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Abstract 

Model-based global projections of future land use and land cover (LULC) change are 

frequently used in environmental assessments to study the impact of LULC change on 

environmental services and to provide decision support for policy. These projections are 

characterized by a high uncertainty in terms of quantity and allocation of projected changes, 

which can severely impact the results of environmental assessments. In this study, we 

identify hotspots of uncertainty, based on 43 simulations from 11 global-scale LULC change 

models representing a wide range of assumptions of future biophysical and socio-economic 

conditions. We attribute components of uncertainty to input data, model structure, scenario 

storyline and a residual term, based on a regression analysis and analysis of variance. From 

this diverse set of models and scenarios we find that the uncertainty varies, depending on the 
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region and the LULC type under consideration. Hotspots of uncertainty appear mainly at the 

edges of globally important biomes (e.g. boreal and tropical forests). Our results indicate that 

an important source of uncertainty in forest and pasture areas originates from different input 

data applied in the models. Cropland, in contrast, is more consistent among the starting 

conditions, while variation in the projections gradually increases over time due to diverse 

scenario assumptions and different modeling approaches. Comparisons at the grid cell level 

indicate that disagreement is mainly related to LULC type definitions and the individual 

model allocation schemes. We conclude that improving the quality and consistency of 

observational data utilized in the modeling process as well as improving the allocation 

mechanisms of LULC change models remain important challenges. Current LULC 

representation in environmental assessments might miss the uncertainty arising from the 

diversity of LULC change modeling approaches and many studies ignore the uncertainty in 

LULC projections in assessments of LULC change impacts on climate, water resources or 

biodiversity. 

 

Introduction  

Land use and land cover (LULC) change has been identified as a major driver of global and 

regional environmental change and is increasingly recognized in today’s assessment of 

anthropogenic impacts on the environment on a global scale (Brovkin et al., 2013, Foley et 

al., 2005, Verburg et al., 2015). While natural forces dominated the appearance of the land’s 

surface for billions of years, humans are now recognized as the main driver shaping the 

environment in the modern world (Ellis, 2011). Agricultural activity, forest management, and 

the demand for energy have increasing impacts on the functioning of the Earth system.  
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Human induced LULC changes are estimated to contribute substantially to anthropogenic 

emissions of CO2 (Houghton et al., 2012, Le Quere et al., 2015) and non-CO2 greenhouse 

gases (GHG) to the atmosphere (Smith et al., 2014, Tubiello et al., 2015). GHG emissions 

related to LULC change, however, represent the biggest source of uncertainty in the global 

carbon budget (Ballantyne et al., 2015). Beyond biogeochemical impacts on the carbon and 

nitrogen cycle, LULC change and land management have been identified to alter biophysical 

characteristics of the earth’s surface (e.g. albedo, soil moisture and surface roughness) 

especially in regions of intense past LULC change (de Noblet-Ducoudre et al., 2012, Pitman 

et al., 2009). This in turn will have feedbacks to the climate system (Luyssaert et al., 2014, 

Mahmood et al., 2014, Rounsevell et al., 2014).  

To assess the direction and strength of anthropogenic LULC change effects on ecosystems 

and the climate, environmental assessments heavily rely on the provision of historical 

reconstructions and future projections of LULC change trajectories generated by models. 

Thus, the estimates are also affected by uncertainties originating in the underlying model data 

on anthropogenic LULC change for historical and future times (Klein Goldewijk &  Verburg, 

2013, Meiyappan &  Jain, 2012). Future LULC change information is usually provided by 

either integrated assessment models (IAM) or specialized land use models (LUM) to 

downstream models such as earth system models (ESM), global vegetation models (DGVM) 

or other ecosystem model applications. While the uncertainty in the reconstruction of historic 

LULC changes has been assigned to different approaches in the reconstruction method and 

the limited data availability for historic times (Ellis et al., 2013, Klein Goldewijk &  Verburg, 

2013), future model projections suffer from the lack of a validation option and are dependent 

on the underlying scenario storylines. Large efforts have been made to develop and improve 

simulations of future LULC on a global scale by different disciplines and modelling 

approaches (Michetti &  Zampieri, 2014, NRC, 2014). However, uncertainties remain and 
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originate from different sources in the LULC change modeling process (Verburg et al., 

2013). 

