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FOREWORD 

The public provision of urban facilities and services often 
takes the form of a few central supply points serving a large 
number of spatially dispersed demand points: for example, 
hospitals, schools, libraries, and emergency services such as 
fire and police. A fundamental characteristic of such systems 
is the spatial separation between suppliers and consumers. No 
market signals exist to identify efficient and inefficient qeo- 
graphical arrangements, thus the location problem is one that 
arises in both East and West, in planned and in market economies. 

This problem is being studied at IIASA by the Public Facil- 
ity Location Task (formerly the Xormative Location Modeling Task) 
which started in 1979. The expected results of this Task are a 
comprehensive state-of-the-art survey of current theories and 
applications, an established network of international contacts 
among scholars and institutions in different countries, a frame- 
work for comparison, unification, and generalization of existing 
approaches, as well as the formulation of new problems and 
approaches in the field of optimal location theory. 

Based on an earlier draft presented at the Task Force Meeting 
on Public Facility Location, held at IIASA in June 1980, this paper 
?.s one of the outcomes of interdisciplinary interactions between 
the applied area of Human Settlements and Services (HSS) and the 
methodological area of Systems and Decision Science (SDS). The 
challenqinq issue of applyin4 stochastic programmina to real location 
problems is explored, and further generalizations meaningful both 
for theoretical advancement and applications are proposed. 

Lists of publications in the Public Facility Location Series 
and of related publications in the SDS Area appear at the end of 
this paper. 

Andrze j Wierzbicki 
Chairman 
Systems and Decision 
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ABSTRACT 

The static facility location model with a spatial interaction- 
based allocation rule has been first introduced by Coelho and 
Wilson (1976). The main interest in introducing a spatial 
interaction-based allocation rule lies in the more realistic trip 
patterns that result from its use, which in many cases seem to fit 
the actual data on customer choice better than the simple nearest- 
facility allocation rule. 

A further step towards more realistic models of customer 
behavior is the introduction of stochastic features, descrihinq 
both the amount of total demand for facilities and the trip pattern 
of the customers. In this paper the usefulness of stochastic 
programming tools to formulate and solve such problems is explored, 
and some simple, but easily generalizable applied examples are 
given. Both numerical techniques and exact analytical methods are 
outlined, and some issues for further research are proposed. 
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SOME PROPOSALS FOR STOCHASTIC 
FACILITY LOCATION MODELS 

1 . INTRODUCTION 

It is well known that a classical "plant location" model 

is based on very deterministic assumptions. The main limitation 

of such models is the customer-choice behavior emSedded within, 

that is, the choice of the nearest facility. The need to intro- 

duce more realistic behavioral assumptions has been recognized 

by many authors, among them Coelho and Wilson (1976), Hodqson 

(1978), Beaumont (1979), and ~eonardi (1978, 1980). In all the 

above references the sharp distance-minimizing behavior is re- 

placed by a smoother spatial interaction (also known as "gravity") 

model, thus allowing for possible substitution effects across 

space. Since spatial interaction models have both theoretical 

and empirical justifications, their use in location modeling seems 

a promising one. However, the classical spatial interaction 

models solve only part of the problem. Although they are rooted 

on stochastic assumptions (Wilson, 1970; McFadden, 1974; Bertuglia 

and Leonardi, 1979), only the expected values of the underlying 

stochastic processes are used. A natural further step to be 

undertaken is therefore to introduce the stochastic behavior ex- 

plicitly, thus allowing for both uncertainty in customer choice 

and uncertainty in the knowledge of demand. 



The aim of this paper is to explore some of the problems 

arising when such stochastic features are introduced, as well 

as to suggest some numerical tools to solve the resulting 

problems. Due to the exploratory nature of the paper, the 

examples are kept as simple as possible. However, it is felt 

that the suggested approach is by far more general than the 

ap2lications discussed here, and can be easily extended to more 

complex formulations without any big change in the required 

theory and tools. 

