOa
o+

X'"(A'P+PA)x : = =xX'0x

—
—_
[e)]
~

]

Hence it follows from Lasalle's theorem (§2) that the
linearization about the origin of the nonlinear system (1) is
globally asymptotically stable if, and only if, Q in (16) is
positive definite. To generate by solving (14) a positive defi-
nite matrix P(Q), given a positive definite matrix Q, an O(n3)

iterative algorithm due to Smith (1971) is available.

The best technique for generating positive definite matrices
Q was utilized in an earlier (small angle attitude control) study
by Geiss ¢f a? (1971). It is well known that all real symmetric
matrices are orthogorally similar to a diagonal matrix, whose
entries are its eigenvalues, and thus that all positive definite
matrices are orthogonally similar to a diagonal matrix with
positive diagonal elements. Hence the parametrization of all
nxn positive definite matrices may be effected in the required
n(n+1)/2 parameters by combining a parametrization of the group of
orthogonal matrices with the n diagonal elements of a diagonal

matrix in the form

(17) Q(z) : = G'(8,0) AG(8,0)
where the row vector z' := (A',0',8"'), A := diag(A1,...,An) and G
is an orthogonal matrix defined by an (n-1) (n-2)/2 - vector ¢

and an (n-1)- vector @ (see Dempster et al, 1979, for details).
The advantage of this parametrization over other possible, but
badly behaved, parametrizations in the same number of parameters
is that with it separate adjustment of the lengths and orienta-
tions of the principal axes of the hyperellipsoidal Lyanpunov

function contours is possible.



We are now in a position to define precisely the objective

function F: I&+IL z+——F (z) of the unconstrained problem (11) as

(18) F(z) : = hoPoQ(z)

Yy, THE DOMATT SYSTEM AND NUMERICAL EXPERIMENTS

This section discusses the implementation of the technique
for assessing the stability behavior of a (controlled) dynamical
system based on Lyapunov's direct method discussed in the pre-

vious two sections.

Having presented the necessary background material in
Section 3, Figure 3 outlines the structure of an algorithm to
estimate the domain of attraction of an equilibrium point of a
dynamical system. There are two parts to this algorithm. For
any given (quadratic) Lyapunov function we wish to find the maxi-
mum region of asymptotic stability (RAS). Measures of the size
of this region estimate the size of the domain of attraction of
the equilibrium point relative to the given Lyapunov function.

By interpreting the relevant theorem (Lasalle's theorem) geo-
metrically the RAS problem can be formulated as a nonlinear

programming problem. This forms the <nner loop of the algorithm.

The second part, or outer loop, of the algorithm seeks the
guadratic Lyapunov function which yields the largest RAS, and
hence the optimal estimate of the domain of attraction. Again

this is formulated as a nonlinear programming problem,

The key to a succescful procedure for estimating the domain
of attraction lies in the choice of algorithms for performing
the two nonlinear optimizations described above. The selection,
specification, implementation and testing of the optimization
routines used in the method was carefully addressed. After an
extensive general review of current optimization techniques rele-
vant to DOA estimation for the controlled dynamics of satellite
large angle manoeuvres (conducted early in the study), it was
decided that the latest proven constrained and unconstrained
techniques of classical type afforded the best change of efficient

optimization calculations. In particular, for the relatively few



Figure 3
Flowchart of the Besic DOA Estimation Algorithm

for f ,

»

Supply subroutires
vf calculation
where X=f(x)

BEGIN
i ¢

Caleulate A := 7£(C)

Y

Set k := 0; Z =2

Calculate 8z,

p evaluations of F
i=1,...,

1
|

Yes !
1
|
lFr—-——————— - ——
I INNER LOOP QPTIMIZATION
i
454 Calculate Q, = 0(z,)

R

p
(BFGS or Powell '64)

Y

Set:-
Zpy =t 82,3 k := kel

Y

Calculate F(zk)

Solve for PL
A'Pl + PlA = 'Qz

Y

Solve V*(P,) := min x'Pyx
s.t. f(x)'Plx =0
with initial values x
Set X, := argmin v*(P
(Powell-Han '77)

X, i= (Xl_]U{Xl})\(Xi_])

o ¢ xﬁ-l
)

Y

i
II -1 Calculate F(z,) :=
*
|| nlog V (Pz) ~ log dat P,

Calculate

Individual bounds ony X;
* maxj(v*(Pk)/X§)i

elgenvectors n?.---.ns of P

nj'-;
Y

END



nondifferentiable points in the baseline system dynamics (see §5)
due to sign (gas jet) and to saturation, window and Heaviside
(reaction wheel) function modelling of control actuators, infant
(and largely inefficient first order) nondifferentiable opti-
mization techniques were not deemed worth the computational
overheads. (In this regard see Lemarechal (1979b).) Instead
smooth and other suitable approximations to the baseline system

control actuator nonlinearities have been utilized.

