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A f r e q u e n t l y  used approach t o  l i n e a r  programming problems 
wi th  only  vaguely known c o e f f i c i e n t s  of  t h e  o b j e c t i v e  func t ion  
i s  t o  t r e a t  t h e s e  c o e f f i c i e n t s  a s  random v a r i a b l e s ;  t h i s  means 
t h a t  t h e  l a c k  of knowledge i s  desc r ibed  by a d i s t r i b u t i o n  func- 
t i o n .  For t h e  ca se  i n  which such a procedure  cannot  be j u s t i -  
f i e d ,  S.Ya. Chernavsky and A.D.  V i r t z e r  of t h e  working Consulta-  
t i v e  Group f o r  t h e  P r e s i d e n t  of t h e  Academy of Sc iences  of t h e  
USSR developed a d e c i s i o n  t h e o r e t i c a l  approach,  some a s p e c t s  c f  
wiiich a r e  desc r ibed  h e r e  f o r  pedagogical  purposes .  

I n  t h i s  paper f i r s t  t h e  problem of handl ing  u n c e r t a i n t i e s  
i n  l i n e a r  programming models i s  o u t l i n e d ,  and t h e  d e c i s i o n  
c r i t e r i a  t o  be used a r e  expla ined .  T h e r e a f t e r ,  a method of  
f i n d i n g  op t imal  s t r a t e g i e s  under u n c e r t a i n  v a l u e s  of t h e  ob- 
j e c t i v e  func t ion  c c e f f i c i e n c s  i s  desc r ibed .  F i n a l l y ,  t h e  method 
i s  a p p l i e d  t o  a s imple  u n c e r t a i n t y  ca se  of t h e  MESSAGE model. 
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HANDLING UNCERTAINTIES 
IN LINEAR PROGRAMMING MODELS 

Rudolf Avenhaus, Rainer Beedgen, Sergei 
Chernavsky, and Leo Schrattenholzer 
(with Annex A by Alois Hdlzl) 

INTRODUCTION 

Many authors have paid attention to the importance of con- 
sidering the uncertainty problem in forecasting, e.g. in Ref.[ll 
the problem of building up an energy supply system is described 
as follows: 

"A variety of energy supply and conversion technologies can 
compete to meet demands. Here, it is assumed that technol- 
ogies compete primarily on a cost basis, the cheapest tech- 
nology available being used first. But there are constraints 
on the rates at which new resources can be exploited, or new 
facilities built, and on the total amount of any single 
activity (such as coal mining) that a society will tolerate. 
And deliberate planning to maintain flexibility--for example, 
to provide diversity of supply in order to cope better with 
unexpected changes in energy supply systems--can affect de- 
cisions which would otherwise be dominated by cost considera- 
tions alone. " 

Deliberate planning, however, needs data. The problem of getting 
these data is described in the same place: 

"These data, while arrived at by averaging many sources, are 
still highly judgmental. And while they will surely change 
over time, perhaps dramatically, just one cost estimate for 
each technology is used here for the entire planning horizon. 
Sensitivity analyses can test alternative cost estimates. 
Yet the possibility that the cost figures used here might be 
greatly understated should not be overlooked. It can be ob- 
served that the real costs of complex energy supply systems 
today invariably exceed expectations, and this may not change 
in the future. (The 1970 to 1977 costs of power plants in 
the U.S., for example, rose much faster than the domestic 



consumer price index.) This possibility could well heighten 
interest in the potential economic attractiveness of energy 
efficiency improvements (or energy productivity increases) 
as an alternative "supply" source. The cost estimates used 
here are, for better or for worse, no more than a composite 
of the presently best recognized estimates." 

Because of these problems one has to try to take into account 
these uncertainties in forecasting. Frequently one describes 
then by considering all uncertain parameters as random variables 
the distribution of which is known. Thus one is led to stochastic 
programming problems. In fact, the real situation in forecasting 
is uncertain. For handling uncertainty in these cases, S.Ya. 
Chernavsky and A.D. Virtzer developed some methods [2, 3, 4, 51, 
one of which is described in this paper. 

While being Research Scholar at IIASA during the months of 
September and October 1980, one of the authors (S.Ya. Chernavsky) 
presented the results of the methods developed. He implemented 
them by using one example of the MESSAGE model [I, 61 with the 
help of another author of this paper (L. Schrattenholzer). Be- 
cause of the great interest of energy modellers in these methods 
two authors (R. Avenhaus and R. Beedgen),who were Research 
Scholars at IIASA during the first months of 1980, made an at- 
tempt to present one of these methods in a pedagogical way, be- 
cause energy modellers are in general not specialists in decision 
theory. Later, S.Ya. Chernavsky, during his stay at IIASA in 
September and 0ctober 1980, continued his work 151, joined this 
effort, and together with R. Avenhaus put the paper into its pres- 
ent form. With the above-mentioned educational purposes in mind, 
it appeared possible to the authors to present the proofs in a 
form different from that originally given in [2-51. 

2. FORMULATION OF THE PROBLEM 

Let us consider the following problem: 

minimize c'*x , - - 
xEX - 

where X = {x'} - = { (xl.. .xn) 1 is given by 

and where A is an mxn-matrix and b a vector with m elements. - - 

In case the values of the elements of the matrix A and the 
vectors b - and - c are precisely known, this is the well-Known 
linear programming (LP) problem usually solved by way of the 
simplex algorithm. 



Let us assume now that the values of the elements of the 
vector c are not precisely known, but that the vector is sup- 
posed to be an element of an n-dimensional polyeder C. We will 
also assume that the polyeder C is convex. In the simplest 
casefin which all components of c are independent of each - 
other, we have 

However, we also will consider more complicated sets. 

The question arises as to the way in which to take into ac- 
count the uncertainty of - cEC in the optimization procedure. 

It should be stressed here that we cannot express our lack 
of knowledge by a distribution function on C and thus obtain a 
stochastic optimization problem. 

For illustrative purposes, the following two examples will 
be used throughout the paper: 

First Example (see Figure 1) 

Minimize 

with respect to (xl ,x2) subject to 

where cl(cl,c2) is element of C, which is a two-dimensional poly- 
eder wi'th corners ( 1 1 ;  1 4  (4,1), and (4,4). 

Second Example (see Figure 2) 

Minimize 

K(x1,X2) = c - X  + c - x  1 1  2 2 

with rospect to (x, ,x2) subject to 

X2 L 0 

where c is element of C, which is a two-dimensional simplex with 
corners (1,l); ( 4 1 )  and (1,9). 0 



A s  one can s e e ,  t h e r e  e x i s t s  no un ique ly  de f ined  s o l u t i o n  
t o  o u r  problem f o r  a l l  cEC. For i n s t a n c e ,  f o r  p o i n t s  c '  = ( I l l )  
and ( 4 , 4 )  i n  t h e  f i r s t  example, t h e  op t imal  s o l u t i o n  would be 
p o i n t  (3/4 ,  3/4) of X ( s e e  F igure  1 ) , f o r  p o i n t  c '  = ( 1 , 4 )  t h e  
op t imal  s o l u t i o n  would be p o i n t  (3,O) of  X and f o r  p o i n t  c '  = ( 4 , l )  
t h e  op t imal  s o l u t i o n  would be p o i n t  ( 0 , 3 )  of X.  I n  order- to  se- 
l e c t  op t imal  s o l u t i o n s ,  w e  have t o  use  another  d e c i s i o n  c r i t e r i o n  
bu t  n o t  i n  t h e  form (2 -  1 ) . 