2. STATEMENT OF THE PROBLEM 

In its most general form, the static deterministic facility 

location problem can be formulated as follows: 

where 

max B(S) - C f .  (x.) 
S,X,L  EL] 1 

labels the demand locations, belonging to a 

given set M 

labels the facility locations, belonging to 

a set L, to be chosen among all subsets of 

a given set Z 



S =  (S ) is the array of total trips made by customers i j 
between each demand-facility location pair in 

the unit time 

X = ( x. ) is the array of total service capacity (in 
3 

terms of customers served per unit of time) 

to be established in each facility location 

belonging to L 

P = (Pi) is the array of total demand (in terms of 

customers to be served per unit of time) in 

each demand location belonging to M 

is the set of feasible X, accounting for 

possible physical and economic constraints to 

be met by the service capacities 

is a real valued function measuring the total 

benefit which accrues to the customers from a 

given trip pattern S 

f. (x.) are real valued functions measurina the cost 
3 3 

of establishing a facility with capacity xi 
J 

in each location j E Z 

The objective function ( 1 )  is therefore the total net benefit, 

being the difference between customer benefit and establishin: 

costs. It has to be maximized by suitably choosing the subset of 

locations L, the facility sizes X, the trip pattern S. This 

choice is subject to: 

a. constraint ( 2 ) ,  requiring the total demand to be met; 

b. constraint (3), requiring the total capacity to be fully 

used; 

c. constraint ( 4 ) ,  requiring the facility sizes to meet the 

physical and economic constraints; 

d. constraint ( 5 ) ,  requiring the subset of chosen location 

to belong to the set of possible locations 2. 



The general formulation given above can be specialized in many 

ways, by introducing special assumptions for the functions B(-) 

and f.(-) and for the structure of the set r (see Leonardi, 1980, 
I 

for a review). 

The simplest possible form of problem (1)-(5) is obtained 

by introducing the following assumptions: 

a. The benefit function has the form 

where C are the travel costs between each (it j ) pair, i j 
and 6 is a given nonnegative constant. Function (6) has 

been first introduced by Neuburger (1971) in transport 

planning evaluation and extended to location analysis 

by Coelho and Wilson (1976) and Coelho and Williams 

(1978). In the above references it is shown how this 

function has a sound economic interpretation, being the 

consumer surplus measure associated with the trin 

pattern (Sij). Moreover, it has the useful property of 

embedding the spatial interaction model with an exno- 

nential discount factor, which usually has a aood empir- 

ical fit on actual. data. 

b. The cost functions are linear and do not depend on the 

location 

f. (x.) = ax , 
I I j 

c. The set T is 

that is, no physical and economic constraints must be 

met, except for the obvious nonnegativity requirement 

on the size of the facilities. 



After introducing the above assumptions and dropping the 

constant terms, the redundant variables, and constraints, 

problem (1)-(5) reduces to the much simpler one 

min ,Lm Si In Si + B L Cij Si 
11 i j 

Note that, due to the simple form of the cost functions, 

constraint (5) is no longer required, since an optimal solution 

will always have L = Z. The combinatorial features of (1)-(5) 

have thus disappeared, and the problem has been reduced to the 

smooth concave programming problem (7)-(8). The closed-form 

solution to (7)-(8) can be easily found to be 

Equation (9) states that trips from demand locations to facilities 

are made according to a very simple production-constrained spatial 

interaction model (Wilson, 1971). 

Problem (7)-(8) and equation (9) can be used as a starting 

point to build some simple stochastic generalizations. The first 

one is as follows. Let it he assumed that the behavior implied by 

(9) is deterministic, but the demand array P is not known in 

advance. This assumption is sensible in many long-term planning 

applications, where the trip behavior is known but the total 

demand may fluctuate. For instance, in a high school location 

problem the way customers will choose facilities from each demand 

location can be reasonably assumed to be known and deterministic, 

but the total number of students living in each demand location 

may change over time in an unpredictable way. However, the size 

of the schools cannot be changed as fast as demand changes, so 



the planning authority is possibly faced both with unsatisfied 

demand and overcrowding and with unused service capacity. The 

above problem can be stated in mathematical terms as follows. 

Let 

Hi(y) be the distribution function of the total demand 

in demand location i; that is, if ri is the 

random variable giving the total demand in i, 

+ 
a be the unit cost to be paid for an overestimate i 

of the demand in i 

- 
a be the unit cost to be paid for an underestimate i 

of the demand in i 

x be the estimate of total demand in i, given by 
i 

the decision maker 

+ 
Then, if r < x an overestimate cost a.(x -ri) has to be paid, i -  i 1 i 

while if ri > xi an underestimate cost a-(r - x.) has to be paid. 
1 i 1 

The resulting stochastic programming problem is 

min E Si In Si + B E, Cij Sij + 
S,X ij i~ 

The above generalization has been built on the assumption that 

the total demand is stochastic, while the trip behavior is deter- 

ministic. Let this assumption now be reversed, so that the total 



demand is deterministic, while the trip behavior is stochastic. 