Further, random line and grid search methods have not proven
the most effective of search techniques for locating global optima,
let alone for locating optima of more well-behaved functions. In
any event, research performed in the present study has shown that
the bulk of the difficulties in the face of multiple optima re-
ported in the recent literature (cited in the previous section)
with the older optimization techniques used previously for DOA
estimation have largely been due to a failure to parametrize the
problem properly and to limit step sizes sensibly. Undoubtedly
this has come about through a general lack of problem under-
standing which was advanced, but not completed, in the present

study.

The above considerations were fully developed in Dempster
et al (1979) where basic requirements for numerical optimization
algorithms in this context were set out. Two alternative algo-
rithms were proposed for the outer loop--the Powell (1964)
eonjugate direction method, and the BFGS quasi-Newton (or vari-
able metric) method (see, e.g. Adby & Dempster, 1974) and one
for the inner loop--the new Powell-Han projected Lagrangian
algorithm, Powell (1977,1978). The performance of these algo-
rithms was evaluated on a number of carefully specified test
problems (details of which are to be found in Appendix II to
Dempster et al, 1979).

For computation using the Powell-Han algorithm, the inner
loop programme (8) has been replaced by the analytically equiv-

alent problem



(19) V*(P):==minx x'Px
s.t. f£(x)'Pxp(x) >0

where p is a nonnegative radially decreasing function with a
single pole at the origin of at least the same order as the zero
at the origin of f(x)'Px. Multiplication of the equation con-
straint of (8) by p removes the trivial solution of (7) at the
origin, while use of the inequality appears to result in improved

performance of the Powell-Han algorithm.

Of course the Powell-Han routine is only capable of finding
local optima of (19) corresponding to solutions on various
branches of the manifold M=={Xl£Rn: f(x)'Px=0}. In general
several local minima exist (in radially symmetric pairs) and the
global solution must be selected from these as yielding the
smallest value of V. As the outer loop algorithm varies the
positive definite matrix Q, the Lyapunov function kernel P is
deformed via the Lyapunov matrix equation and the branches of
the manifold M move in a manner which makes it impossible to
predict on which branch the global solution lies. While a small
change in Q may move the manifold M by only a small amount, the
global solution may, as a result, jump to a different branch‘of
M. This difficulty may be overcome by keeping track of all
candidate local optima as Q varies, and by choosing at each outer
loop function evaluation the global inner loop optimum from this

set.

In the computer implementation of the DOA estimation algo-
rithm an initial set XO of state space starting points for the
Powell-Han algorithm is supplied by the user. At each outer
loop function evaluation 2, the result of every successful inner
X while all

in a neighbourhood of this local optimum

loop optimization is added to the current set X
other elements of Xz
are deleted in order to prevent unlimited growth of the set X.
In numerical experiments, it has been observed that when the

manifold M moves slowly with changes in Q, each local solution

of (19) replaces the starting point which led the Powell-Han



algorithm to it.(In the code, the number of starting points

may be limited by the user.)

Since at the outer loop optimum there are usually multiple
global solutions to the inner loop problem (8), the outer loop
optimum is often located when two or more inner loop solutions
of (19) (other than radially symmetric pairs) yield the same

value of V.

Figure 3 suggests schematically how the algorithm outlined
in Section 3 and incorporating the optimization routines discussed
above are implemented as the structured FORTRAN code DOMATT. The
general design principles and skeletal outline of the DOMATT
system as a piece of applications software are indicated in
Figure 4, while the module structure of DOMATT's FORTRAN éode——
including the Atomic Energy Research Establishment, Harwell, U.K.
optimization routines VAQU4A, vaA13AD, VFO2AD and POWHAN -- is

depicted in Figure 5.

