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Abstract Energy systems optimization under uncertainty is increasing in its impor-
tance due to on-going global de-regulation of the energy sector and the setting of
environmental and efficiency targets which generate new multi-agent risks requiring a
model-based stakeholders dialogue and new systemic regulations. This paper develops
an integrated framework for decision support systems (DSS) for the optimal planning
and operation of a building infrastructure under appearing systemic de-regulations
and risks. The DSS relies on a new two-stage, dynamic stochastic optimization model
with moving random time horizons bounded by stopping time moments. This allows
to model impacts of potential extreme events and structural changes emerging from a
stakeholders dialogue,whichmayoccur at anymoment of the decisionmakingprocess.
The stopping time moments induce endogenous risk aversion in strategic decisions in
a form of dynamic VaR-type systemic risk measures dependent on the system’s struc-
ture. The DSS implementation via an algebraic modeling language (AML) provides
an environment that enforces the necessary stakeholders dialogue for robust planning
and operation of a building infrastructure. Such a framework allows the representation
and solution of building infrastructure systems optimization problems, to be imple-
mented at the building level to confront rising systemic economic and environmental
global changes.
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1 Introduction

Energy systems optimization is increasing its importance due to de-regulations in
energy sector and the setting of targets such as the European Union (EU) 20-20-20
(see Appendix “Literature review and background”). In turn, these changes increase
exposure to new risks shaped by decisions of various agents, which motivate new
regulations and policies. For example, emissions trading schemes, renewable energy
and/or efficient generators subsidies, or efficiency requirements such as buildings
labeling, among others. This new situation ismotivated by several concerns of the post-
industrial era, namely: globalwarming, economyglobalization, resources scarcity, and
awareness for sustainability.

In spite of the above-mentioned globalization, usually global changes must be
tackled at a regional or local scale. Thus, utilities and fuel producers, yet global,
must fulfill local market requirements, e.g., enough amount of electricity for a given
city. Moreover, final users of energy have their own requirements whose satisfaction
depends on decisions made at the shop-floor stage. Users’ comfort, security, and
energy availability are challenges for decision makers at the building level, who have
to deal with limited budgets in addition to the regulations regardless their global,
regional or local scope. Furthermore, new technologies and refurbishment options are
available and continuously evolving, widening the range of options for main concerns
of stakeholders including decision makers, operators, consultants, modelers, and data
managers. There can also be external stakeholders, such as policy makers or mass
media.

Considering the complexity of the emerging problem, this paper develops a model-
based decision support system (DSS) for optimal strategic planning and operation
of a building infrastructure. Although, stakeholders usually have different or even
conflicting goals, they all are able to have a tailored dialogue with the DSS by means
of interfaces and output reporting at different detail levels, but consistent between
them. The DSS includes by design capabilities that enforce this dialogue. Specific
attention is paid for developing new dynamic stochastic optimizationmodels involving
ex-ante strategic and ex-post operational variables. The model developed in this paper
has moving time horizons defined by stopping time moments generated by potential
extreme events and the stakeholders dialogue. This integrated framework provides an
environment that enforces the necessary stakeholders communication.

As shown in Fig. 1, the purpose of this dialogue is twofold: on the one hand,
a dialogue between the stakeholders and the DSS; on the other hand, among the
stakeholders themselves, likely with different motivations and targets. The dialogue
between stakeholders and the DSS is self-contained. Regarding the dialogue among
stakeholders (internal and external), it can take place at any point of the decision
making process, and a user communication is crucial for the accurateness of the inputs.
Therefore, this dialogue may provide exogenous feedback to the decision process. In
addition, since decision making is a possibly iterative process, the outcomes may

123



A strategic decision support system framework...

Fig. 1 Decision support system (DSS) framework diagram

provide endogenous feedback to the DSS structure through stopping time moments
and moving time horizons (see Sect. 2).