Global scale LULC change models (both IAMs and LUMs) are difficult to evaluate against 

observational data for historical and recent times due to the lack of suitable global 

observations and independent datasets, which are not used in model calibration (Verburg et 

al., 2011). Instead of evaluation exercises model inter-comparisons have been conducted to 

obtain insight in the differences in models. While there have been some comparison exercises 

at regional scale (Busch, 2006, Mas et al., 2014, Pontius et al., 2008), global scale 

comparisons have been constrained to the larger integrated assessment and macro-economic 

models, such as in the Agricultural Model Intercomparison and Improvement Project 

(AgMIP) (Nelson et al., 2014a, Nelson et al., 2014b, Schmitz et al., 2014),  the Inter-Sectoral 

Impact Model Intercomparison Project (ISI-MIP) (Nelson et al., 2014a, Warszawski et al., 

2014) or the EMF27 inter-comparison exercise on land use (Popp et al., 2014b). These 

comparisons address several model outcomes, but not the simulated spatial LULC change 

patterns. Recently, a broader set of modeled LULC change scenarios was compared 

(Alexander et al., in review). However, this comparison also focused on the simulated global 

quantity of LULC change, without differentiating uncertainties to different regions, specific 

LULC conversions, or grid cell locations. Understanding of spatial patterns of LULC changes 

is essential, because these spatial patterns affect important biogeochemical, biophysical and 

ecological variables such as soil fertility, local climate, and biodiversity. For example, the 

climate impact of converting forest into agricultural land might be different from the 

conversion of grazing land into agricultural land (Don et al., 2011, Guo &  Gifford, 2002, 

Mahmood et al., 2014). Moreover, the spatial patterns of LULC change identify those 

locations and people that will face large changes in their environment. Thus, spatially explicit 
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assessment of uncertainties is required to identify not only the amount but also the geographic 

extent and location of uncertainty.  

The main objective of this paper is to compare a wide range of existing global scale LULC 

projections in terms of spatial variability and land conversion processes. To reach this 

objective the outputs of a set of 11 global-scale LULC change models (providing LULC 

projections based on 43 scenarios) are compared on both a regional level as well as spatially 

gridded level. These 43 scenarios represent a diverse range of biophysical and socio-

economic assumptions about the future and capture a broad range of regional and gridded 

level uncertainties typical in current models, therefore allowing to investigate in which 

regions LULC change projections are least and most uncertain and at which grid cell 

locations models agree and disagree about future LULC developments. 

  

Materials and methods 

Models and scenarios 

Our comparison included 11 models covering a total of 43 scenarios (Table 1), which 

represent a subset of the database collected for the analysis of global and European quantities 

of LULC change in Alexander et al. (in review). Models which provide only output 

aggregated at the global level or only cover the European continent were not considered, 

since they were not suitable for the comparison of regional and gridded spatial patterns of 

LULC changes in this study. Thus, our comparison is comprised of 5 models that provide 

results at world region level and 6 spatially explicit LULC change models (Figure 1). To 

ensure wide participation of models in the inter-comparison, modeling teams were invited to 

submit existing simulations rather than run new simulations with constrained scenario inputs. 
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Most of the scenarios are based on the shared socio-economic pathways (SSP) and 

representative concentration pathways (RCP) framework (O’Neill et al., 2015, van Vuuren et 

al., 2011) or on the previous IPCC special report on emissions scenarios (SRES) framework 

(Nakicenovic &  Swart, 2000). However, a few models provided scenarios based on other 

storylines (Table 1). The LandSHIFT scenarios are based on several biofuel pathways for 

Germany applying different intensity assumptions for the type of usage (fuel or electricity 

and heat) and sustainability politics (business as usual versus strict environmental 

regulations). The CLUMondo scenarios on the other hand are driven by demands for crop 

production, livestock and urban area based on FAO projections (Alexandratos &  Bruinsma, 

2012). Additional demands for carbon storage and protected areas were used to explore the 

consequences of different mitigation policies (reduction of GHG emissions and prevention of 

biodiversity loss) on land change trajectories (Eitelberg et al., in review).  

Despite these similarities in the underlying scenario framework, models have been applied 

for a diverse range of biophysical and socio-economic scenario inputs. For example, some 

scenarios originate from studies comparing climate mitigation options to business-as-usual 

conditions within the same general storyline (e.g. IMAGE and MAgPIE), while others 

represent the different SSP storylines considering different historic LULC change or future 

climate change trajectories (e.g. FARM, CAPS). Further, some of the scenarios include 

climate impacts on the land sector, while others assume constant climate conditions, or use 

the climatic outcomes in the scenarios as emissions mitigation targets. While often 

uncertainty in LULC projections is represented by differences between scenarios, the 

different ways of implementing the same scenario may also lead to different outcomes. 

Rather than forcing all models to simulate the same scenario, as is done in earlier model 

comparisons (Schmitz et al., 2014), our approach allows us to address the wider range of 
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uncertainties involved in LULC change projections and compare the variation in outcomes as 

result of different scenarios to the variation resulting from other sources of uncertainty. 

Data preprocessing  

Due to this wide range of model and scenario inputs, which were not harmonized prior to the 

simulations, the model outputs used in our comparison required several steps of 

preprocessing to allow a meaningful comparison. 