The DOMATT code was tested on 8 specially chosen dynamical
system test problems culled from the open literature. The cri-

teria used in selecting these test problems were as follows:

1. To include at least one system to which the solutions
of the RAS problem and the DOA are known analytically.

2. To include a low order system for one of the control
actuator categories represented in the aerospace
systems, i.e. gas jet (see §5) as a simple test of
the performance of the DOMATT system in the presence
of "hard" nonlinearities.

3. To grade the orders of the test problems (2 through 5)
in such a way as to give some indication of the in-
crease in computation time with increase in problem

complexity.

(The specification of the test dynamical systems can be
found in Appendix III of Dempster et al, 1979.) The computa-
. -3
tions were performed to an accuracy of 10 by an ICL2980

computer running under the VME/B operating system.

The DOMATT code solved all 2-dimensional problems to the
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Figure 5:
DOMATT Module Chart
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required accuracy except the jet-type problem involving a "hard"
sign function nonlinearity. The outside bound error termination
difficulties encountered with the Powell-Han algorithm on this
problem were exacerbated on the higher dimensional "high curvature
problem" -- a 3-dimensional cubic model of a servo-mechanism.
DOMATT failed to make significant progress on the remaining 3-
dimensional problems and the 4-dimensional problem over the
course of several runs. It is not clear to what extent further
algorithmic tuning could reduce computation times, although there
was some indication on the largest test problem that the inner
loop Powell-Han algorithm was taking prematurely small steps.
More importantly, relatively slow progress was experienced at
the outer loop by the Powell '64 conjugate direction method. If
(approximate) gradient information from perturbation analysis of
the inner loop problem (8) were available, faster outer loop
progress could be expected with the BFGS quasi-Newton method on
the basis of comparative tests of the two methods performed in
the study and general experience, see. e.g. Adby & Dempster
(1974) . However, it is not clear what difficulties would be
caused by nondifferentiability of the outer loop RAS measure

due to multiple global solutions of the inner loop problem. This
remains a topic for future research to be discussed further in

Section 6.

An analysis of the average time per outer loop -- i.e.
candidate gquadratic Lyapunov -- function evaluation, showed this
average inner loop run time to a global optimum to increase very
reasonably with state space dimension. Due to limited computer
budget remaining after two sets of numerical experiments and
extensive simulation analysis, it was therefore decided at this
point in the study to proceed to the application of the DOMATT
code to the baseline aerospace systems. These will be set out
in the next section, along with the results of the relatively

unsuccessful numerical experiments so far performed.

5. AEROSPACE APPLICATION TO SPACESCRAFT LARGE ANGLE MANOEUVRES

One of the fundamental limitations on the amount of scien-

tific data returned from orbiting astronomical observatories is
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is due to the time spent in performing slew manoeuvres between
stellar targets of interest. Current state-of-the—art attitude
control laws implemented on such missions are simple but
reliable and are designed to admit the required large angle
manoeuvres by slowly rotating the spacecraft about one axis at

a time in an Euler sequence. Many different control laws have
been proposed in the literature to reduce manoeuvring time, the
most attractive of which ic to perform the required attitude
change by rotating the satellite simultaneously about all three
control axes. In this case however the control laws to realize
the solution are almost certainly nonlinear, as are the equations
describing the large angle dynamics and kinematics of the satel-
lite itself. The overall control problem is immediately more
complicated; in particular, it is difficult to assure the desired

system stability behavior from all possible initial conditions.

In applications requiring both accurate fine pointing and
a large angle slew capacity, satellites are generally controlled
actively about three orthogonal axes. Control torques are pro-
vided either internally, by momentum exchange devices such as
reaction wheels or control moment gyros, or externally, by mass
expulsion devices such as cold gas or hydrazine thrusters.
Coarse pointing control systems also make use of environmental
torques, such as are due to solar radiation, gravity gradient

and the Earth's magnetic field.

Two control actuator types -- mass expulsion and momentum
exchange devices -- were examined in detail in Dempster et al
(1979) and models suitable for control system analysis and
design were developed for particular devices. In the modelling
task emphasis was placed on the requirement that the models be
simple but representative. Significant nonlinearities have

been retained.