Regarding DSSs, this term is usually defined as “an information system that
supports decision making” with more or less detail and its use is often abused in
Computer Science and in Management. Thus, any information system could claim
to be a DSS. However, more specific boundaries are needed to capture the pre-
ferred analysis approach (see Appendix “Literature review and background”). Under
that paradigm the model plays an important role in a DSS. Both the model and
the data are the basis for decisions. Therefore, the proposed DSS is also capa-
ble of preparing the data in a model-suitable way. Appropriate algorithms are
applied once the model is defined and the data is available. Decisions obtained
by the DSS, regardless of their category (descriptive, normative, or prescriptive)
include interpretation and analysis, probably requiring some posterior data analy-
sis.

The developed framework provides a new flexible approach for DSS-based deci-
sion making process on optimal planning and operation of a building infrastructure in
a dialogue with stakeholders. The proposed use of both human and machine readable
formats through the use of algebraic modeling languages (AMLs) boosts the dialogue
between stakeholders remarked in this section. On the other hand, the reproducible
research approach (Leisch 2002) adopted in the following allows to record and track
consistent updates throughout the time, and to provide a sort of balanced scorecard
(BSC) to stakeholders consistent with all the components of the DSS. Furthermore, the
results obtained are reproducible for any of the stakeholders, which increase the effi-
ciency in multi-agent, multi-disciplinary and changing environments, and the quality
of the communication processes.

Finally, it is important to remark that this framework has been successfully applied
within the EnRiMa (Energy Efficiency and Risk Management in Public Buildings)
project.1 EnRiMa is a 7th Framework Program (FP7) research project whose overall
objective is to develop a DSS for operators of energy-efficient buildings and spaces of
public use.

1 http://www.enrima-project.eu.
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This paper is organized as follows: in Appendix “Literature review and back-
ground”, a brief literature review is made. Subsection “Optimization of building
infrastructure systems under uncertainty” provides an overview of the decisionmaking
problem on optimization and operation of a building infrastructure. The model and
the data for the DSS are developed in Sects. 2 and 3 respectively. Section 4 proposes
a framework for DSS and implements the model developed. Concluding remarks are
provided in Sect. 5.

2 DSS models

2.1 A baseline example

To illustrate the proposed model, a simple example will be used. It shows that explicit
introduction of a second-stage ex-post decisions induces risk aversion in strategic first-
stage ex-ante decisions in the formof a dynamicCVaR riskmeasure and corresponding
discounting. This example is inspired by the classical news vendor problem (e.g.,
Ermoliev and Wets (1988); Birge and Louveaux (2011)). In Sect. 2.4 this example is
extended to illustrate specifics of dynamic two-stage stopping time models. Suppose
a building manager can decide each year the energy capacity x of the building. For
simplicity in the exposition, aggregated values and decisions are assumed. The price
of each unit of capacity, e.g., kW, is c. During the year, the energy demand varies
following a probability distribution described by a random variable ξ . We have to
specify in which sense x = ξ for a random ξ . If the demand is larger than the capacity,
i.e., ξ > x , then the buildingmanager has to increase the capacity to fulfill the demand,
but at a higher cost d+ > c. If the demand is lower than the capacity x , i.e., ξ < x
then the building manager can sell energy at a lower price d− < c. Let y− (y+) be
such excess (shortage) of capacity. Then, for a given ξ , the balance equation is defined
as x = ξ + y+ − y−, and the cost function for the building energy procurement is:

cx + d+y+(ξ) − d−y−(ξ). (1)

Note that in these types of problems, there are strategic first-stage decisions x that are
to be made before uncertainty ξ is resolved and operational second-stage decisions y
that are made once uncertainty is resolved. As we have seen above, the optimal value
of the second stage decision depends on both the random variable ξ and the first-stage
decision x : y+∗ = max{0, ξ − x} and y−∗ = max{0, x − ξ}. Therefore, the expected
value of the cost function we want to minimize can be expressed as:

C(x) = cx + Eξ min
y+,y−

[
d+y+(ξ) − d−y−(ξ)

]

= cx + Eξ

[
d+ max{0, ξ − x} − d− max{0, x − ξ}] , (2)

where E[·] is the mathematical expectation function. Developing the following opti-
mality condition under optimal x > 0:
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C ′(x) = ∂C

∂x
= 0, (3)

where C ′(x) denotes the first order derivative of C(x) evaluated at x , yields the fol-
lowing expression (Cano et al. 2014b):