3. MEANING OF DECISION C R I T E R I A  [ 7 , 8 ]  

I n  t h i s  c h a p t e r  w e  w i l l  exp la in  t h e  meaning of  fou r  d e c i s i o n  
c r i t e r i a  t o  be used in  t h e  fo l lowing .  Only f o r  t h i s  purpose we 
assume f i n i t e  numbers of s t a t e s  of n a t u r e  and s t r a t e g i e s  a v a i l -  
a b l e  t o  d e c i s i o n  makers, b u t ,  as mentioned above,  t h e s e  c r i t e r i a  
w i l l  be a p p l i e d  t o  a  more gene ra l  ca se .  

The i d e a  of  t h e s e  d e c i s i o n  c r i t e r i a  i s  t o  minimize somehow 
t h e  l o s s  one s u f f e r s  i f  a  s p e c i f i c  s t r a t e g y  i s  t aken  and one 
s p e c i f i c ,  a p r i o r i  unknown s t a t e  of n a t u r e  i s  t r u e .  I t  i s  how- 
e v e r  impor tan t  t o  r e a l i z e  t h a t  t h e s e  c r i t e r i a  are c o n s t r u c t e d  i n  
o r d e r  t o  determine t h e  s t r a t e g y  t o  be used r a t h e r  t han  t h e  l o s s e s  
t o  be expected.  

Le t  us  assume t h a t  t h e  s e t  of  t h e  states of n a t u r e  i s  d i s -  
c r e t e  and t h a t  t h e r e  a r e  S  s t a t e s  of  n a t u r e  cEC. When t h e  d e c i -  
s i o n  maker has  t o  s e l e c t  t h e  op t imal  s t r a t e g y  from t h e  domain X 
he does  n o t  y e t  know which of t h e  s t a t e s  of  n a t u r e  w i l l  be  t r u e .  
The l o s s  t o  t h e  d e c i s i o n  maker w i l l  be  K i j  i f  he s e l e c t s  t h e  i - t h  
s t r a t e g y  and i f  t h e  j - th  s t a t e  of n a t u r e  1s t r u e .  The d e c i s i o n  
m a t r i x  i s  c a l l e d  matrix g. - 

The fo l lowing  i l l u s t r a t e s  t h e  f o u r  c r i t e r i a  by way of t h e  
numerical  example given below: 

A s  one can s e e ,  s t r a t e g y  1 would be t h e  b e s t  s t r a t e g y  i f  
s t a t e  1 of n a t u r e  were t r u e ,  s t r a t e g y  2 i f  s t a t e  2 of n a t u r e  
were t r u e ,  s t r a t e g y  3 i f  s t a t e s  3  o r  6 w e r e  t r u e ,  s t r a t e g y  4 i f  
s t a t e s  4 o r  5 were t r u e ,  bu t  s t r a t e g y  5 has  b igge r  l o s s e s  i n  
comparison t o  some o t h e r  s t r a t e g y  f o r  a l l  t h e  s t a t e s  of n a t u r e .  
Thus, i n  our  numerical  example, t h e r e  i s  no such s t r a t e g y  which 
minimizes t h e  l o s s  f o r  a l l  s t a t e s  of n a t u r e .  



Minimax (Wald) C r i t e r i o n  

According t o  t h i s  c r i t e r i o n  t h e  d e c i s i o n  maker has  t o  
s e l e c t  t h a t  s t r a t e g y  which minimizes t h e  maximum of t h e  l o s s e s  
corresponding t o  each s t r a t e g y  wi th  r e s p e c t  t o  a l l  s t a t e s  of  
n a t u r e .  

I n  our  numerical  example, t h e  fo l lowing  maxinum l o s s e s  re -  
s u l t :  

1 0  f o r  s t r a t e g y  1 
1 4  f o r  s t r a t e g y  2 
15 f o r  s t r a t e g y  3 
17 f o r  s t r a t e g y  4 
14 f o r  s t r a t e g y  5  

Therefore  t h e  s e l e c t i o n  of s t r a t e g y  1 l e a d s  t o  t h e  minimum of 
t h e  maximum l o s s e s .  Having dec ided  i n  f avo r  of  s t r a t e g y  1  
corresponding t o  t h e  Wald c r i t e r i o n ,  t h e  d e c i s i o n  maker need 
n o t  be a f r a i d  t h a t  h i s  maximum l o s s  by any s t a t e  of n a t u r e  w i l l  
be  l a r g e r  t han  t h a t  determined by t h e  Wald c r i t e r i o n ,  i . e .  10 
i n  ou r  example. 

Laplace C r i t e r i o n  

According t o  t h i s  c r i t e r i o w t h e  d e c i s i o n  maker has  t o  s e l e c t  
t h a t  s t r a t e g y  which minimizes h i s  a r i t h m e t i c  mean l o s s e s ,  c a l -  
c u l a t e d  f o r  each s t r a t e g y ,  wi th  r e s p e c t  t o  a l l  s t a t e s  of n a t u r e .  

I n  o u r  example, t h e  a r i t h m e t i c  mean l o s s e s  a r e  given by 

8 f o r  s t r a t e g y  1  
9 . 8  f o r  s t r a t e g y  2 
8 . 3  f o r  s t r a t e g y  3 

13.5 f o r  s t r a t e g y  4 
7 .5  f o r  s t r a t e g y  5  

Therefore  s t r a t e g y  5 i s  op t imal  accord ing  t o  t h i s  c r i t e r i o n .  
It  i s  i n t e r e s t i n g  t h a t  s t r a t e g y  5 does  no t  minimize t h e  l o s s  
f o r  any s t a t e  of  n a t u r e .  

Hurwitz C r i t e r i o n  

According t o  t h i s  c r i t e r i o n , t h e  d e c i s i o n  maker has  t o  
s e l e c t  t h a t  s t r a t e g y  which minimizes a  l i n e a r  combination of 
t h e  maximum and t h e  minimum of t h e  l o s s e s ,  c a l c u l a t e d  f o r  each 
s t r a t e g y ,  wi th  r e s p e c t  t o  a l l  s t a t e s  of n a t u r e .  

I n  o u r  example, t h e  l i n e a r  combinations of t h e  maximum and 
t h e  minimum of t h e  l o s s e s  w i th  pessimism parameter  A a r e  g iven  
by 



X . 1 0 + ( 1 - A ) - 4  = 4+6X f o r  s t r a t e g y  1 
h . l4+( l -A) .O = 14X f o r  s t r a t e g y  2 
A-15+(1-A) - 0  = 15X f o r  s t r a t e g y  3  
A-20+(1-A).7 = 7+13X f o r  s t r a t e g y  4 
A-14+(1-A)-3 = 3+11X f o r  s t r a t e g y  5  

Therefore  s t r a t e g y  2 i s  t he  op t imal  s t r a t e g y  f o r  v a l u e s  of X wi th  
OIX10,5,and s t r a t e g y  1 i s  t h e  opt imal  s t r a t e g y  f o r  v a l u e s  of  X 
wi th  0,55X51. For X=l t h e  Ilurwitz c r i t e r i o n  i s  equa l  t o  t h e  Wald 
c r i t e r i o n .  

A d i f f i c u l t y  of t h i s  c r i t e r i o n  i s  t h e  a p p r o p r i a t e  s e l e c t i o n  
of X between 0 and 1 .  

Savage-Niehans (Minimax-Regret) C r i t e r i o n  

According t o  t h i s  c r i t e r i o n ,  t h e  d e c i s i o n  maker determines  
f i r s t  f o r  each s t a t e  of  n a t u r e  t h e  minimum l o s s  and s u b t r a c t s  it 
from t h e  losses r e l a t e d  t o  t h i s  s t a t e  and a l l  t h e  p o s s i b l e  s t r a t e -  
g i e s .  I n  o t h e r  words, he determines  f o r  each s t r a t e g y  t h e  d i f f e r -  
ence of t h e  a c t u a l  l o s s  and t h e  minimum l o s s  under t h e  f i x e d  
s t a t e  of  n a t u r e .  This  d i f f e r e n c e  i s  named r e g r e t .  Each s t r a t e g y  
i s  c h a r a c t e r i z e d  by i t s  own maximum r e g r e t .  So t h e  d e c i s i o n  maker 
determines  a  s t r a t e g y  t h a t  has  a  minimum of  maximum r e g r e t .  