This assumption can be easily introduced by suitably reinterpret- 

ing equation (9), which can be rewritten as follows: 

where 

-Bcij 
- - e 

qij is the probability of choosing the 
-Bci 

C e destination j for a customer living 
j in origin i 

The interpretation of the quantities q defined above as prob- i j 
abilities is rooted on the theory of probabilistic choice behavior 

(McFadden, 1973). It has also been shown in Bertuglia and 

Leonardi (1979) that these qua;:tities can be interpreted as steqdy- 

state distribution of a suitably defined Markov process. If the 

customers are assumed to be mutually independent, then (12) can 

be interpreted as the expected value of the number of trips 

between i and j, whose actual values have a multinomial distri- 

bution with parameters q ij* Let vi, be the actual (random) 
J 

number of trips from i to j, and define 

= ' Vij the total number of customers attract- 
j 

ed in j 

the distribution function of T that 
j ' 

is, H.(y) = P ~ { T  5 y) 
I j 

The distribution functions H.(y) cannot be easily written in 
3 

closed form, but random draws of T can be computed using the 
j 

probabilities q i j  Let also the following costs and decision 

variables be introduced: 

is the unit cost to be paid for an 

overestimate of the demand attracted 

in j 



is the unit cost to be paid for an 

underestimate of the demand attracted 

in j 

x is the size of the facility in j 
j 

Since the planned value x will be usually different from the 
j + actual demand r a cost a.(x - r.) will have to be paid when 

jr l j  I 
r < x and a cost aT(r - x  . )  will have to be paid when r > x 
j -  j ~j I j j' 

The resulting stochastic programming problem is 

min I [; \oxj(x - y) d ~ .  (y) + a (y - x . )  d ~ ,  (y) 
x j j 1 - j 1 

Xi I 
Note that the spatial interaction embedding term has been dropped 

in the objective function, since the customer behavior is already 

accounted for by the way the distribution functions H . ( v )  are 
I - 

built. If a = Bj, j = 1,n , then it can be shown that the 
j 

solution to problem (1 3) is given by the median of the random 

vector {r.), which for very large values of Pi, i = 1,m , is 
I 

closely approximated by the expected value, i.e.: 

Although problems (10)-(11) and (13) look quite different, 

they belong to the same general form and can be solved with the 

same methods. A further generalization, allowing for a stochastic 

behavior of both the total demand and the trip behavior would 

still lead to the same problem form. The rest of this paper will 

be mainly concerned with problem (10)-(11) and its generalizations, 

but it must be kept in mind that the theory and the techniques 

which will be developed apply to problem (13), as well as to its 

generalizations. 



3. THE STOCHASTIC QUASI-GRADIENT METHOD 

In order to develop a computational method to solve problem 

(10)-(11), let it be further simplified. For given xi by means 

of equations (9) the optimal values of the variables S can be i j 
expressed in terms of the variables xi: 

Substitution of (14) in the objective function (10)' yields: 

min F (X) 
X 

where the function F(X) is defined as: 

F(X) = C x. lnx. + CC.x. + 
i 1 1 1 i 

i 

and the constants Ci are given by 

The solution of problems like (15) gives rise to two usually 

difficult problems. First, although the objective function (16) 

is convex, it is in general nonsmooth. The possible nonsmooth- 

ness arises from the distribution functions H.(y). First, if they 
1 

are discrete distributions, then F(X) will not have continuous 

derivatives. Second, it is often difficult or impossible to 

compute the exact values of the integrals appearing in ( 1 6 ) ,  

unless for very special and well-behaved forms of the distribution 

functions Hi(y). More often than not, such functions are defined 



not by a closed-form equation, but rather by means of a rule to 

generate random draws from them. 

Such difficulties can be overcome by using direct stochastic 

programming methods, such as stochastic quasi-qradient vethods 

(see Ermoliev, 1976, 1978 for a review). These methods are a 

straightforward generalization of the well-known gradient method 

of deterministic mathematical programming, can be used for quite 

arbitrary distributions Hi(y), and require very simple computations. 