In designing a large angle attitude control system two
control law synthesis techniques may be considered; the first
is to use optimal control theory on the grounds that designs
that minimize time, fuel and energy are of obvious interest in
this application, the second is to rely on intuition and techni-

cally sound heuristics. The ad hoe designs resulting from the



second approach are more attractive from a practical point of
view because they can be structured in feedback form. DBy com-
parison, optimal control solutions are difficult to implement.
The associated computational requirements are generally large,
certainly beyond the capability of the envisaged on-board com-
puters. In particular, optimal controls are usually of the
open loop type and as a consequence are sensitive to parameter
changes and disturbances unless made closed loop through the

model reference approach -- at significant computational cost.

We turn now to the mathematical definition of the two
baseline large angle satellite attitude control systems devel-
oped in the study -- one reaction jet controlled and the other
reaction wheel controlléd. Realistic actuator models are in-
corporated in each. In particular, it will be assumed that
reaction jets operate like ideal relays (without dead zones or
rise times) and reaction wheels are subject to torque saturation

and wheel speed limitations.

Consider first the body rate dynamics of a rigid vehicle
measured relative to a body-fixed, body-centered reference
frame b. These are given by

(20) H=J3]

u+J‘1S(w)hb,

where w denotes the 3-vector of vehicle angular velocities -=-
the body rates, J is the 3 x 3 matrix of vehicle inertias
(resolved in the body frame), u is the 3~-vector of control
dctuator outputs, h_ is the 3-vector of vehicle angular momenta

b

resolved in the body frame, and S(w)hb denotes the matrix-vector
representation of tha vector cross product w><hb, i.e. S is given

by

(21) 0 X

The corresponding kinegmatic equations are giver in terms of

Gibbs vector p attitude representation as
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(22) P =3 [I3-—S(p)-+pp']w ,
where I3 denotes the 3-dimensional identity matrix.
Thus the state space of the (controlled) dynamical system

given by (20) and (22) is Euclidean 6-dimensional space R§

and the desired equilibrium point is

(23) X = (

where p=0(e Rs) is the target inertial vehicle attitude and
w=0/(e Pg), i.e. rest, is the target body rate vector. It
follows that the vector p represents vehicle attitude error
relative to an inertially fixed body-centered target reference
frame t taken to coincide with a fixed inertial reference
frame s. On actual astronomical missions, definition of
current attitude error relative to an arbitrary inertial target
frame is easily computed on-board by simple formulae (set out

in Dempster et al, 1979).

After investigation of various slew control laws proposed
in the literature, the Mortenser. '63 control law was chosen to

define the control actuator input signal as
(24) s := Kn+k(1+p'plp .,

where K==diag{k1,k2,k3} is a diagonal matrix of strictly posi-
tive diagonal entries and k is a positive constant. The
control law (24) defines a feedback control with proportional
rate, and nonlinear position, gain. It can be shown -- by a new
simple proof, see Dempster et al (1979) ~- to be globally
asymptotically‘étable in the absence of actuator nonlinearities,
i.e. when control reaction torque output u equals minus control
input signal s . A principal aim of the research described in
this paper and currently in progress is to determine the sta-
bility properties ¢f control systems incorporating (24) with

realistic nonlinear actuator output modelling.



To specify the controlled dynamics of the baseline systems,
it remains only to specify the control actuator output u , as
a function of the control input signal s given by (24), and

the related vehicle angular momentum vector h in the body

b 14
rate dynamical equation (20).

Gas Jet (External Torque) Beseline Attitude Control System

In this case, the control actuator output is given oy
(25) u:= -sgn(s)

as a 3-vector of simple sign functions each of which operates
on the approuriate coordinate of the input signal Sy to pro-
duce the idealized gas jet toroue ijaX(see Figure 6.1) for
each of the three thruster pairs. The angular momentum vector

corresponding to such external torque devices is given by

(26) hb = Jdw

to result in closed loop dynamice of the form
(27) o = —J—1sgn(s) + Jm1s(w)Jw .

Reaction Wheel (Angular Momentum Fxchange) Baseline Attitude
Control System
This system is considerably more complicated that the gas
jet system and involves two aspects newly developed during the
course of the study. The complicated actuator output modelling --
which ignores relatively insignificant electric motor nonlinearities --

was developed with the benefit of preliminary simulation studies.