I n  our  example t h e  ma t r ix  of r e g r e t s  R looks  a s  fo l lows  - 

and each s t r a t e g y  has t h e  fo l lowing  maximum r e g r e t s  

9 f o r  s t r a t e g y  1 
8 f o r  s t r a t e g y  2 
7  f o r  s t r a t e g y  3 

1 6  f o r  s t r a t e g y  4 
8 f o r  s t r a t e g y  5 

Therefore  s t r a t e g y  3 i s  t h e  op t imal  s t r a t e g y  accord ing  t o  t h i s  
c r i t e r i o n .  

One should n o t i c e  t h a t  i n  ou r  numerical  example t h e  d e c i s i o n  
maker u s ing  t h e  set  of t h e  f o u r t h  c r i t e r i a  does no t  have an oppor- 
t u n i t y  t o  s e l e c t  one s t r a t e g y  which minimizes v a l u e s  of a l l  of 
t h e s e  c r i t e r i a  a t  t h e  same t ime .  

N e v e r t h e l e s ~ ~ e v e n  i n  such a  d i f f i c u l t  c a s e  of  s e l e c t i n g  
theopt imal  s t r a t e g y  t h e  d e c i s i o n  maker has an  o p p o r t u n i t y  t o  g e t  
impor tan t  r e s u l t s  i f  he u ses  t h e  s e t  of t h e s e  c r i t e r i a .  Thus, 
i n  o u r  example such a  r e s u l t  i s  t h e  c o n d i t i o n  of t h e  o p t i m a l i t y  
f o r  s t r a t e g y  5  ob ta ined  by us ing  t h e  Laplace c r i t e r i o n .  



4 .  A METHOD OF FINDING OPTIMAL STRATEGIES UNDER UNCERTAINTY 

Let us  come back t o  t h e  problem formulated i n  t h e  second 
chap te r :  i f  t h e  d e c i s i o n  maker knew v e c t o r  c' e x a c t l y ,  
he would then  determine t h e  op t imal  s t r a t e g y  XEX, where X i s  
g iven  by ( 2 - I ) ,  w i th  t h e  h e l p  of t h e  c r i t e r i o n  

min c l - x  . - 
xEX - 

However, a s  he knows only t h a t  - c'EC he does n o t  have t o  apply 
t h i s  c r i t e r i o n .  

Wald (Minimax) c r i t e r i o n  

According t o  t h i s  c r i t e r i o n ,  t h e  d e c i s i o n  maker de te rmines  
one of t h e  op t imal  s t r a t e g i e s  under u n c e r t a i n t y  by s o l v i n g  t h e  
fo l lowing  o p t i m i z a t i o n  problem: 

minimize max c l - x  
xEX - c  ' Ec- - 

For t h e  simple above-mentioned c a s e  of independent c o o r d i n a t e s  
of v e c t o r  c '  - 

we have,  because of  t h e  assumption x10, - 

U where cU '  : = ( c l  , . . . , c:) . Thus, i n  o r d e r  t o  s o l v e  t h e  problem 
( 4 - 1 )  r n  t h i s  s imple  c a s e  it i s  enough t o  s o l v e  t h e  normal LP 
problem 

u I minimize c  - x  . - - 
xEX - 

Let  u3 cons ide r  a more complicated c a s e ,  i n  which t h e  coo rd ina t e s  
of vackor c '  depend on each o t h e r .  I n  accordance wi th  ou r  assump- 
t i o n  C i s  a convex po lyeder .  Then we have 

T h e o r e m  I :  Let  Co be t h e  s e t  of extreme p o i n t s  of t h e  s e t  C .  
Then we have 

min max c l - x  = min max c ' - x  . - - 
xEX cEC - - - xEX - cECo 

P ~ o o f :  C is  a  convex and compact s u b s e t  of a  l o c a l  convex s e t ,  
G,(c ' ) :=cl .x f o r  any x  i s  a  cont inuous convex f u n c t i o n  of c .  
I€ i s  know; t h a t  the-maximum of t h e  convex f u n c t i o n  l i e s  at  an 
extreme p o i n t  ( a  convex f u n c t i o n  has t h e  form a s  g iven  i n  F igu re  
3 )  ; t h e r e  e x i s t s  a  - cbECo wi th  G, (&) = max Gx (5' ) . 

- dEC - - 



I n  accordance  w i t h  t h i s  theorem it i s  s u f f i c i e n t  t o  o n l y  
c o n s i d e r  t h e  ext reme p o i n t s  of  C.  I t  i s  n o t  enough,  however, 
t o  c o n s i d e r  t h e  ext reme p o i n t s  of  s p a c e  X o n l y ,  a s  t h e  second 
example w i l l  show. 

Second Example 

According t o  t h e  f o r m u l a t i o n  o f  t h e  second example i n  t h e  
second c h a p t e r  w e  have 

4.x1+x2 
max c ' o x  = - - f o r  

C '  x 1 + 9 * x 2  - 

The b o r d e r  l i n e  i s  g i v e n  by 

4'x1+X2=x1+9'X2 

which i s  e q u i v a l e n t  t o  

T h e r e f o r e  w e  g e t  

x21;-x1 
I L 

min max c '  ax = 1 f o r  
- -  - 1  - - 3 
X - C - I min ( x l + g o x 2 )  x,lG x 

X 

which l e a d s  t o  t h e  s o l u t i o n  

min max c l = x  = 5 - - 
X C '  - - 

8 3 a t  t h e  p o i n t  ( x 1 , x 2 )  = which i s  not an ext reme p o i n t  of X .  

0 

T h i s  example shows t h a t  i n  g e n e r a l ,  a f t e r  t h e  u s u a l  s implex  
a l g o r i t h m  h a s  been a p p l i e d  by s o l v i n g  t h e  LP-program ( 2 - I ) ,  it i s  
i m p o s s i b l e  t o  s o l v e  t h e  problem ( 4 - 1 ) .  The f o l l o w i n g  theorem 
shows t h a t  w e  can  s o l v e  t h e  e n t i r e p r o b l e m  by s o l v i n g  a s i n g l e  
LP-problem o f  a h i g h e r  d imension:  



Theorem 2 :  The s o l u t i o n  t o  t h e  problem 

minimize  max c l . x  , 
dEC 

-- - 
xEX - - 

where X i s  g i v e n  by ( 2 - I ) ,  and Co i s  t h e  set o f  ex t r eme  p o i n t s  
of  C ; i s  e q u i v a l e n t  t o  t h e s o l u t i o n  o f  t h e  problem 

where X I  i s  g i v e n  by 

P r o o f :  I f  y  i s  g r e a t e r  o r  e q u a l  t o  a l l  $-x, t h e n  it i s  a l s o  
g r e a t e r  o r  e q u a l  t o  t h e  maximum o f  5 ; -x .  T h e r e f o r e ,  t h e  mini -  
m i z a t i o n  o f  y on t h e  s p a c e  X '  j u s t  leaas t o  t h e  s o l u t i o n  o f  t h e  
o r i g i n a l  problem. 