P [ξ < x] = d+ − c

d+ − d− , (4)

where P[·] is the probability function. So, the probability of the demand being lower
than the optimal is defined by the whole structure of the energy supply systems, i.e.,
the structure of unite costs and the distribution of threats. Given that d+ > c > d−,
Eq. (4) assures a level of security for the solution. Namely, this solution depends on the
probability distribution of ξ and costs d+, d−, c. Therefore, the solution of two-stage
(strategic-operational) stochastic problems ends up in the fulfillment of some secu-
rity level, whereas P [ξ > x] characterizes the Value-at-Risk (VaR). Such solutions(
x∗, y+∗, y−∗) are optimal for all the scenarios at a time, thereby providing robust
solutions for strategic x∗ and operational decisions y+∗, y−∗ decisions. In contrast,
the solution of the deterministic problem, i.e., substituting the uncertain parameters ξ

by its expectation E [ξ ] and solving the optimization problem, is a degenerated solu-
tion for an average scenario, which might never occur. Likewise, solving the worst
case scenario problem, i.e., using max{ξ} as fixed, would be too conservative and
unrealistic, consequently leading to very high costs.

In this example, both first- and second-stage decisions are represented within a
given time horizon. Due to the problem own structure, operational decisions induce
risk aversion on strategic decisions.

2.2 The dynamic two-stage model with random horizons

The main specifics of the following model is its ability to inforce a dialogue among
stakeholders (internal and external). It can take place at any point of the decision mak-
ing process and provide feedback to the DSS structure including the model, sets of
decisions, and data.Wedefine these points as a stopping timemoments,whichmay also
be associated with the occurrence of extreme weather related events, earthquakes, fail-
ures ofmarkets, or learning new information. Proper adjustments of strategic decisions
after these moments reduce irreversibilities of decisions (Arrow and Fisher 1974). In
this section we develop a new two-stage dynamic optimal planning and operation of
a building infrastructure model with random duration of stages bounded by stopping
time moments.

Strategic and operational decisions concern demand and supply sides of different
energy loads and resources (electricity, gas, heat, etc.). The demand side is affected
by old and new equipment and activities including such end uses as electricity only,
heating, cooling, cooking, new types of windows and shells, and energy-saving tech-
nologies, etc. The supply side is affected by decisions on new technologies. The notion
of technology must be understood in a rather broad sense. This may be either direct
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generation of electricity and heat, or the purchase of certain amounts of, e.g., electric-
ity from a market, i.e., the market can also be viewed as energy generating technology
with specific cost functions. Independently of the content, different options i are avail-
able at time t to satisfy energy demand, i ∈ I = {1, . . . , I }, t ∈ T = {1, . . . , T },
where T is a random planning horizon. For each case study, feasible options at time t
have to be characterized explicitly.

The model is dynamic and the planning horizon comprises T years. Uncertainties
pertaining to demands, fuel prices, operational costs, and the lifetime of technologies
are considered. Demand may be affected by weather conditions. It may also sub-
stantially differ by the time of the day and the day of a week. However, instead of
considering 8760 hourly values per year, demands and prices are aggregated into J
periods representatively describing the behavior of the system within a year. Similar
approaches can be found in the literature (Conejo et al. 2007).

The demand profile within each year t , can be adequately characterized by the
demand within representative periods j, j ∈ J = {1, . . . , J }. This time structure
is represented in Figure 2, where Dt

j ,CO
t
i, j denote the energy demand and costs of

technology i in period j of year t , and yti, j are operational decisions for technology
i in period j of year t . The goal of the strategic model is to find technologies i and
their capacities xti , installed at the beginning of year t to satisfy demands Dt

j , in each
period j .

In the following ω is used to denote a sequence ω = (ω1, ω2, . . . , ωt , . . . , ωT ) of
uncertain vectorsωt of general interdependent parameters which may affect outcomes
of the strategic model, e.g., market prices, perceived outcomes of the stakeholder
dialogue, or weather conditions. Formally, assume planning time horizon of T years.
Let xti be the additional capacity of technology i installed in year t , and sti the total
capacity by i available in t . Then,

xti ≥ 0 ∀i ∈ I, t ≤ τ(ωn), (5)

sti = st−1
i + xti − x

t−LTi
i ∀ i ∈ I, t > LTi , (6)

where LTi is in general random lifetime of technology i and s0i is initial capacity of i
existent before t = 1.