Consider first the angular momentum vector corresponding
to momentum exchange torques. By the conservation law the system
angular momentum resolved in inertial coordinates is a constant
vector h and the transportation b= As between the inertial
coordinates s and the current coordinates b of the body ref-

erence frame may be expressed in terms of current attitude, see
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Dempster (1980), Table 1. Hence it follows that the appropriate

angular momentum vector is given by
(28) h, = (1+p'p) ' [(14p'P) I, + 2pp' + 25(p)]h

If a slew manoeuvre is begun from rest¢, the vehicle angular
momentum is initially zero and all system angular momentum must be
stored in the spinning reaction wheels. (In practice, auxiliary
thrusters are typically used to dump system momentum from time
to time in the course of a mission.) Expression (28) obviates
the need to exzplicitly consider differential equations for wheel
rates of momenta -- thereby enlarging the state space of the

system to ZR9 ~-- as has been done previously in the literature.

In control actuator output modelling however one needs an
expression for the wheel speed vector w" which may be ex-
pressed in terms of the reaction wheel inertia matrix J¥ and
the vehicle inertia matrix (with locked wheels minus the wheel
inertias) J as

w

(29) wV o= (v

)—1[hb-(J+Jw)w]

We are now is a prosition to set out reaction wheel control
actuator output, in terms of controller input signal and current
wheel speeds, as the following cascade of "hard" nonlinear

functions, viz.
(30) u: = -sat(s)h(ww,s)

The saturation function is a 3%x3 diagonal matrix of
saturation functions representing tcrque limited responses, each
of which operates on the appropriate coordinate of the input
signal S to produce the idealized reaction wheel torque (see
Figure 6.2). The second factor h in (30) is a 3-vector of
0-1 valued functions hi representing wheel motor shutdown and
restart for the purposes of wheel speed limitation to prevent

wheel break up. Fach coordinate function is of the form



W - p W _ w _
(31) hi(wi,si). max{WLn(wi), 1 H(siwi)} i=1,2,3

The window function serves to limit wheel speed to within

Y
+0)
- 'ma

calls for restart of a free spinning wheel in the opposite

% (see Figure 6.3), while one minus the Heaviside function H

direction of rotation (see Figure 6.4). The effect of the maxi-
mum in (31) is to allow wheel torque output when either (or

both) of these conditions hold.

Numerical Experiments

Note that the (closed loop) dynamical systems generated by
both baseline attitude controllers, respectively, (22), (27) and
(20),(22),(29-31) are of the form

(32) x = £(x) + §(x) ,

where f is an analytical function of the state vector x and

g 1is a discontinuous, piecewise continously differentiable
function. The theory of §§2 and 3 on the other hand applies
only to dynamical systems whose right hand sides are continuously
differentiable. Unfortunately, an analytical theory of piece-
wise quadratic Lyapunov functions for discontinuous systems is
well developed only for the case of a unidimensional discon-
tinuity, see Weissenberger (1965,1969) and Dempster et al (1979).
As can be seen from inspection of Figure 6 however, for both
baseline systems the discontinuous or nondifferentiable points
of § are explicitly known and few in number. It is therefore
possible to provide continuously differentiable arctangent
approximations to the discontinuous/nondifferentiable functions,
although these are extremely complicated, see Dempster et al
(1979), Appendix IV, for details. In the numerical experiments
with the DOMATT code therefore a gradient evaluation in a
specified neighbourhood of a nondifferentiability was replaced
by a median sub- or supergradient value, while in such a neigh-
bourhood of a discontinuity a gradient evaluation was replaced

by a specified large number of appropriate sign.



For detailed numerical parameter values used in the mathe-
matical models of the baseline large angle attitude control
systems, the reader is referred to Dempster et al (§1.5). It
is sufficient here to note that all numerical experiments were
conducted with system parameters corresponding to a large vehicle

of the NASA Orbiting Astronomical Observatory (OAO) type.

Early in the study it was decided that simulation of the
closed loop dynamics of the baseline systems prior to DOA
estimation of their dynamics was the most scientifically (and
cost) effective sequence. The main advantage seen was that if
realistic highly nonlinear actuator modelling resulted in serious
instabilities in the controlled dynamics of the baseline systems --
known to be globally asymptotically stable with linear actuators --
this would be uncovered before applying the DOMATT code developed
for DOA estimation. In any event, the stability behaviour un-
covered by the simulations would be useful in guiding the tuning
of the DOA estimation procedure for use on realistic aerospace
systems. An added advantage -- actually realized -- was
correction in both modelling and parameter setting of the base-
line systems previously agreed, before DOA estimation computer
runs were attempted. It should be borne in mind that the thrust
of the present research is nevertheless ~ultimately to replace
computationally expensive and scientifically <nconclusive stabil-
ity analysis of dynamical systems in engineering, economics and
policy analysis by simulation with a computationally efficient

and decisive procedure.