F i r s t  Example 

According  t o  t h e  f o r m u l a t i o n  o f  t h e  f i r s t  example i n  t h e  
second  c h a p t e r  and a c c o r d i n g  t o  Theorem 2 ,  w e  have  t o  s o l v e  t h e  
problem 

minimize  y  
( ~ , Y ) E X '  

where X '  i s  g i v e n  by 

c o n d i t i o n s  ( 5 )  t o  ( 7 )  a r e  dominated  by ( 8 )  , w e  have  t o  
l o o k  f o r  t h e  c o r n e r s  of  t h e  s i m p l e x  i n  t h e  ( x l , x 2 , y ) - s p a c e  d e t e r -  
mined by ( 1 ) t o  ( 4 )  and  ( 8 )  . There  a r e  o n l y  t h r e e  c o r n e r s ,  d e t e r -  
mined by 

i) 3 - x 1 + x 2 = 3  ii) x + 3 - x  =3 1 2 iii) 3 .x  +x =3 1 2  
X 1 

= o  x =o 2 x + 3 - x  -3 1  2- 
y - 4 - x l - 4 . x  = o  2 y-4.x -4 .x  = o  1 2 y -4 .x1-4-x2=o 



which l e a d s  t o  

( x 1 , x 2 , y )  = 1 ( 3 , 0 , 1 ? )  f o r  ii) 1 
iii) I 

W e  g e t  min Y=6, t h a t  i s ,  t h e  s o l u t i o n  i s  g i v e n  a t  a c o r n e r  o f  X .  
( x ,y )EX1  - 

Second example  

A c c o r d i n g  t o  t h e  f o r m u l a t i o n  o f  t h e  s e c o n d  example  i n  t h e  
s e c o n d  c h a p t e r  and  a c c o r d i n g  t o  Theorem 2 ,  w e  h a v e  t o  s o l v e  t h e  
p rob lem 

min imize  Y , 
( x , y )  EX' - 

where  X '  i s  g i v e n  by 

A s  c o n d i t i o n  ( 4 )  i s  domina ted  by  ( 5 )  and  (61, t h e  c o r n e r s  are  
d e t e r m i n e d  by 

which l e a d s  t o  

( 0 , 1 , 9 )  i 

( x l I x 2 , y )  = ( 2 , 0 , 8 )  f o r  ii) 

8 3 
( ~ ~ 7 1 5 )  iii) , 

and  min y = 5.  
( x , y ) E X '  - 



Laplace Criterion 

Accordinq to this criterion the decision maker determines 
one of the optimal strategies under uncertainty by solving the 
following optimization problem 

minimize - 
xEX 

where V(C) is the volume of the n-dimensional convex polyeder C, 

It is obvious that 

1 
min --fc'-xodc V (C) = min s V - x  - 
xEX XEX 

where C+~:=L f c' .dc is the centre of the weight of 
V (C) 

domain C. C 

The different methods for the determination of the centre of 
the weight of convex polyeder are known. One of them is suggested 
by A. H81zl who proved the following theorem which could be used 
for the general case. 

Thdur3crn 3 :  Let Cn be an n-dimensional simplex, defined by 

cn:={c:c=c + E ti.(c -C ) 05ti for i=l..,n; 1 ti'lj , - - 
-0 

-i -0 i= 1 

w*~ere c >O, c.>O and i - , i = l , . . . , n  are linearly independent. 
-0- Then we have-' 

where V(C ) is the volume of the simplex Cn. n 

P r o o f :  Given in Annex A to this paper. 



Second Example 

W e  have 

and 

T h e r e f o r e  t h e  problem i s  t o  

11  
minimize ( 2 - x  +-• 

xEX 
1 3  X2) 

- 

which l e a d s  t o  

According t o  Theorem 3 ,  w i t h  

t h i s  i s  e q u i v a l e n t  t o  

minimize ( c l + c ' + c ' )  - x  
xEX 

3 -0 -1 -2 - 

which,  i n  f a c t ,  a g a i n  l e a d s  t o  

I I minimize ( 2 - x  +-. 
xEX 

1 3 X2) ' 
- 



It should be noted that for practical calculations in which 
the coordinates of vector c are usually independent, the La- 
place criterion is written-in the form 

1 S 
minimize - - C c! ax 
xEX i=l 

-1 - 
- 

where S is the number of corners of polyeder C. For the more 
general case one should use the Laplace criteri0n.h the form 
(4-6b) . 

Hurwitz Criterion 

According to this criterion, the decision maker determines 
the optimal strategy by solving the following optimization prob- 
lem: 

minimize [A-max c' -x+(l-A) -min c' ex] , - - - - 
xEX dw d ~ c  

where the value of the pessimism parameters AE[O,1] has to be 
chosen appropriately. 

As in the case of the minimax criterion, we can restrict our 
considerations to the extreme points of the set C: 

Theorem 4 :  Let Co be the set of extreme points of the set C, 
defined by (4-2) . Then we have 

P r o o f :  For max - cl.x - see Proof of Theorem 1 and for min c l - x  see - - 
cEC cEC - 

the properties of the solution of an LP problem. 

In a way similar to that one given by Theorem 2 for the mini- 
max-criterion, we can simplify the computational procedure: 

Theorem 5 : The solution to the problem 

minimize [A-max cl*x+(l-A) -min c' * X I  , - - - - 
xEX cf C, cEC, 



where X is given by (2-13, and Co is the set of extreme points of 
C as given by (4-2), is equivalent to the solution of the problem 

minimize Ki , 
i=l,...,S 

where 

K ~ : =  min [A-y+(l-A) .c'.x] -1 - 
(x,y)Exi 

and where 

X ~ : = { ( ~ , ~ ) : X E X , ~ ~ ~ ~ * X , ~ = ~ . . . S ~  - - y10, C!=X(C!-X~ j=lr2r...i-lti+l-..~>. 
-1 - -1 - 

(4-8c) 

Proof: Obvious. 

First Example 

Let us consider first - cl=(l,l). We have to determine 

min [h.y+(l-A). (xl+x2) 1 
(x,y)EX1 

subject to (x,y)EX1, where X1 is determined by the following set 
of inequalityes: 

which reduces to (1) through ( 4 . )  an2 (8). 



The c o r n e r s  of X 1  a r e  

which l e a d s  t o  

Thus we g e t  

K~ = min [A-y+(l-A) (xl+x2) 1 
( ~ 1  Y EX1 

= min [h*y+(l-A) (xl+x2) I = 

= ~ n i n  [4.5*X+1.5, 9-X+3] 

= 4.5-X+1.5 f o r  05X5l , 

3 3 
which i s  given a t  (xl ,x2) = (iir5) . 

As f o r  ci, i=2,3,4, we g e t  Xi=@,  and t h e r e f o r e  

Secon,j Example 

As (5 )  and (6) a r e  i d e n t i c a l  t o  ( 2 )  and (3), we g e t  t h e  fol lowing 
c o r n e r s  f o r  X1 



which leads to 

Thus we get 

= min [A (xl+x2)+(l-A) .y] = 

= min [X.1+(1-A) - 1  ,A.2+(1-A) -3,A*1+(1-A) * ! ? , A - 2 1  2 = 

= min [I ,8-6.X19-8*X,2] 

= 1 for 0 I X 2 1 ;  

it is given at (xl ,x7) = (0, 1) for 0 i X I 1. - 0 

Savage-Niehans (Minimax-Regret) Criterion 

According to this criterion, the decision maker determines the 
optimal strategy by solving the following optimization problem: 

minimize max [cl-x-min c1*x1 . - - - - 
xfX - cfC - - xfX 

As in the case of the minimax criterion, we can restrict our con- 
siderations to the extreme points of set C. 

T h e o r e m  6: Let Co be the set of extreme points of set C, 
defined by (4-2) . Then we have 

min max [cl-x-min cl.x] = min max [c'-x-min cl-x] - - - - - - - - 
xEX cEC xEX xEX cfC, xEX 

P r o c f :  It is well known that the fu~ction 



is a concave function in c, i.e., that the relation 

min(A-c;+(l-1) - .c') -x f min 1.c1.x+min(l-1) -5i.x -2 - -1 - - 
xEX xEX xEX 

holds. An illustration is given in Figure 3a. 