For the regional level comparison, 12 common world regions were defined by aggregating 

areas for cropland, pasture and forest (Table S1, Figure S1). Most of the spatial aggregation, 

which was necessary due to the variety of regional sub-divisions (Table 1), could be achieved 

by simply adding the areas of two or more regions. In cases, where this was not possible, we 

rescaled the modeled areas based on the areas reported by FAO country level statistics in 

2010 (FAOSTAT, 2015) (Table S2). Gridded model results were also included in the regional 

level comparison by simple aggregation of the pixel-based results to the world regions. Since 

only a small number of the models provided additional land use and land management 

categories (e.g. urban or managed forest), these categories were excluded from the regional 

part of the analysis. The models start their simulations in different years (Table 1) and report 

high variation of initial areas for individual LULC types due to differences in category 

definitions and uncertainty in land statistics (Verburg et al., 2011). To adjust for this 

discrepancy, the modeled absolute area of each LULC type in year 2010 was used as a 

reference and changes were calculated for the remaining years as proportion of the areas in 

2010.  

For the gridded level comparison, the maps were harmonized to fractions of the grid cell area 

at a 0.5 x 0.5 degree grid (un-projected WGS84 coordinate system). This ensured the lowest 

impact on original model outputs and could be achieved by spatial aggregation for 
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CLUMondo, GLOBIOM and LandSHIFT. CAPS, IMAGE and MAgPIE output maps were 

already provided at the target resolution. The thematic resolution varied widely between the 

gridded models. For example, the CAPS model only reports cropland and pasture, while the 

LandSHIFT legend is based on the GlobCover classification, comprising of 30 different 

LULC types (Bontemps et al., 2011). To resolve this thematic diversity, we aggregated all 

legends to a common legend of cropland, pasture, forest, urban and other natural, since these 

classes were reported by a majority of the models. When classes were missing they were 

assumed to be merged with the other natural category. Details how individual model outputs 

have been preprocessed prior to the analysis are reported in the SI.  

 

Comparison metrics  

Different comparison metrics were applied to the regional and spatially explicit model results 

(Figure S2). First, coefficients of variation (standard deviation divided by mean, COV) were 

calculated for each of the 12 world regions based on all scenarios for both the LULC changes 

(relative to 2010 areas) and LULC areas (areas actually reported in a certain year) at every 

decadal end year (2010-2100). This allowed to depict variation across the model results with 

and without the effect of differences in the starting conditions. The coefficient of variation 

was chosen to provide a comparable measure to describe the spatial pattern of variability 

across regions. Additionally, median values of LULC changes were used to identify direction 

and amount of overall LULC change projected by the scenario set.  

To assess the sources of uncertainty across LULC types and regions, a regression analysis 

and analysis of variance (ANOVA) was conducted. We thereby followed Alexander et al. (in 

review), who ran linear multiple regressions for each LULC type and decadal end year to 

identify significant drivers of variation in the data. Every scenario in our database was 
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parameterized according to 9 common variables that characterize the model, the scenario and 

the initial condition delta (Table 2, Table S5). This set of explanatory variables was derived 

by the authors and selected to sufficiently depict the most important differences across the 

diversity of models and scenarios in our analysis. Results from analysis of robustness tests 

conducted in Alexander et al. (in review) suggest that upon including alternative variables no 

substantially different results are obtained. The modeled LULC area in a certain year was 

hypothesized to be a function of these 9 variables. The full model (including all 9 variables 

for each LULC type and decadal end year) was reduced by stepwise backward selection using 

the Akaike information criterion (AIC) to avoid over-fitting and to balance performance and 

complexity of the regression models (Burnham &  Anderson, 2004). Subsequently an 

ANOVA was conducted on the regression results to quantify the contribution of each variable 

to the total variation in the modeled LULC areas. The variation that could not be explained 

by these variables was summarized in a residual term. Since the initial variation was 

hypothesized as a major reason for uncertainty in the projections (Alexander et al., in 

review), regression analysis and ANOVA was applied to the LULC areas reported by the 

models, which include the differences in the starting conditions.  

To evaluate the uncertainty of LULC change allocation across the six gridded models and 

identify areas of disagreement among the models, we calculated gridded maps of total 

variation across all scenarios. Standard deviations of LULC changes at grid cell level were 

used as a measure of variation. Subsequently, we adapted a pairwise map comparison 

approach for the LULC areas at grid cell level. Pontius and  Cheuk (2006) propose a cross-

tabulation approach to identify disagreement between any two maps at a particular resolution, 

while considering simultaneously the complete thematic detail of the legend (details provided 

in the SI). Each entry of the resulting cross-tabulation matrix can be interpreted as a fraction 

of the study area (Table S4), which allows quantifying the area of agreement and 
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disagreement between the maps under consideration. Moreover, areas of disagreement can be 

attributed to particular LULC types (e.g. one model projects forest, while another projects 

cropland for the same geographic location and point in time). This disagreement will be 

referred to as ‘confusion’ between LULC types in the remaining paper.  