The objective of the simulations performed in the present
application was to investigate the stability boundaries of the

proposed controllers of a hypothetical spacecraft during 3-axis

slew manoeuvres. The controllers under consideration were:-—
1. the gas jet baseline system,
2. the reaction wheel baseline system with zero initial

spacecraft momenta,

3. the reaction wheel baseline system with large initial
spacecraft momenta.
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It was assumed in all cases that the initial angular
velocities of the vehicle were zero, and that the desired ro-
tation angle was as close to 180° (reverse-point manoeuvre) as
possible. A unit eigenaxis and an angle of 179° were arbitrar-
ily chosen to define the initial Gibb's vector representation
p(0) of the inertial attitude error of the body relative to
the target intertial body attitude. Simulations of all the 8
combinations of sign of the components of p(0) were made to
verify the stability of the proposed controllers. 2All simulations
were run on a PDP 11/45 computer with floating-point hardware
running under the IAS operating system. The simulation program
used was Oxford Systems Associates' Extended System Modelling
Program (ESMP) which is a general-purpose block-oriented simu-
lator allowing for extensive user interaction. In summary, the
simulation experiments indicated that -- with suitable para-
metrization ~- both baseline large angle attitude control systems
are globally stable. A more detailed discussion may be found in

Dempster (1980) and Dempster et al (1979).

Given the difficulties uncovered‘in the application of the
DOMATT code to the eight test continuously differentiable
problems described in §4, it was not expected that the appli-
cation to the nondifferentiable baseline systems would prove
very successful without a deeper understanding of the problems
experienced by the inner loop optimization routine. Thus,
while both systems were coded in the study, the DOMATT code has
been applied so far only to the gas jet system. The results of
this application will be described briefly in the sequel, but it
was felt that it would be an unwise research strategy to devote
too many resources to the application of the DOMATT code to the
baseline systems before a more robust code had been tested on

the sample test problems.

The gas jet baseline system was therefore presented to
DOMATT with the intention of finding at least a crude RAS esti-
mate. The first such run processed 66 inner loop optimizations --
i.e. 66 candidate Lyapunov functions =-- in 30s. This is a
suspiciously rarid average rate when compared to such rates for

the lower dimensional test problems. In fact, in every case
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the inner loop global solution was found to lie in state space
within the specified tolerance of the origin. When similar

near zero inner loop solutions were found with the test problems,
a clear contrast emerged between inner loop optimizations find-
ing a genuine solution and those finding the trivial solution

at the origin. Various constraint addition and rescaling
techniques were attempted, but none proved successful. In view
of this, there was little to be gained from making extensive
runs on the coded reaction wheel baseline system without further

research.

Since the completion of these experiemnts, the theoretically
effective nonlinear constraint rescaling technique -- which
removes the trivial solution to the inner loop constraint equa-
tion at the origin -- described above in connection with the
numerical inner loop problem (19) has been developed. The
application of this technique to the gas jet system is a

first priority of research currently in progress.

6. CONCLUSIONS AND DIRECTIONS FOR ALGORITHM DEVELOPMENT

A wide study of Lyapunov's direct method was made with
reference to dynamical systems with both continuous and dis-
continuous right hand sides. The concept of Lyapunov stability
was examined in some detail and methods of generating Lyapunov
functions were reviewed. Quadratic Lyapunov functions were
selected as being most suitable for examining the stability of
general dynamical systems which might arise in engineering or

policy analysis applications.

A careful study was also made of available optimization
routines and as a result three routines were selected for more
extenstive testing -- the Powell-Han constrained optimization
routine and the Powell '64 and BFGS unconstrained optimization
routines. As little was known about the practical capabilities
of these routines in the present application, a set of test
problems was designed with a view to evaluating the strengths
and weaknesses of each. 1In the event, the routines performed
in a predictable fashion and the Powell '64 and Powell-Han
routines were chosen for the optimization problems envisaged

in DOA estimation.