Now, as z (c' - ) is a concave function, 

is a convex function. It is known that the maximum of the con- 
vex function lies at one of the extreme points of C. An illus- 
tration of that is given in Figure 3b. 

0 

In a way similar to that one given by Theorem 2 for the 
minimax criterion, we can simplify the computational procedure: 

Theorem 7: The solution to the problem 

minimize max [c' 'x-min c' .XI , - - - - 
xEX - - cECo - xEX 

where X is given by (2-I), and Co is the set of extreme points 
of C as given by (Y-2), is equivalent to the solution of the 
problem 

minimize y , 
(x,y)EX' 

where X' is given by 

and wricre z is defined by i 

Proof: Obvious. 



First Example 

Let us determine first the z i=1 ... 4: i ' 

J 
z1 = min (xl+x ) = - 

X 
2 2 

- 
z2 = min (4-x1+x2) = 3 

. . 

z3 = rnin (x1+4 -x2) = 3 
X 

z4 = min (4-x1+4-x2) = 6 
X - 

According to Theorem 7 we have to solve the problem 

minimize y 
(x,y)EX1 

where X' is given by 

There are 3 corners, given by 

i) 3-xl+x =3 2 ii) x +3-x =3 1 2 1 iv) 3-x1+x2=3 
iii) 3-x +x2=3 

X1 =o x2=0 x +3-x =3 1 2 1 2 
x +3*x =3 

3 y-X1-x2=-2 y-4.x -x =-3 1 2  y-xl-4.x =-3 2 
y-4-x -x =-3 1 2  

which lead to 

3 3 3) iii) (qlGl; 

3 3 
Thus, we get rnin y=3 the solution is given at (xl ,x2) =(eIq) . 4 ' 



Second Example 

Let us determine first the z i=1,2,3: 1 ' 

z = min (x1+x2) = 1 
x 

z2 = min (4-x1+x2) = 1 
X 

According to Theorem 7 we have to solve the problem 

minimize y 
(x,y)EX1 - 

where  is given by 

There are 3 corners, given by 

i) x1+2-x2=2 ii) x +2*x =2 1 2 iii) x +2.x2=2 1 

y-4-xl-x2+1=o 

y-x1 -g0x2+2=O 

which leads to 

i) (2,0,7) ii) (0,1,7) 
I I iii) (lt2,5) . 

7 1 
Thus, we get min y = ~ ,  the solution is given at (xl ,x2) = (1 ,T) . 

0 



5. APPLICATION TO MESSAGE [ 1 ] , [ 6  ] 

A number of primary energy sources and their associated con- 
version technologies are considered. These include resources and 
technologies that could permit an essentially unlimited supply of 
energy--the fundamental point of the exercise being to ex- 
plore possible transitions to energy systems states based on more 
or less unlimited resources such as 232Th, 238U, and solar energy. 

Each primary energy source (except solar and hydroelectric 
power) is subdivided into an optional number of classes in MESSAGE, 
taking account of the price of extraction, quality of resources, 
and location of deposit. These primary sources are then converted 
directly (e.g., by crude oil refining) or indirectly (e.g., electro- 
lytic hydrogen) into secondary energy. Secondary energy is exo- 
genous to MESSAGE and is provided by the MEDEE-2 model as time 
series data for electricity, soft solar, solid,'liquid, and gaseous 
fuels. 

The variables of the model are expressed in period-averages 
of annual quantities. 

The objective function is the sum of discounted costs for 
fuels (primary energy)--operation/maintenance and capital costs 
for providing the energy demand over the planning horizon (1980- 
2030). 

In the equations of the models--given roughly below--indices 
are sometimes omitted if it seems to facilitate understanding. 

Objective Function 

The objective function of the MESSAGE model is the sum of 
discounted costs of capital, operating-maintenance, and fuels 
(primary energy) : 

where 

t is current index of time period 
n is number of time periods 
B (t) is discount factor 
5 is number of years per period 
b is vector of energy resources costs - 
r is vector of resource activities (LP variables) - 
c is vector of operation/maintenance costs - 
x is vector of energy conversion activities (LP variables) - 
d is vector of capital (investment) costs - 
1 is vector of capacity increments (LP variables) 



The d i s c o u n t  f a c t o r  i s  c a l c u l a t e d  from a n  a n n u a l  d i s c o u n t  
r a t e  o f  65, a p p l i e d  t o  a  c o n s t a n t  d o l l a r  i n v e s t m e n t  s t r e a m .  A s  
MESSAGE i s  i n t e n d e d  t o  minimize s o c i e t a l  c o s t s  t h i s  d i s c o u n t  r a t e  
i s  t o  be unders tood  a s  a  p r e - t a x  one.* 

The c o s t  of  i n c r e m e n t s  t o  c a p a c i t y  s t i l l  o p e r a t i n g  a t  t h e  
end o f  t h e  p l a n n i n g  h o r i z o n  i s  c o r r e c t e d  by a  " t e r m i n a l  v a l u a t i o n  
f a c t o r " ,  t v :  

f o r  example, t h e  t e r m i n a l  v a l u a t i o n  f a c t o r  f o r  t h e  l a s t  t ime 
p e r i o d  i s  

C o n s t r a i n t s  

The f o l l o w i n g  r e s o u r c e  c o n s t r a i n t  i s  d e f i n e d  f o r  each  re- 
s o u r c e  and f o r  e a c h  c a t e g o r y :  

where 

r ( t )  i s  a n n u a l  e x t r a c t i o n  i n  p e r i o d  t 
Av i s  a v a i l a b i l i t y  of  r e s o u r c e  

The f o l l o w i n g  r e s o u r c e  r e q u i r e m e n t  i s  s p e c i f i e d  f o r  each  
t i m e  p e r i o d  f o r  e a c h  r e s o u r c e :  

where 

j i s  index  of  r e s o u r c e  c a t e g o r y  
J i s  number o f  r e s o u r c e  c a t e g o r i e s  
v1 i s  s p e c i f i c  consumption by p r o d u c t i o n  a c t i v i t y  x l  
w1 i s  i n v e n t o r y  r e q u i r e m e n t  f o r  c a p a c i t y  inc rement  y l  

*1n these analyses,  taxes a r e  taken a s  p a r t  of the d i f fe rence  between p r ices  
and cos t s  and s o  a re  not  included i n  these cost-minimization ca lcu la t ions .  
Because of t h i s  f a c t ,  the  discount f a c t o r  here may be thought of a s  a  " soc ia l "  
discount f a c t o r ,  applied equally t o  a l l  world regions. 



The following capacity constraint is specified for each 
technology and for each load region supplied by this technology: 

where 

j is index of load region 
Cap is capacity 
h a  is load duration of load region j p2 is plant factor 

The following demand constraint is specified for each time 
period, for each demand sector, and for each load region: 

where 

j is index of demand sector 
qij is conversion efficiency (or equal to 0 if xi dces 

not supply demand sector j) 

DMj is annual secondary energy demand 

The following build-up constraint is specified for some 
(primarily new) technologies and for each time period: 

where 

y is growth parameter 
g is constant, allowing for start-up. 

Numerical Illustration 

In the following we illustrate the methodology discussed 
so far with the help of this MESSAGE model. As a reference case 
we consider the low scenario for World Region I (North America) 
as described in [ I ]  .* We assume only two parameters of the ob- 
jective function to be uncertain, namely capital costs for Fast 
Breeder Reactors (FBR) and for Solar Thermal Electric Conversion 
(STEC) . 