Applying this approach to any two maps (i.e. all unique model and scenario combinations) of 

the years 2010, 2030, 2050 and 2100 for the six gridded models at the 0.5 x 0.5 degree 

resolution and the coarsest possible resolution (i.e. the whole globe is taken as one grid cell), 

we distinguished disagreement between the maps due to different global quantities per LULC 

type (quantity disagreement) and disagreement due to different allocation of LULC types on 

the map (allocation disagreement). These two disagreement components add up to the total 

disagreement at the original resolution (Pontius &  Millones, 2011). 

To identify grid cell locations of high confusion between LULC types across models and 

scenarios and visualize the comprehensive information of up to 253 possible pairwise 

comparisons at the grid cell level (depending on the year considered), mean values for all 

matrix entries were calculated and aggregated to confusion categories between the main 

LULC types in the models (cropland, pasture, forest, other natural and urban).  

 

Results  

Regional level change trends and variation of LULC changes  

LULC change projections differ in the direction of change, amount of change, and amount of 

variation among LULC types and regions (Figure 2; Figure S3). Cropland areas tend to 

increase in all regions (except for Europe, Russia/Central Asia and Southeast Asia) until the 

end of the simulation period according to the diverse model and scenario set combined in our 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

study (Table 1). The analysis of median values shows higher rates of cropland expansion in 

Sub-Saharan Africa (up to 72%), Canada (up to 26%) and Middle East/North Africa (> 20%) 

at the end of the century. In contrast, lower change rates are projected for China (~4% 

increase) and India/South Asia (~6% increase). Coefficients of variation yielded rather high 

values in Australia/New Zealand and Brazil (COV > 0.4). In Europe and India/South Asia on 

the other hand, the models are more in agreement (COV < 0.3). The amount of variation is 

steadily increasing with time in most of the regions resulting in the highest uncertainty at the 

end of the simulation period.  

Compared with projections of cropland changes, pasture areas show smaller change rates 

(Figure 2 b). Model median values range between a loss of 13% in Canada and a slight gain 

of 5% in Southeast Asia in 2100 while in a number of regions hardly any change is shown, 

e.g. in Australia/New Zealand and South/Middle America. The highest variations in pasture 

change rates are, except for Canada (COV = 0.51), still lower than the lowest COV found in 

any region for cropland change (COVs < 0.3). Australia/New Zealand, Russia/Central Asia 

and the USA are even below a threshold of 0.1. Except for Canada and Southeast Asia 

coefficient of variations show small increase over time. 

The forest category shows the lowest overall change rates. However, regions vary for this 

class in terms of the direction of changes (Figure 2 c). Similar to pasture, some regions show 

almost no changes in forest areas (e.g. Australia/New Zealand, Brazil, Canada and Europe). 

Other regions indicate a decrease (Sub-Saharan Africa) or increase (China). In Southeast Asia 

and India/South Asia forests are projected to increase in the second half of the century, from 

a low at around 2050. The highest median values can be found at 10% loss in Sub-Saharan 

Africa and 11% gain in China at 2100. The level of variation across the wide range of model 

types and scenarios is rather low for the forest category and smaller than in the pasture 

category in most regions. The highest COVs are between 0.15 and 0.28 in Middle East/North 
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Africa, India/South Asia, China and Sub-Saharan Africa at the end of the century, while 

almost all other regions are below a COV of 0.1. 

Regional level variation of LULC areas and variance decomposition 

Figure 3 shows the COV for each region, calculated based on the areas per LULC type 

reported by each scenario in 2010, 2030, 2050 and 2100 and classified into lower quartile, 

interquartile range and upper quartile of the distribution across all LULC types and years. 

Initial variation in 2010 ranges from a COV of 0.07 for cropland in India/South Asia up to a 

value of 0.66 for pasture areas in Canada. For cropland only, the highest COVs are in 

Australia/New Zealand (0.30), the USA (0.21) and Canada (0.20), while the Asian regions, 

South America, Africa and Europe are much lower (0.10-0.20). Pasture has high initial 

variation (0.21-0.65) in almost every region except for Brazil (0.09). Regional differences in 

the forest category are also much smaller, ranging from 0.08 in Middle/South America to 

0.43 in Middle East/North Africa and Australia/New Zealand. Despite the regional 

differences, variation in 2010 areas are generally higher in pasture and forest than in 

cropland.  

A temporal development of coefficients of variation can be seen in the cropland category: in 

2030 all regions except for Europe, China and India/South Asia exceed the lower quartile, in 

2050 all regions but India/South Asia exceed this threshold, and Australia/New Zealand, 

Brazil, and Russia even turn into the category representing the upper quartile. Cropland 

projections therefore become more uncertain over time, while hardly any change in variation 

with time can be detected for pasture and forest. 

Although a considerable amount of variation is present already in the 2010 areas for all 

LULC types, this initial variation is generally larger for forest and pasture than for cropland. 

Forest and pasture also seem to be more sensitive to changes in our scenario database, as after 
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2050 (when some of the models end their projections) the amount of variation actually 

decreases in several regions (e.g. Russia and South America for pasture and Russia and 

Southeast Asia for forest, respectively). 