In addition to operational costs COt
i, j , investment costs CIti are considered. In

general, the operational and investment costs, as well as energy demand Dt
j , are

uncertain. Strategic first stage investment decisions xti , are made at the beginning
of the planning horizon t = 1 using a perception of potential future scenarios
CIti (ω),COt

i, j (ω), Dt
j (ω) of costs and energy demands dependent on the stochastic

parameterω. Second stage adaptive operational decisions yti, j aremade after observing
real demands and costs. They depend on observable scenario ω, i.e., yti, j = yti, j (ω).
Therefore, any choice of investment decisions x = xti , may not yield feasible second
stage solutions y(ω) = yti, j (ω) satisfying the following equations for all ω:

∑

i∈I
yti, j (ω) = Dt

j (ω) ∀ j ∈ J , t ≤ τ(ωn), (7)
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Fig. 2 Temporal resolutions of the strategic planning model

yti, j (ω) ≤ Gt
i, j · sti ∀ i ∈ I, j ∈ J , t ≤ τ(ωn), (8)

yti, j (ω) ≥ 0 ∀ i ∈ I, j ∈ J , t ≤ τ(ωn), (9)

where Gt
i, j may be interpreted as the availability factor corresponding to the technol-

ogy operating in period j in t (Gt
i, j = 0 for not yet existing technologies).

Thus, the set of feasible solutions is characterized by the decision variables
(x, y(ω)), where the strategic decisions x = (x1, ..., xT ) are made before observ-
ing a scenario ω, and operational decisions y(ω) = (yi j t (ω)), t = 1, ..., T for all
technologies i and periods j are made after learning scenarios ω and τ(ω)) The
feasibility of constraints (7)–(9) for any scenario ω can be guaranteed by assum-
ing the existence of a back-stop technology with high operating costs that can
also be viewed as purchasing without delay but at high price. In particular, it can
be viewed as a contingent credit or a catastrophe (black-out) bond, similar as in
Ermoliev et al. (2012). Without loosing generality it can be assumed that for any
period j and time t it is the same technology i = 1. Then the basic dynamic sto-
chastic two-stage model is formulated as the minimization of the expected total cost
function:
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F(x) = Eω

⎡

⎣min
y(ω)

∑

i∈I,t≤τ(ω)

⎛

⎝CIti (ω) · xti +
∑

j∈J
COt

i, j (ω) · DTt
j · yti, j (ω)

⎞

⎠

⎤

⎦

=
∑

i∈I,t∈T

⎛

⎝CIti · xti + Eω

⎡

⎣min
y(ω)

∑

j∈J
COt

i, j (ω) · DTt
j · yti, j (ω)

⎤

⎦

⎞

⎠ , (10)

This problem can be easily extended to deal with advanced energy systems features
such as efficiency, emissions, or storage (Cano et al. 2014b, a).

2.3 Numerical methods: learning by doing and moving random time horizons

The model (5)–(10) is formulated in the space of variables (xti , y
t
i, j (ω) , i ∈ I, t ∈

T (ω), ω ∈ �), where the set of scenarios�may include a finite number of implicitly
given scenarios, e.g., by scenario trees (Kaut et al. 2013) or other scenario generating
methods based on requirement equations and perceptions of stakeholders. A realistic
practical model (5)–(10) excludes analytically tractable solutions, although the model
has an important block-structure that is usually utilized for most effective numerical
solutions in DSS. In a rather general case, � contains or can be approximated by
scenarios ωn, n ∈ N , characterized by probabilities pn, n ∈ N . e.g., by sample mean
approximations with pn = 1/N , where N is the number of scenarios. Then the model
(5)–(10) is formulated as the minimization of the function:

∑

n∈N
pn

⎡

⎣
∑

i∈I,t≤τ(ωn)

⎛

⎝CIti (ω
n) · xti +

∑

j∈J
COt

i, j (ω
n) · DTt

j · yti, j (ωn)