*1n [ l ]  only t hose  d a t a  a r e  given vhich a r e  necessary  f o r  t h e  understanding 
of t h e  procedure and of t h e  r e s u l t s .  A documentation of a l l  i n p u t  d a t a  of 

MESSAGE i s  be ing  prepared by one of t h e  au tho r s  (Leo S c h r a t t e n h o l z e r ) .  



In Table la reference values as well as ranged of uncer- 
tainties for those two parameters are given. This leads to the 
set of extreme points Co, defined by (4-21, the elements of which 
are listed in Table Ib. 

In Table 2 the results of MESSAGE runs with the data given 
in Table 1 are represented. Overall costs, and electricity pro- 
duction by FBR's and STEC in 2030. First the results for the 
reference data of Tabls la zre given, thereafter the results for 
the four extreme points, i.e., the elements of Co! and finally 
the results of the application of the decision crlteria as dis- 
cussed in Chapter 4. As we have chosen independent intervals 
for the two cost parameters, the minimax criterion simply means 
to take cq, the Laplace criterion means to take the mid-values 
of the intervals, and the Hurwitz criterion means to take the 
weighted mean of - cl and - c4. 

In Figures 4 and 5 the electricity production by means of 
the various technologies are given as functions of time: In 
Figure 4a to 4d the electricity production is given for the four 
extreme points according to Table Ib. In Figures 5a and 5b the 
electricity production according to the Minimax (Wald) criterion 
and according to the Laplace criterion are given. In Figures 5c 
and 5e the electricity production according to the intermediate 
steps of the Humitz criterion as formulated by Theorem 4 are 
given (the fourth case is dominated as can be concluded from 
Table 2). In Figure 5f finally the electricity production ac- 
cording to the Savage-Niehaus criterion is given. 

It should be emphasized that it was only for illustrative 
purposes that we considered the FBR and STEC capital costs to be 
uncertain and all other parameters as precisely known. Never- 
theless, one may draw some general conclusions from these results. 

One realizes that the application of different decision 
criteria leads to extremely different strategies, even though 
the resulting overall costs vary by less than 1 percent. 
This can be explained by the fact that both alternatives will 
play a role only after the year 2000 and therefore the discounting 
factor decreases the influence on the overall costs. 

Thus, if we use relative estimates for decision making 
we will come to the conclusion that the relative difference does 
not matter for us in this example. But if we consider absolute 
differences between total costs for different strategies we will 
notice that in comparison with today's costs for development 
these differences are rather large and so we can use these ab- 
solute estimates for decision making. 

This conclusion does not mean that in estimating strategies 
one should not consider other important criteria, for example 
environmental burdens and qualitative criteria, such as public 
opinion and so on. 



In such cases one should come back to the reformulation of 
the original problem on the basis of the multiobjective optimi- 
zation approach. An outline of such an approach with different 
but definite objective functions is given in Annex B. 

Of course, it is not certain that the differences between 
the values of the total costs of the different strategies appear 
only in the fourth decimal as in the numerical example given. 
In [4] another numerical example is given in which the differ- 
ences appear already in the second decimal. 

CONCLUDING REMARKS 

There are many theoretical and practical aspects of the 
methods for handling uncertainties in LP-problems discussed here 
which were not described in the paper. Some of them will be 
mentioned in the following, additional ones see in [5]. 

Use of Decision Criteria 

First of all one should apply not only one criterion for 
the determination of optimal strategies under uncertainty but all 
four criteria mentioned above together. However, what should 
the decision maker do if the different criteria lead to differ- 
ent optimal strategies? 

In [S] is is shown that the further analysis can be con- 
tinued with the help of the multi-objective optimization ap- 
proach. In general having in mind only pedagogical aspect it 
is not reasonable to give some further recommendations without 
considering the specific features of the concrete problem. 
An example for such a procedure in the case of nuclear energy 
systems is given in [4] . 
Uncertainties in Further Coefficients 

In this paper the description was limited to the treatment 
of uncertainties of coefficients of the objective function. 
It is clear that in a real situation in forecasting 4 and b can 
be uncertain as well. In [2,51 the case with A and being 
certain for the near future in a forecasting problem, but with 
A and b being uncertain for the distant future, has been treated. 
ft should be remarked that the solution of such problems leads 
to higher-dimensional LP-problems. 

Computational Effort 

For practical applications it is highly interesting to 
estimate the number of additional constraints in the new LP- 
problems arising by the use of the procedures described. If 
we have in our original model (without taking into account un- 
certainties) m constraints, then using 

- the Wald criterion, we have to solve one LP-problem with 
(m+S) constraints where S is the number of extreme points 
of the convex polyeder C; 



- the Laplace criterion,we have to solve as well one LP- 
problem with m constraints; 

- the Hurwitz criterion, we have to solve S LP-problems each 
of which has (m+2S-1) constraints; 

- the Savage-Niehans criterion, we have to solve S LP-problems 
each of which has m constraints plus one LP problem with 
(m+S) constraints. 
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Proof of Theorem 3 

by 

Alois HBlzl 

Theorem 5: Let Cn be an n-dimensional simplex, defined by 

Cn:={c:c=c - - -0 + ' t i  - Orti for i=l,. ..n; L tiill , 
i= 1 i= 1 

where c+20, ci>O and - , i = l , . . n  are linearly independent. 

Then we have for x>O 

where V(C ) is the volume of the simplex Cn. 
n 

> P-oof: Because of the conditions co-0, Si'O for i=l, ..., n and 
x>O, the expression c'ax is non-negative for every cECn. The 
T 

lntegral can therefore 6e considered as the volume of the domain 

It will be shown that the domain Dn+j can be split into n+l dis- 
i 1 1 joint simplices C c! ax) -V(Cn) for 
n+l with volume V (Cn+l ) = - 

i=O,l, ..., n, so that 

For notational convenience, a simplex will be defined by listing 
its corners, i.e., 

Cn:=!c:c=c + S c -c ) ;  GIt for i=l,. . . ,n; Z t.=ll 
-4 ti -4 i 1 

i= 1 i= 1 

will be written in abbreviated form as Cn:=<c+, 5, ..., c > .  -n 



i 
S t e p  A :  The (n+l)-dimensional simplices Cn+lI i=O,l, ..., n, which 
are defined as 

form a partitioning of the domain D n+l ' 

1 n 
Proof of S t e p  A: The simplices Cn+l,...I Cn+l are well-defined 

due to the conditions that (l)<co, - cl,..., cn> is an n-dimensional 
simplex, so that the vectors c ~ ~ ~ ~ , . . . ,  cn-& are linearly in- 
dependent, and (2) ci>O for izl , . . . ,n ana x70, so that cj*x>O for 
i=l ,..., n. If gO>O, then c:+~ is also weli-defined; if ~ o = O ,  then 

O vanishes. In order to prove , and the simplex Cn+l 

i that the simplices Cn+lf i=O,l, ..., n defined above form a parti- 
tioning of the domain Dn+lI one must show that 

( ii) C (s) E Dn+l 1 , . . . n :  E C j n+ 1 

(iii) k (i) E Cn+l Cn+l with k*l*(c) is a point on the surface 
d 

k of both Cn+l 1 and Cn+ . 