The dominance of initial uncertainties and the general differences between the LULC types is 

supported by the variance decomposition (Figure S5-7). As an example, we show results for 

selected regions and LULC types in Figure 4. The contribution of initial conditions in 

explaining the variation in the scenario results is larger for pasture and forest than for 

cropland over the whole simulation period and for all regions (except for South/Middle 

America). Initial conditions explain, for example, almost the total variation in the LULC 

projections in some regions (India/South Asia and Canada for pasture, Figure 4). If the initial 

conditions are not dominating, which is primarily the case for cropland projections, the 

relative contributions of the remaining explanatory variables are very unevenly distributed 

across regions. While, for example, in the second half of the simulation period, 

Australia/New Zealand and Brazil show a high contribution of model parameters for cropland 

in explaining the variance, scenario parameters contribute almost as much as model 

parameters in China and Middle East/North Africa for cropland. In Figure 4, regions are 

characterized along two gradients: amount of change (i.e. the median value of LULC changes 

calculated based on all scenarios) and amount of variation (i.e. COV of LULC changes 

calculated based on all scenarios). The partitioning of variance components shows some 

general patterns. Generally, the higher the total variation in results, the higher the fraction of 

variance that can be explained by the initial conditions, which highlights the importance of 

the base-year input data in influencing future projections. Although the exact variance 

fractions are very different across regions, we could not find notable influence of higher 

overall change rates to the distribution of variance components.  

Gridded level variation of LULC changes  
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Consistent with the regional level results, there is a higher absolute amount of variation in the 

cropland category than there is in the forest and pasture categories (indicated by the more 

intense colors in the cropland maps in Figure 5).  

Hotspots of variation in cropland changes are located in the central United States and north 

Mexico, the eastern part of Brazil, the boundaries of the Sahara and large parts of western 

Russia in 2030. Further small areas with high variations appear in the southern part of Africa 

(Zimbabwe and Madagascar), some parts of India/Pakistan and the Middle East, northern 

China, and the east coast of Australia and New Zealand. The overall spatial distribution of the 

grid cells with a high variation hardly changes over time, but the maximum variation as well 

as the geographic extent of the uncertain areas increase after 2030 (e.g. into the west of the 

USA and further north in western Russia). In 2100 this development reverses, most probably 

due to the more limited number of models reporting values for that time step.  

Areas of uncertainty of forest dynamics can be found in all major forest areas globally, 

including boreal, temperate, and tropical forests. Hotspots of variation are mainly located at 

the edges between forested and non-forested areas, rather than in the center of large forested 

areas (e.g. in the high latitudes of Siberia). While this pattern emerges already in 2030, it 

becomes more obvious in 2050 and 2100.  

For pasture, recognizable variations are present in almost every grid cell containing pastures, 

although the amount of variation is low compared to cropland and forest. Hotspots can be 

hardly detected in 2030, while in 2050 central Brazil, central India and western Australia 

emerge as the regions with the highest variation. In 2100 further parts of North and South 

America, the Sahara surrounding area and large parts of East Asia are increasingly uncertain, 

although still below the uncertainty found in cropland change projections.  

Quantity and allocation disagreement in pairwise map comparisons  
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The total disagreement is generally low between different scenarios of the same model at the 

0.5 x 0.5 degree resolution in 2030, while differences between models are higher (Figure 6 a). 

We found maximum values of 6% and 7% within model disagreement for the CLUMondo 

mitigation scenarios compared to the reference scenario, and up to 9% for several scenarios 

of the CAPS model, respectively. Consistently, all within model disagreements are lower 

than the smallest disagreement between scenarios from any two different models (minimum 

value of 16% between IMAGE SSP2 reference and CAPS Sim6 scenarios).  

Maximum disagreements between models can be found between IMAGE and LandSHIFT 

results, where on 48% of the total land area (excluding Antarctica and Greenland) there is no 

agreement about the LULC categories. LandSHIFT corresponds least with any of the other 

models, which is mostly due to different quantities of the various LULC types (~70% of the 

total disagreement, Figure 6 a and b), likely a result of the different scenarios considered by 

this model. Comparisons between maps of any model with the CAPS model resulted in the 

smallest disagreements, which can most probably be ascribed to the limited amount of 

categories compared in these cases (cropland, pasture and other natural, Table 1). 