For instance, the stochastic quasi-gradient projection method gives 

rise to the following rule for generating successive approximations 

to the optimal solution of problem (15): 

x ( ~ +  = max {O,X (N) - 
P N  t (N) 1 

for 

N = Orlr..., 

where 

is an iteration counter 

is the Nth approximation to the solution 

vector of (15) 

b~ 
is a step size, to be suitably chosen at 

each iteration 

t(N) = {c?') is a random vector, called the stochastic 
quasi-gradient of F (X) at the point X(N) 

The stochastic quasi-gradient of F(X) at x ( ~ )  is defined as 



where {ri (N) 1 is a sequence of mutually independent random draws 

from the distributions Hi(y). 

The convergence of the sequence x"), as computed by (18), 

to the optimal solution of problem (15) is based on the fact 

that the random vector E(N) , as defined in (19), is a stochastic 
estimate of a subgradient of the function F(X). It will be 

A 

briefly recalled (Rockafellar, 1970) that a subgradient FX(X) of 

a convex function F(X) is a vector such that the inequality 

holds for all y (here the outer brakets on the right-hand side 

denote the inner product of two vectors). A subgradient of a 

differentiable function F(X) is equal to the gradient 

It can be shown that the conditional mathematical expectation 

where E denotes expectation, is a subgradient of the function 

(16) at X = x(~). To do this one must reformulate the problem 
as a minimax stochastic programming problem and apply the well- 

known general results (Ermoliev, 1969, 1976, 1978; Ermoliev and 

Nurminski, 1980). It is easily seen that 



Substitution of (20) into (16) yields: 

- 
F (X) = C xi In x + C. x. + E max a. (x - T ~ )  , ai (-ri 

i 1 1 1  [: i - xi)] j (21) 

The requirements under which the sequence {X (N) 1 converge with 
probability 1 to the solution of (15) are very weak. For instance, 

a set of sufficient conditions is 

and such conditions can always be satisfied in applications. 

4. OPTIMALITY CONDITIONS 

The numerical method outlined in Section 3 is quite general 

and can be used no matter how ill-conditioned the distributions 

Hi(y) are. If, however, these distributions are well-behaved 

enough, then one may try to develop the exact optimality con- 

ditions for problem (15), and possibly find a set of simple 

equations for the optimal solution. 

The starting point to develop necessary and sufficient 

optimality conditions for problem (15) is to consider it as a 

minimax stochastic programming problem (21). The general 

optimality conditions for a stochastic programming problem have 

been studied in Wets (1974), Ermoliev (1976), and Ermoliev and 

Justremski (1979). However, the special structure of problem 

(21) can be exploited to develop the optimality conditions in a 

more convenient form. Minimization of (21) is a special case of 

the following more general problem: 

min Q(x) 
X 

where 

+ C. x. + E max 
1 1  

[I a ( )  x + bi ( v )  
i i j  j I I 



and 

are random parameters. 

Let, therefore, the optimalit conditions for problems (22) be 

analyzed. Let 6 = (A1, ..., 6 ) be a vector with nonnegative n 
components, Q A ( X )  the directional derivative along the direction 

6. Then at an optimal solution X = X *  it must be 

where A > 0, 

f(X) = E Y(X,w) , 

From this the following conclusion can be dra-dn: the components 

of an optimal solution are positive and (24) is satisfied for 

any direction 6. Under suitable hypotheses one can assert some- 

thing about the equalities: 

and 

lim f(X+ AS) - f (X) 
= lim tu (X + A6,F7) - Y (X,Fl) A A dH (W) A + O  A + O  

(the integrability of the function Y(X,W) as a function of w 
is automatically assumed). 



For instance, it is easy to obtain the estimations 

Since 

max{o,a.*.(w) ( x  + As.) + bi*(w) - a.* 
'A] j I 1 j 

(w) x - bi* (W) 1 5 
A j 

< maxl0,a (w) (xj + A,.) + bi* (W) - a (W) xj - bi* (M) } = - izj I 
A i*j A A 

and 



t h e n  

and from t h e  e x i s t e n c e  of E a  f o r  a l l  i , j  and  t h e  Lebesque 
i j  

c o n v e r g e n c e  the roem one  g e t s  

A s  i s  w e l l  known 

Y 1  ( X , W )  = max ( a , 6 )  
6  

g  E G ( X , W )  

where  

G(X,iq) = Co a  ( W )  , k  E K ( X , W ) }  , 
{ k  

Here Co d e n o t e s  t h e  se t  o f  a l l  l i n e a r  c o m b i n a t i o n s  o f  t h e  a rgumen t  

v e c t o r s .  Tak ing  i n t o  a c c o u n t  t h i s  f a c t ,  t h e  c o n d i t i o n  ( 2 4 )  i s  