C 0 C (b) Let (,) ECn+l, i.e., (a) has the representation (2b). If one 

defines ti:=u for i=l , . . . ,n, the representations (1) and (2b) i 
are idential with respect to - c. Furthermore, 

ad (ii): 
C Let (a) EDncl , i.e.. ( 1  has the representation (1 ) . If one 

defines for 1 Sjln in the representation (2a) 

u :=ti for i=1 , .. 1 - 1  i 

v :=t for i=j+l . i i 
1 1 2 2 .-t. and u :=t v :=0 :=Of vj.- 
j J j j' j 

and for j=O in the representation (2b) 

ui:=ti for i=l, ..., n 
.. n 



t h e  r e p r e s e n t a t i o n  o f  c  i s  i d e n t i c a l  i n  ( 1  ) and ( 2 a )  f o r  l 5 j l n  
and i n  ( 1 )  and ( 2 b )  f o r  j=O. Fur the rmore ,  

% 

= 0  f o r  j = l  

and 
n 

= O  f o r  c  = O  
-0 

1 2  1 2  Thus, t h e  i n t e r v a l s 1  : ' [ d . , d . ] ,  j = l n  andIo: '[do,do] form a  
j  I I 

p a r t i t i o n i n g  o f  t h e  i n t e r v a l  [O,cl ex] - . ( I f  ~ = 0  and t h e  s implex  
0 

'n+ 1 v a n i s h e s ,  t h e  i n t e r v a l  I. v a n i s h e s . )  T h e r e f o r e ,  d = a " c l - x  - - 

w i t h  Ola f lmus t  be an e lement  of  some i n t e r v a l  I O'jln. I f  one 
j 

d e f i n e s  

1 d-d; 
u  := ' t j ,  v j : = t . - u  

2 1 f o r  l s j l n  
j  d . - d  I j  

I j 

1 d-do n  
uo : = 2 1 ( 1 -  C t i)  f o r  j = O  

do-do i= 1 

t h e  r e p r e s e n t a t i o n s  ( 1 )  and ( 2 a )  o r  (2b)  a r e  a l s o  i d e n t i c a l  w i t h  

f o r  some j ,  O'jSn. r e s p e c t  t o  d ,  i . e . ,  ( ; ) E C ~ + ~  

ad (iii) : 

A s  shown i n  (ii) above,  t h e  i n t e r v a l s  I .  ( c )  :={d:  (c) EC' 1 form 
I - d  n+l  

a  p a r t i t i o n i n g  of t h e  i n t e r v a l  [O,cl-XI. - T h e r e f o r e ,  any e lement  
k  1 f o r  k * l  must be a  p o i n t  on t h e  s u r f a c e  o f  b o t h  Cn+,  (Z)Ecn+l n c n + ~  

and c:+~. S t e p  A 



S t e p  B: An n-dimensional simplex 

Cn:=+c,~1,$2,...,~ -n > 

has the volume 

1 
V (C,) I det (cl - ~ , c ~ - c + ,  , . . . 'sn -c -0 1 1  

Proof of S t e p  B: The simplex Cn is obtained by applying to the 
canonical simplex 

C: : =6-, 2, ,$, . . . , %> 

the transformation. 

C 
1 

The canonical simplex Ci has the volume V(C:) =;I,, as can be 

shown by induction using the principle of Cavalieri. According 
to the substitution theorem for integrals, the integral of a 
function f:Pn+63 over the domain g(C:) can be expressed as an 
integral over the domain Cg as follows: 

dg (y) 
In this special case with £El and 

dy 
C one obtains 

j S t e p  C: The simplices Cn+,, O'jln as defined in Step A have the 
vo 1 ume 

j 1 c! .x) -V(Cn) for lSjSn 
V(Cn+l)=(n'-l - 

o C'-X)=V(C~) for j=O. 
V(Cn+l)=(s'_o - 



P r o o f  of S t e p  C: I f  one  chooses  t h e  c o r n e r  (p) a s  t h e  b a s i c  
j  c o r n e r  i n  e a c h  s implex  C n + l ,  t h e n  t h e  n+l  v e c t o r s ,  t h e  convex 

c l o s u r e  o f  which r e 2 r e s e n t s  t h e  s implex  C j  n + l l  a r e  g i v e n  by 

C .  . C  

f o r  i = l , . . . , n ;  (c:x)) f o r  j=o.  

-3 - -0 - 

c j : = l ( ~ ~ ~ ~ )  f o r  i = l  f o r  i = j ,  ..., n 
-i - 

I f  one  expands t h e  d e t e r m i n a n t  of  t h e  m a t r i x  C' f o r  1 1  j6n by t h e  
minors  of  t h e  e l e m e n t s  o f  t h e  l a s t  row, t h e  minors  of  t h e  e l e m e n t s  

c:+I, i f o r  i * j  v a n i s h  s i n c e  f o r  i < j  t h e  v e c t o r  (c  -c ) a p p e a r s  -j -0 

t w i c e  and f o r  i> j t h e  l a s t  column i n  t h e  c o r r e s p o n d i n g  minor i s  
t h e  n u l l  v e c t o r .  T h e r e f o r e ,  one  o b t a i n s  f o r  l l j l n  

f o r  1Lj5-1  

= c !  .x .n! .V(Cn) 
-3 - 

s o  t h a t  

I f  one  expands t h e  d e t e r m i n a n t  of t h e  m a t r i x  CO by t h e  minors  of 
t h e  e l e m e n t s  o f  t h e  l a s t  row, t h e  minors  of t h e  e lements .  c : + ~ , ~  

f o r  l ' i l n  v a n i s h  s i n c e  t h e  l a s t  column i s  t h e  n u l l  v e c t o r .  
T h e r e f o r e  one  o b t a i n s  

s o  t h a t  

S t e p  C 

j S i n c e  t h e  s i m p l i c e s  C n + l ,  O I l S j  f o r n a  p a r t i t i o n i n g  of t h e  domain 

D n + l ,  one  o b t a i n s  



Concluding R e m a r k :  We w i l l  demonstrate w i th  an example f o r  n=2 
t h a t  t h e  Theorem does n o t  hold  f o r  an a r b i t r a r y  po lyeder .  Let  
u s  cons ide r  a  polyeder  g iven  by t h e  fo l lowing  f i g u r e  

We have 

and t h e r e f o r e ,  

F=F +F =2 1.  
1 2  

Now, because of t h e  Theorem w e  have 

and t h e r e f o r e  

Th i s ,  however, i s  d i f f e r e n t  from 

1 189 63 
- (  (0+9+7+2)*x1+(0+0+3+3) . X  ) -F=--x +--x 4 2 2 1 2  2 '  



ANNEX 13 

MULTIOBJECTIVE OPTIMIZATION APPROACH 

It is possible to use the procedures which have been de- 
scribed in the main part of this paper for finding optimal 
strategies in those cases where principally different objectives 
(e.g., costs, environmental pollution, etc.) exist. This prob- 
lem was considered and solved in [9] and the results are given 
below. For the sake of simplicity we assume in this Annex that 
the values of all exogenous parameters of our model are certain. 

Let us assume that one set of strategies X is described by 
the set 

of linear constraints, and that we have s different objective 
functions 

The problem is to determine that strategy which somehow minimizes 
all these objective functions. Let us suppose that there is no 
strategy which minimizes all S objective functions simultaneous- 
ly, then any optimal strategy reflects one compromise or another 
between different objectives. The set of such optimal strategies 
is defined as the Pareto set: Strategy does not belong to the 
Pareto set if there exists one sFrategy %EX for which there 
exists at least one value cj=i<cj-x, j=lT..S. The question remains 
how one should select a reasonable-compromise among different 
objective functions considering Pareto set strategies. 

Again we can use the decision criteria described in Chapter 
3. In the fol.lowing, we will only give the formal representation 
of this criteria as applied to our problem. 

Wald (Minimax) Criterion 

minimize max cl .x . 
-1 - 

xEX - i=1,.. . S  

In order to solve this problem one has to solve the LP-problem 

minimize y , 
(sly) 

where x i o ,  - 

Laplace Criterion 
1 s 

minimize - - C c'.x . 
S -i - 

xEX i= 1 

This is a conventional form of an LP-problem. 