Lasalle's theorem has been interpreted for quadratic
Lyapunov functions as a basis for an inner loop optimization
procedure for estimating the region of asymptotic stability

(RAS) of dynamical systems of the form
x = f(x)

A well behaved parametrization of quadratic Lyapunov
functions has been taken so that the optimal Lyapunov function
(that producing the largest RAS) can be found. Thus a procedure
for estimating the DOA of an equilibrium point of a (controlled)
dynamical system has been devised which implements the latest
optimization technigues in the quadratic Lyapunov function
approach to DOA estimation. The procedure has been incorporated
in a modular FORTRAN computer code DOMATT written to advanced

modern software standards.

Before the applications study reported in this paper com-
menced the analysis of rigid spacecraft dynamics for simultaneous
three-axis manoeuvres had largely ignored the nonlinearities
known to be present in the operation of control actuators and
attitude sensors. While for stability analysis of such manoeu-
vres it is valid to ignore the relatively negligible sensor
nonlinearities, no study aimed at eventual practical implemen-
tation of a satellite large angle attitude control system can
afford to ignore actuator nonlinearities. In the present study
a new nonlinear mathematical model of reaction wheel control
actuators has been developed which explicitly considers torque

saturation and wheel motor speed limitation shutdown and restart.

Having regard for the computational overheads imposed on
both DOA estimation and simulation techniques by state space
dimension, the minimum dimension vehicle attitude representation --
in terms of Gibb's vectors -- has been utilized in this study.
This representation is easily computed from the other common
attitude representations, and conversely, see Dempster (1980),
Table 1. Moreover, simulation studies performed have demonstrated
that in spite of their mathematical singularity at 180° Gibb's

vectors can be used to study 180° reverse points to within the



accuracy of a fine pointing control system. A new minimal
dimension representation of satellite body rate dynamics for
reaction wheel control systems has also been developed. The

new representation obviates: the necessity to consider the wheel

rates explicitly as state variables in analysis or simulation.

Two large angle attitude controllers, a gas Jjet mass
expulsion system (external torque) and a reaction wheel momentum
exchange system (internal torque), were modelled with respect
to the new representation of body rate dynamics, using Gibb's
vector kinematics and the Mortensen '63 control law. As noted
above, the models account for the most important nonlinearities
in the control actuators. These two systems were adopted as the
baseline systems for the simulations and DOA estimations per-

formed in the latter part of the study.

A new simple proof has been provided of the global (asymptotic)
stability of the gas jet and reaction wheel actuated Mortensen '63
large angle attitude control system in the absence of actuator
nonlinearities, see Dempster et al (1979). The full baseline
systems were extensively simulated using Oxford Systems Associates'
Extended System Modelling Program (ESMP). These simulations
indicate that both the baseline systems are globally stable, in
spite of the inclusion of realistic nonlinearities in the control

actuator modelling. This is in itself a significant result.

In order to test the DOMATT code, tune algorithm parameters
and gain computational experience with the method, a carefully
designed set of dynamical system test problems were run. Although
the procedure both reproduced results of previous researchers on
low order test problems and produced plausible results where the
DOA is not known a priori, difficulties with the performance of
the inner loop optimization procedure were encountered on test
problems, and the higher order gas jet baseline system, which
incorporates "hard" nonlinearities. As a result it was decided
to postpone computational experience with the reaction wheel
baseline system -- which incorporate several "hard" nonlineari-
ties -~ until a deeper understanding of these problems has been

obtained.



The outstanding research thus remains the refinement of the
DOA estimation procedure -- in particular the inner loop Powell-
Han constrained optimization method. Suggestions are made below
for research directed at improvement of the inner loop opti-
mization techniques. The study has uncovered additional work
which might usefully be done to clarify various aspects of the
work completed and to extend the principles established to more
complex systems. These are discussed in the remainder of the

paper.