⎞

⎠

⎤

⎦ , (11)

subject to:

∑

i∈I
yti, j (ω

n) = Dt
j (ω

n) ∀ j ∈ J , t ≤ τ(ωn), n ∈ N , (12)

yti, j (ω
n) ≤ Gt

i, j · sti ∀ i ∈ I, j ∈ J , t ≤ τ(ωn), n ∈ N , (13)

yti, j (ωn) ≥ 0 ∀ j ∈ J , t ≤ τ(ωn), n ∈ N , (14)

sti = st−1
i + xti − x

t−LTi
i ∀ i ∈ I, t > LTi , (15)

xti ≥ 0 ∀i ∈ I, t ≤ τ(ωn). (16)

Sequential decisionmaking process under a dialogue of stakeholders can be written
in the following form.Themodel (11)–(16) is focused on a sample τ(ω) of random time
horizons. The robust strategic solution solving the model (11)–(16) can be denoted as:

xxx [1,T ] =
(
x1,[1,T ]
i , . . . , xT,[1,T ]

i

)
, i ∈ I.
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Solutions
(
xt,[1,T ]
t

)
, t = 1, ..., τ (ω)i ∈ I, are implemented at t = 1, 2, ... until

a stopping time moment τ1(ω) ≤ T , that may reveal significant new information
about necessary systemic changes and future uncertainties. Let us denote scenario ω

for interval [1, T ] as ω[1,T ]. New information provides a basis for readjustments of
scenarios ω[1,T ] perceived at the beginning of time horizon [1, T ]. Then, new set of
scenarios ω[τ1,τ1+T ] are generated, robust strategic solutions

(
xτ1,τ1+T

)
are obtained,

and so on. Thus, initially a long-term strategic trajectory x [1,T ] is evaluated, the solu-
tions

(
x1,τ1

)
are implemented, new data are received, new scenarios ω[τ1,τ1+T ] are

generated, solutions x [τ1,τ1+τ2] for a stopping time τ2 are calculated, and solutions
x [τ1,τ1+T ] are implemented, and so on. This approach introduces a new type of mod-
els incorporating endogenous scenario generation shaped by previous decisions, i.e.,
learning-by-doing procedures.

Let us remark that the specific case of this model with deterministic stopping time
interval τ = 1 or, in general, equal to some positive τ , definesmodels with rolling time
horizons. The use of these models significantly reduces difficulties of the traditional
multi-stage models.

2.4 Endogenous dynamic systemic risks and discounting

In this section we extend the illustrative model presented in Sect. 2 to a dynamic
with random horizon model. In this more general form, the problem becomes sim-
ilar to catastrophic-risk-management problems discussed in Ermoliev et al. (2000).
Here, we show that the dynamic with random horizon model has strong connections
with endogenously generated, i.e. systemic, dynamic versions of VaR and CVaR risk
measures.

Let us consider the total energy capacity (capacity) of the building defined by
Rt = ∑t

k=1 xk before a stopping time τ , where xk denotes the additional energy
capacity of the building installed in year k, i.e., decision variables xk ≥ 0, k =
1, ..., t, t ≤ T . At time t = τ , the target value on total capacity Rt in period t is given
as a random variable ρt . It is assumed that the first replacement of technologies due
to aging processes, arriving a disaster, or adopting a new regulation occurs at random
stopping time moment τ . Since τ is uncertain, the decision path x = (x1, ..., xT ) for
the whole time horizon has to be chosen ex-ante in period t = 1 to ”hit” the target
ρt , Rτ ≥ ρτ , at t = τ in a sense specified further by (10). At random t = τ , the
decision path can be revised for the remaining available time. Similar to the model
of Sect. 2, consider random costs v(x) = ∑τ

t=1[ct xt + dt max{0, ρt − Rt }], where
ct > 0, dt > 0, t = 1, ..., T are known ex-ante and ex-post costs. The expected value
of costs can be written as:

V (x) =
T∑

t=0

[

ct xt + ptdt max

{

0, ρt −
t∑

k=0

xk

}]