Hurwitz Criterion 

minimize (A -max ci-x+ ( 1-A) -min c! -x) . 
xEX -1 - 
- i=1,. . .S i=1, ... S 

In order to solve this problem one has to solve S LP-problems, 
each of which has the f ~ r m  

minimize (Amy+(l-A) .ci.q), i=1,. . . ,S 
(5,~) 

where (x,y)E{A-x=b,x?O, - - - - y?5i-x; cigc;x , 
j=l,...,S, k=l,...,i-l,i+l,....S} 

and furthermore, 

minimize min (A .y+l-A) -cl .x) . 
-1. - 

i=l, ... S (5-y) 

Savage-Niehans Criterion 

minimize max (cl .x-min c! -x) 
xEX 

-1 - -1 - = 1 , S  &X 

In order to solve this problem one has to first solve S LP-problems 

minimize c~.x. i=l. .... S. 
xEX 

-1 - 
- 

and further one LP-problem 

minimize y 
(xty) 

. I 
where - (x,y)E{A-x=b, - - -  - X'O, yl(c!x-min ciq), i=1. .... S} 

-1 - 
xEX 

It is reasonable to use in this case such a criterion which 
provides a finding of such a strategy belonging to the Pareto 
set for which relative differences between the values of the 
objective functions and their minima.are equal. This criterion 
is described by the following constraints 

cl.x- min c;-5 cl-X- min 5;-5 C~ -x- min c' -5 -1 - 
xEX -2 - x_EX -s - xEX 

-S 
- - - - - - - .... - min cl.x min 55.5 mln cl.x 1 - xEX 

-S - 
xEX - - xEX - 

This criterion represents a special form of the so-called bliss 
point criterion [ 101 . 



T a b l e  l a .  R e f e r e n c e  V a l u e s  and R a n g e s  f o r  C a p i t a l  C o s t s  o f  F a s t  
B r e e d e r  R e a c t o r s  (FBR) and o f  So la r  T h e r m a l  E l e c t r i c  
C o n v e r s i o n  (STEC) . 

T a b l e  I b .  E l e m e n t s  o f  t h e  S e t  Co o f  E x t r e m e  P o i n t s  A c c o r d i n g  
t o  ( 4 - 2 )  . 

R a n g e s  
[ $ / W e 1  

850-1  2 7 5  

1 0 0 0 - 2 5 0 0  

FBR 

STEC 

R e f e r e n c e  V a l u e  
[ $/kWel 

9 2 0  

1 9 0 0  

C -1 
C -2 
C -3 
C -4 

FBR 

8 5 0  

1 2 7 5  

8 5 0  

1 2 7 5  

STEC 

1 0 0 0  

1 0 0 0  

2 5 0 0  

2 5 0 0  



T a b l e  2 .  R e s u l t s  of  MESSAGE-runs f o r  t h e  Low S c e n a r i o  a n d  
World Region  I With D a t a  Given by T a b l e  1 .  

D e c i s i o n  
C r i t e r i o n  

min c l . x  -1 - 

R e f e r e n c e  Case 

min 5;-x 
X - 

Value o f  
C r i t e r i o n  

[ G I  

min c;-x 
X - 

2988.05 

min gk-x 
X - 

FBR E l e c t r i c i t y  STEC E l e c t r i c i t y  
P r o d u c t i o n  i n  2030 p r o d u c t i o n  i n  2030 

Minimax ( b a l d )  
(Theorems 1  and 2 )  

[ GWyrl 

330 

L a p l a c e  
(as  g i v e n  by (4-6)  ) 

[ GWyr I 

0 

(Theorems 4 and  5) 

Savage-Niehans 
(Theorems 6  and  7) 

* A s  a c c o r d i n g  t o  T a b l e  1 b  a l r e a d y  - c 2  l e a d s  t o  a z e r o  i n s t a l l e d  
STEC c a p a c i t y ,  cq d o e s  so, t o o .  



Figure la. Variable space and lines of levels of the objective 
function of the first example. 

Figure Ib. Space of the uncertain parameters of the first 
example. 



F i g u r e  2a. V a l i a b l e  space  and l i n e s  o f  l e v e l s  o f  t h e  o b j e c t i v e  
f u n c t i o n  o f  t h e  second example. 

F i g u r e  2b. Space of  t h e  u n c e r t a i n  p a r a m e t e r s  of  t h e  seccnd 
example. 



min c '  x lies on the line abcd. 
x e x  

( A .  min c, x  + ( 1  - X )  min c2. x )  is the line ef 
x € X  x e x  

Any point of ef is below or equal to any point of ebcf. 

Figure 3a. Illustration of the concavity of the function 
z (c') :=min c' ex - - - 

xEX - 

Figure 3b. Illustrating the position of the maximum of the 
convex function as lying at one of the extreme 
points. 
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by technology 
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Figure 4a. Results of MESSAGE-runs for world region 1: 
electricity production for extreme point cl (see 
Table  Ib) as a function of time. 
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Figu re  4b. R e s u l t s  of  MESSAGE-runs f o r  world r e g i o n  1: 
e l e c t r i c i t y  p roduc t i on  f o r  extreme p o i n t  c2 (see 
Tab le  I b )  a s  a  f u n c t i o n  of t i m e .  
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Figu re  4c. R e s u l t s  o f  MESSAGE-runs f o r  wor ld  r e g i o n  1: 
e l e c t r i c i t y  p r o d u c t i o n  f o r  ext reme p o i n t  cj (see 
Tab le  1c )  as a f u n c t i o n  o f  t i n e .  
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Figure 4d. Results of MESSAGE-runs for world region 1: 
electricity production for extreme point c4 (see 
Table Id) as a function of tine. 



rl W a l d  
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F i g u r e  5a. R e s u l t s  o f  MESSAGE-runs f o r  wor ld  r e g i o n  1 :  
e l e c t r i c i t y  p r o d u c t i o n  a c c o r d i n g  t o  t h e  Minimax- 
(Wald) c r i t e r i o n  a s  a  f u n c t i o n  o f  t i m e .  



rl Laplace 
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F i g u r e  5b. R e s u l t s  o f  MESSAGE-runs f o r  w o r l d  r e g i o n  1 :  
e l e c t r i c i t y  p r o d u c t i o n  a c c o r d i n g  t o  t h e  L a p l a c e  
c r i t e r i o n  as a f u n c t i o n  o f  t i m e .  



electricity generation 
by technology 

LWR 

Figure 5c. Results of MESSAGE-runs for world region 1: 
electricity production according to the H u m i t z  
criterion, intermediate step 1 of Theorem 4, as 
a function of time. 



electricity generation 
by technology 
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F igu re  5d. R e s u l t s  o f  MESSAGE-runs f o r  wor ld  r e g i o n  1 :  
e l e c t r i c i t y  p roduc t i on  acco rd ing  t o  t h e  Hurwitz 
c r i t e r i o n ,  i n t e r m e d i a t e  s t e p  2 of  Theorem 4 ,  a s  
a f u n c t i o n  o f  t ime .  



electricity generation 
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F i g u r e  5e .  R e s u l t s  of  MESSAGE-runs f o r  wor ld  r e g i o n  1 :  
e l e c t r i c i t y  p r o d u c t i o n  a c c o r d i n g  t o  t h e  H u m i t z  
c r i t e r i o n ,  i n t e r m e d i a t e  s t e p  3 o f  Theorem 4 ,  a s  
a  f u n c t i o n  of  t i m e .  



rl Savage 
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F i g u r e  5 f .  R e s u l t s  o f  MESSAGE-runs f o r  w o r l d  r e g i o n  1 :  
e l e c t r i c i t y  p r o d u c t i o n  a c c o r d i n g  t o  t h e  Savage  
c r i t e r i o n ,  a s  a  f u n c t i o n  o f  t i m e .  