CLUMondo scenarios yield between 33% and 38% total disagreement when compared to 

scenarios of GLOBIOM, IMAGE and MAgPIE, where comparison with GLOBIOM gained 

the highest similarity and with IMAGE the lowest. The allocation component of the total 

disagreement is thereby larger than the quantity disagreement throughout. Maps of the 

GLOBIOM, IMAGE and MAgPIE models show similar amounts of total disagreement, 

ranging from 35% (MAgPIE and GLOBIOM or IMAGE, respectively) to 42% (IMAGE and 

GLOBIOM). However, while IMAGE and MAgPIE are almost consistent in terms of global 

quantities (quantity disagreement between 5% and 6%), their disagreement with GLOBIOM 

is both due to quantity and allocation.  
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Confusion of LULC types across scenarios 

Figure 7 displays the average confusion (i.e. maps show different LULC types in the same 

grid cell at the same time) of LULC types in the maps of all possible pairwise comparisons, 

which we show as an illustration for the year 2030. Values represent the proportion of a 

particular confusion type (e.g. cropland in one map and forest in another, Figure 7 top left) on 

the total disagreement in a grid cell. We removed confusions with urban (very small amount 

of grid cells and portions) and grid cells with a total average disagreement lower than 10 % 

for reasons of clarity.  

Most of the disagreement between models can be assigned to the ambiguity between pasture 

and other natural land in large parts of the world, with hotspots in Australia, Central Asia, 

large parts of the African continent outside of tropical forests, the southern part of South 

America and also the central and western part of North America. In the high latitudes, the 

disagreement between forest and other natural land is the dominating confusion type. This 

pattern, however, only appears in grid cells with smaller amounts of total disagreement (< 

25 %, Figure S8). Compared with that, all other confusion types are low, although other 

confusions of LULC types also contribute substantially to the total disagreement.  

 

Discussion  

Hot spots of uncertainty  

The comparison of model results in this paper has been made both for LULC changes and for 

the actual LULC areas. Differences between the actual areas and the simulated changes have 

different origins and different impacts on the assessment of uncertainty in spatially explicit 

LULC projections (Brown et al., 2013). Important components determining differences in 
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assessment of changes versus the actual areas relate to the impact of input data on the 

projections and the spatial allocation of global or regional LULC change at regular grid level. 

Both issues are, however, related since the models usually allocate changes in relation to the 

LULC representation at a former time step (e.g. agricultural land expands at the edges of 

already cultivated land), which makes the influence of input data even more important. Input 

data have been indicated as a major uncertainty source in future LULC change trajectories 

before (Fritz et al., 2011, Popp et al., 2014b, Smith et al., 2010, Verburg et al., 2011), which 

is confirmed by our results. Especially for pasture and forest, initial variation dominates the 

uncertainty in the scenarios under consideration, but also cropland shows substantial 

deviations in the start values of the models. This can be attributed to different sources of 

input data used to initialize the models, which rely on variant definitions and data acquisition 

approaches. Moreover, while models simulating aggregate change at global or regional levels 

are often based on statistical data the initial areas of spatial land change models are often 

derived from available land cover maps based on remote sensing data or harmonized 

products. What is actually defined as a forest is highly dependent on the origin and 

framework observational data originates in. Sexton et al. (2015) recently reported large 

differences (up to 13% of the Earth’s land area) between global satellite based forest data 

products concluding that the main reason for this discrepancy originates in definition issues 

rather than the technological limitation of earth observation sensors and the algorithms 

applied to derive land cover and land use categories (although this also still remains an 

uncertainty factor, e.g. Friedl et al. (2010)). These kinds of data in turn are implemented to 

different extents in the models of our comparison either directly (e.g. Bontemps et al. (2011) 

in LandSHIFT; Hansen et al. (2003) in CLUMondo) or indirectly by compiled products of 

census and remote sensing data or potential natural vegetation maps from DGVMs (e.g. Erb 

et al. (2007) in MAgPIE). 
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Sexton et al. (2015) further identified high disagreements in the considered forest data 

products at the transition zones of boreal forest to tundra and (sub)tropical forest to savannah 

biomes; areas which we could also detect as highly variable in our model and scenario data 

set. Therefore, it seems highly likely that these discrepancies in observational data propagate 

into model outputs and this is further confirmed by the dominance of initial conditions in the 

variance decomposition. Although the importance of these initial aspects strongly decreases 

when only considering LULC changes (i.e. removing the differences in the initial conditions), 

the geographic pattern remains very similar, which may be, to some extent, attributed to the 

impact of different input data. Nevertheless, the transitions between different biomes are also 

areas where many of the LULC models allocate change as result of the gradient of 

environmental conditions or through the implementation of climate change in the allocation 

mechanisms that would affect the suitability of these zones for different LULC types. It is 

therefore these zones that gather multiple uncertainties in the LULC modelling process that 

call for more attention for studying these areas to help reduce the uncertainty in projections 

for these areas.  

To reduce uncertainty in initial LULC data recently a number of initiatives have been taken 

by data assimilation or crowdsourcing strategies (Fritz et al., 2012, Tuanmu &  Jetz, 2014). 

We expect feeding models with consensus LULC products as initial data will certainly reduce 

the differences in model outcome and facilitate further model comparisons, concentrating on 

structural model uncertainty. However, such harmonization strategies will also obscure the 

uncertainty embedded in the current state of land use and land cover and would only be 

justified by an actual reduction of the uncertainty of the data. 