Directions for Further Research

This study has identified a number of respects in which

the DOMATT program should be refined. They are the following:-

(i) Since the end of the study information has been obtained
which shows that difficulties with the Powell-Han algor-
ithm similar to those encountered at the inner optimization
loop of DOMATT have been experienced by other researchers,
Lemarechal (197%a), Madsen (1979). Two identified sources
of deficiency with the best current implementation of
the algorithm (Harwell VAO2AD as used in DOMATT) are
relevant in the context of this study. The first defic~-
iency is a tendency to singularity in the Lagrangian
inverse Hessian update when steep-walled functions such
as "hard" nonlinearities are encountered. The practical
result is an attempt at a large algorithm step outside
prescribed bounds for the state variables. The second
shortcoming involves prematurely smalil algorithm steps
on problems -- such as those posed by the baseline systems —--
having highly curved constraint surfaces. The difficulties
result from usiiig Han's theoretical results on Lagrangian
augmentation and quadratic approximation line search. In
this regard it should be borne in mind that Powell-Han-—
type algorithms are currently universally regarded as
the most promising approach to the numerical solution of
difficult nonlirear programming problems such as those
encountered at che inner loop of DOMATT. Hence a full

investigation ¢f intenational computational experience



(ii)

(iii)

and proposals to overcome the above shortcomings is in

progress and the results will be incorporated in the code.

The DOMATT code includes inner loop starting point selec-
tion procedures designed to overcome the problem of selec-
ting a local rather than the global optimum by the inner
loop algorithm, and also for preventing the slow conver-
gence at the outer loop caused by multiple global optima --
a problem identified by Shields and Storey (1975). These
procedures can be refined by further application of com-
binatorial techniques. An important part of future study

is an investigation of how tangency points (local optima)
found in the inner loop move as the P matrix (quadratic
Lyapunov function kernel) is altered at the outer loop.

This is a form of parametric information about the solu-
tion of nonlinear programming problems under perturbations --
an area of considerable research activity at the moment.
Unfortunately, current perturbation analyses of nonlinear
programmes, see e.g. Fiacco & Hutzler (1979), Robinson (1980),
Zlobec (1980), are not immediately applicable in that they
assume too much smoothness in the problem functions and pertur-
bation parameter dependencies. It would be interesting to
extend such general analyses to the case of programmes with
only directionally differentiable problem functions, c¢f.
Dempster & Wets (1976), which arise frequently, for example,

in aerospace engineering applications such as the present.

Another problem revealed in the present study to date is
that of the trivial solution to the inner loop optimization
problem presented by the origin. Techniques to overcome

this using objective function constraints of the form

have been tried and could be investigated further. More
important however is the testing of the nonlinear ccn-
straint rescaling technique discussed in §4 which should

completely eliminate the difficulty.



{iv) An investigation must also be made of steplength tuning
and outer loop gradient provision for the alternative BFGS
quasi-Newton algorithm utilized in the present study. These
provisions are designed to enhance the efficiency of the
outer loop algorithm. Regarding the second point, due
to the complex nonlinear, but analytical, formulae
represented by (17), see Dempster et al (1979), Appendix
I, the development of gradient information should be
investigated through the use of automatic differentiation
software which has recently become available, Robinson
(1979). Gradient information would also require of course
the results of the perturbation analysis of the inner loop

problem called for in (ii) above.

Given that these refinements of the DOMATT code can be developed
using test problems, the code will then be initially applied to

the gas jet and reaction wheel baseline aerospace systems. Exten-
sive tests should be carried out to allow the detailed mathematical
properties of the problems to be assessed, so that the DOMATT code
can be further tuned. For example, the precise nature of the
starting point procedures selected depends on how closely the
candidate inner loop solutions need to be tracked in successive
iterations of the outer loop. This is likely to be fairly problem
specific, so that detailed mathematical investigation of the V=0

manifold could improve the efficiency of the DOMATT code.

Regarding aerospace applications in general, it would be
fruitful to study the extension of Weissenberger's piecewise
quadratic Lyapunov function techniques for single actuators to
the 3-dimensional actuators used on spacecraft. This would
allow study of the gas jet chattering phenomenon. The use of
piecewise linear Lyapunov functions (generated by linear pro-
gramming techniques) should also be investigated , ¢f. Rosenbrock
(1962). Such a method would give more careful mapping of DOA
boundaries than is possible with quadratic techniques and would
allow the extension of the DOMATT code to more general non-

differentiable systems.



Finally, assuming that the problems discussed above can be
solved, experience with the quadratic Lyapunov function approach
to dynamical system stability analysis -- as embodied in the
DOMATT code -- should be accumulated with other systems arising
in engineering, economics and policy analysis. The potential
applications in systems studies =-- for example, in energy policy

research -- are widespread.
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