r e p l a c e d  by 

n  
C ( 6 .  l n e x  + C .  6 . )  + E max 

I j I I ( 9 I 6 )  - > 0 
j = l  g  E G ( X , W )  

n  
C ( 6 .  l n e x .  + C .  6 . )  + max 

3 3 j  = 1  g ( X I W ) ~ G ( X , W )  



max E 
g(X,W) E G(X,W) 

where 

In ex = (lnexl, ..., ln ex. ) n 

Since the condition (25) is fulfilled for any 6, there exist a 

g(X,W) EG(X,W) such that 

Let us now return to the original problem (15) or (21). For 

this problem W = (T~~...,T~), 

I" - 
Y (X,W) = Z max (xi - T ~ )  , ai ( T ~  

1 1 = 1  

where 

I 1 with probability p{xi> T ~ }  

K(X,W) = i21 with probability P {xi< T ~ }  I 
( i 1 , 2 )  with probability P {xi= T ~ }  



Then from (26) one can obtain the following optimality conditions 

for the original problem (15): if a point X is an optimal solu- 

tion, then and only then do multipliers 0 5 y < 1 exist such that i - 

Notice, that similar conditions are mentioned in Ermoliev and 

Justremski (1 979) . In particular, if dHi (xi) = 0 at an optimal 

solution, or if the distributions H.(X) are continuous, then one 
1 

7btains 

+ Inex + ci + ai H.(x.) - a-[l - H~(x~)] = 0 i = T;ii i 1 1  i 

From these equations and for some kinds of distributions Hi(X) 

it is possible to obtain a closed form for the optimal solution, 

or at least to compute a good approximate solutj.on by using 

simple numerical techniques. In the general case with known 

distributions Hi(y), the generalized gradient method can be used 

(see Ermoliev, 1976 and 1978): 

where p yr satisfy the sufficient convergence conditions N' 
cn N 

PN > 01 Pn + C I  y .  pN < , Q y 1. The values of p and 
N = O  N Yr can be chosen in order to decrease the objective function value'. 

This problem has some important peculiarities: there is a closed 

form for the set of subgradients and computing the subqradients 



is easier than computing the values of the objective function. 

This gives us the opportunity to construct descent methods of 

nondifferentiable optimization as well as nondescent ones. 

5. CONCLUDING COMMENTS AND ISSUES FOR FURTHER RESEARCH 

The examples discussed in the foregoing sections have been 

kept as simple as possible, in order to introduce the proposed 

methods in the easiest way. When some of the simplj-fying assump- 

tions are dropped, some new and more realistic models are obtained. 

One possible path towards generalization is the introduction 

of more complex cost functions and constraints. For instance, the 

assumption on linear homogeneous establishing costs can be gener- 

alized to linear nonhomogeneous establishing costs 

Such cost functions introduce a fixed charge b to be paid when a 

facility is established, independently of its size. 

The optimization problem assumes therefore combinatorial 

features, since in this case the decision of which locations to 

choose is no longer trivial. On the other hand, this generaliza- 

tion is realistic, since it models the economies of scale often 

found in real services very well. Research on this kind of 

problem is ongoing, and some numerical results will be produced 

in a forthcoming IIASA Working Paper. 

Another example of possible further research would be to 

impose more constraints on the sizes of facilities. Some typical 

and usually required constraints are the limits placed on both 

the size of facilities and the total budget, or total capacity to 

be allocated. For instance, schools have usually a minimum 

feasible size, below which it is not reasonable to build and 

sometimes a maximum feasible size as well (e.g., when the avail- 

able space is limited). 

Another generalization is obtained by introducing many types 

of facilities, to be located at the same time. Using the school 

example again, one may be concerned with locating high schools for 



different specialities and trainings. All of the above constraints 

still hold for each type of school. Moreover, some new constraints 

due to interactions within different schools may be needed. For 

instance, total demand for each type of school may not be known 

in advance, and customers may be allowed to choose both the loca- 

tion and the type of schools.   his introduces a competition among 

different schools. Another obvious competition arises from limited 

available space in each location. 

When all the above generalizations are introduced, the result- 

ing model looks much more complicated than the ones discussed in 

this paper. However, it still belongs to the class of stochastic 

programs with linear constraints discussed in Ermoliev (1976) and 

Wets (1974), for which theoretical results and algorithms are 

available. Some applications of stochastic programming to such 

location problems are in progress, and they will be the subject 

of a forthcoming IIASA Working Paper. 
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