While the data input and definition issue mainly dominates the uncertainties in projections of 

forest and pasture, the analysis of LULC changes also shows wide variation across the 

models and scenarios in most of the regions for cropland projections. These results indicate 
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that, even if a proper depiction of the current state of LULC existed, uncertainty in future 

LULC related to the model structure and scenario assumptions remain. Part of this variation 

can be explained by the scenarios used in our comparison, whose input assumptions were not 

harmonized. Different scenarios are expected to result in a variation in LULC outcomes, and 

are a common way of addressing uncertainties in major socio-economic developments, or 

evaluating the sensitivity of land use to policy alternatives. However, the partitioning of the 

variation clearly shows that only a part of the variation can be explained by the differences in 

scenarios and that, often, the results of different scenarios of the same model are more similar 

than the results of the same scenario by different models. 

Several hotspots of uncertainty in the gridded maps are located in areas characterized by 

rapid past LULC changes (Lepers et al., 2005). Thus several areas of special interest for 

future LULC change trajectories represent also areas of high uncertainties in current LULC 

modeling. Integration of assessments on local or regional scales may help to improve the 

representation of LULC changes in global scale applications.  

 

Scaling issues in uncertainty assessment 

The analysis of land cover and land use changes further revealed a scale dependency in the 

uncertainty patterns. The results at the grid-level suggest that the actual hotspots of 

uncertainty follow the borders of globally important biomes rather than administrative 

borders of geographically or economically delimited world regions. Therefore, the 

uncertainty in certain regions depicted in regional-level uncertainty maps may only apply to 

specific parts of such a region and should be interpreted with care.  
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All considered LULC types show this pattern to a certain extent, while it is most obvious in 

the forest category. Two of the uncertainty hotspots for cropland can be found for example at 

a north to south gradient in the center of the North American continent and in the southwest 

of Russia, both rendering the whole regions uncertain at the regional level in 2030 and 2050 

(Figure 2, Figure 5). Another example is the earlier mentioned transition zone between boreal 

forest and tundra ecosystems. 

 

Uncertainty assessment at the scale of large world regions is not capable to reveal the actual 

hotspots of LULC uncertainty. First, the average uncertainty in a world region could be 

misleading as it removes the heterogeneity of uncertainty patterns within the regions. Second, 

actual hotspots located at the boundaries of two or more administrative units could dilute the 

importance of the hotspot by dividing the disagreement between the regions which 

individually are not being identified as a hotspot.  

 

Thus, the level of spatial detail in analyzing uncertainty matters and should be carefully 

considered, especially in applications utilizing LULC change models at different spatial 

resolutions. Ideally, uncertainty assessments should account for a variety of spatial scales and 

alternative regional sub-divisions to narrow down the areas of substantial uncertainties as our 

study has demonstrated. This would allow to investigate the impact of different spatial 

resolutions on the uncertainty in LULC trajectories in more detail and may suggest 

alternative regional sub-division for future model development.  
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Implications for environmental assessments   

The output of LULC change models is widely utilized in global and regional scale 

environmental assessments. Too often land use reconstructions or projections are regarded as 

observations without accounting for uncertainty while our results show that these projections 

contain serious sources of uncertainty. In the Climate Model Intercomparison Project (CMIP) 

simulations for the Intergovernmental Panel on Climate Change (IPCC) harmonized 

historical and future LULC change trajectories are used (Taylor et al., 2012). The future 

LULC change trajectories for the four RCPs are provided by four different IAMs and 

smoothly connected to the HYDE historical LULC reconstruction (Hurtt et al., 2011, Klein 

Goldewijk et al., 2011). Our results indicate that this strategy is likely to have consequences 

for downstream model input data for two reasons. First, although harmonization ensures 

common starting conditions for different models, it obscures the uncertainty about the current 

state of LULC that strongly propagates in model results. Second, in the current approach of 

simulating the RCPs the influence of model diversity on LULC change trajectories is not 

considered since each scenario is simulated by a different model. Both, initial data and model 

parameters have been shown to contribute substantially to the uncertainty in LULC 

projections, hampering a good comparison of the impact of scenario conditions on the final 

outcomes. Thus further sensitivity exercises addressing the uncertainty in LULC for the same 

scenario in climate impact models are required to test the sensitivity of the outputs and 

quantify the uncertainty. The strong spatial patterns in the uncertainty suggest that also the 

downstream impacts of the uncertainties in impact assessment are spatially diverse. The 

correspondence of regions with high uncertainty to regions that may have important impacts 

on climate change suggests the importance of focusing on further uncovering the sources of 

uncertainty in these regions to avoid error propagation in environmental assessments.  
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Limitations  

Unlike previous inter-comparison exercises (Popp et al., 2014b, Schmitz et al., 2014) we did 

not make any effort to either harmonize the participating simulations to common scenario 

constraints or to calibrate models to a common starting map. This was done to ensure a wider 

participation of models and integrate LULC change models from different domains that are 

normally not part of the inter-comparison exercises that are strongly related to the IPCC 

process. However, this approach makes comparison more challenging, in particular the 

interpretation of results. The diversity of scenario assumptions applied in the models and the 

scenario parameterization approach adds a certain extent of uncertainty to the model results 

in our data base which is independent of model structure and cannot be quantified adequately. 

We, thus, do not propose that uncertainty can be completely reduced by model improvement. 

As LULC is driven by individual human decisions, future LULC is uncertain by nature. 

However, the results of the variance decomposition at regional level and pairwise 

comparisons at gridded level indicate that model structure and allocation schemes are an 

important source of uncertainty and need further attention at various scales. The article also 

does not aim to evaluate or judge individual model performance as, inherent to the chosen 

approach of comparison in which initial data and scenarios are not harmonized, this is not 

possible. Rather, we have identified areas of high uncertainty and different sources of 

uncertainty related to this. Applying these models to gain further knowledge about the socio-

economic and environmental challenges of the future requires a good understanding of the 

range of modeling approaches available and awareness about uncertainty sources. With our 

approach, we were able to identify hotspots of uncertainty in regional and spatially explicit 

LULC change modeling, thereby suggesting locations where further research should focus on 

to improve global scale trajectories of LULC change.  
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Figure S7 Full results of the variance decomposition for land type forest.  

Figure S8 Land type confusion on grid cell level in 2030 (grid cells with 

more than 25% total disagreement) 
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Table 2 Overview of variables used to parameterize the scenarios of each model. Details are explained in the SI (Table S3, 
Table S5).  

Variable Data type Association 
Initial condition delta Continuous  

(deviation of model areas from 
FAO areas in 2010 (FAOSTAT, 
2015) 

Initial 

Model type Categorical (CGE, PE, Rule-
based, Hybrid) 

Model structure 

Number of model cells (log) Continuous Model structure 
CO2 concentration 2100 Continuous Climate scenario 
Population 2100 Continuous Socio-economic scenario 
GDP growth rate to 2100 Continuous Socio-economic scenario 
Inequality ratio 2100 Continuous Socio-economic scenario 
Technology change Discrete (0=None, 1=Slow, 

2=Medium, 3=Rapid) 
Socio-economic scenario 

International trade Discrete (1=Constrained, 
2=Moderate, 3=High) 

Socio-economic scenario 

 

Figure captions 

Figure 1 Overview of the LUC4C model inter-comparison exercise; global and EU27 

quantities were analyzed in a separate study (Alexander et al., in review) while an adjusted 

data base was used for the regional and spatially gridded analysis in this study.  

Figure 2 Land use and land cover change projections for (a) cropland, (b) pasture and (c) 

forest of 43 scenarios generated by 11 different models. Changes are shown relative to the 

areas reported in 2010 per category (for original areas projected by the models see Figure 

S4). The grey shading represents the 95 % interval of model results, while the vertical grey 

bar indicates a change in the amount of models and scenarios between 2040 and 2060. Note 

the different ranges of scales applied for cropland, pasture and forest categories.  

Figure 3 Variation of land use areas for 43 scenarios of 11 models in cropland, forest and 

pasture category; variation expressed as coefficient of variation and classified into lower 

quartile, interquartile range and upper quartile of the distribution. Quartiles are calculated 
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based on all years and land uses; n depicts the number of scenarios underlying the calculation 

of COV.  

Figure 4 Visualization of variance decomposition for selected regions along the two 

gradients change rate (horizontal) and variation (vertical). The axes are qualitative based on 

the distribution of change rates and variation within each LULC type (e.g. Brazil is a 

representative of high change rates and variations within the cropland category). The order of 

LULC types within each quadrant is arbitrary. The individual panels show the relative 

importance of different variance components at each decadal end year. The vertical grey 

shading indicates a change in the underlying model set between 2040 and 2060. 

Figure 5 Total variation of net changes (reference year 2010) for cropland, pasture and forest 

in 2030, 2050 and 2100. The variation is expressed as the standard deviation for each grid 

cell. 

Figure 6 Decomposition of disagreement components for each pairwise comparison in 2030.  

(a) Total disagreement at 0.5 x 0.5 degree grid cell level, (b) Quantity disagreement 

component (= total disagreement when whole globe considered as one pixel) and (c) 

Allocation disagreement component (= difference of the former two components). The 

numbers represent the fraction of global land area. CLU = CLUMondo, GB = GLOBIOM, 

IM = IMAGE, LS = LandSHIFT, MP = MAgPIE, for scenario decoding see Table S5. 

Figure 7 Land type confusion on grid cell level in 2030. The grid cell values represent the 

proportion of each confusion type on total disagreement per grid cell (urban not shown due to 

the low confusion rates). Only grid cells where total disagreement is greater than 10 % are 

considered.  
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