, (17)

where pt = P[τ = t].
Let us consider a path x∗ minimizing V (x) subject to xt ≥ 0, t = 1, ..., T . Assume

that V (x) is a continuously differentiable function (e.g., a component of randomvector
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ρ = (ρ1, ..., ρT ) has a continuous density function). Also, assume for now that there
exist positive optimal solution x∗ = (x∗

0 , x
∗
1 , ..., x

∗
T ), x∗

t > 0, t = 1, ..., T . Then from
the optimality condition (Ermoliev 2009) for stochasticminimax problem (17), similar
to the one in Sect. 2.2, it follows that for x = x∗,

Vxt = ct −
T∑

k=t

pkdkP

[
k∑

s=0

xs ≤ ρk

]

= 0, t = 1, 1, ..., T .

From this sequentially for t = T, T − 1, ..., 1, follow the equations

P

[
T∑

k=0

xk ≤ ρT

]

= cT
pT dT

,P

[
t∑

k=0

xk ≤ ρt

]

= (ct − ct+1)

ptdt
, t = 0, 1, ..., T − 1,

(18)
which can be viewed as a dynamic VaR-type endogenous (systemic) risk measure.
Equations (18) can be used for analyzing desirable dynamic risk profiles, say, time
independent risk profileswith a given risk factor γ : cT /pT dT = (ct−ct+1)/ptdt , t =
1, ..., T − 1, which can be achieved by decisions affecting parameters ct , dt , pt , i.e.
by adjusting costs (penalties).

Equations (18) are derived from the existence of the positive optimal solution x∗.
It is easy to see that the existence of this solution follows from cT /pT dT < 1, 0 ≤
(ct−ct+1)/ptdt < 1, t = 1, ..., T−1, and some other technical requirement discussed
by O’Neill et al. (2006).

We can see that a simplest case of dynamic two-stage model (11)–(16) with random
(stopping) time horizons induces endogenous risk measures, which take the form of a
dynamic VaR-type systemic (dependent on the structure of the system) risk measures.
Values pt = P[τ = t] can be viewed as endogenous discounting (see discussion in
Ermoliev et al. (2010). Misperception of this discounting can lead to wrong policy
implications.

3 DSS data

3.1 Two-stage problem instance

In this section, real data from the EnRiMa project are used to demonstrate themodeling
approach. In particular, historical data from an EnRiMa test site in Asturias (Spain)
have been used. Let us consider the model defined by (11)–(16). Starting from base
values, the future development of the parameter values have been modeled through
expert opinions getting average values and standard deviations for annual variations,
see Table 1.

Assuming normal distributions, a set of 100 scenarios ωn have been simulated.
In general cases, scenarios ωn are simulated using rather general scenario generators
based on partial observations and experts perception. Figure 3 shows a representation
of this simulation, which is basically a representation of the stochastic parameters’
possible evolution throughout the decision horizon: demand (left), strategic costs (cen-
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Table 1 Base parameter values an uncertain evolution

Parameter Units Base value Average variation Variation std. dev.

CIRTE (EUR/kW) 50.00 0.10 0.04

CICHP (EUR/kW) 795.99 −0.10 0.05

CIPV (EUR/kW) 2204.26 −0.05 0.06

CORTE (EUR/kWh) 0.13 0.10 0.04

CORTG (EUR/kWh) 0.05 0.03 0.02

D (kWh) 24.37 0.10 0.05
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Fig. 3 Scenarios simulation for the two-stage model

ter), and operational costs (right). The thick solid line indicates the average value of
the parameter. In the following, a detailed description of the data used as input is given.
For the sake of simplicity, only four representative periods (set J ) have been defined:
winter, spring, summer and autumn. The input technologies (set I) are Regulated Tar-
iff of Electricity (RTE), Photovoltaic (PV) and Combined Heat and Power (CHP). In
this simple example with only electricity demand, it is assumed that the heat produced
by the CHP technology is not used. Regarding the technologies availability, RTE and
CHP are always available (Gt

i, j = 1), whereas PV availability depends on the season
as shown in Table 2 (assuming the same values for all the years). A Sunmodule SW
245 by Solarworld has been considered.2 The availability factor has been computed
using the on-line PGIS tool (Photovoltaic Geographical Information System) by the
European Commission Joint Research Center - Institute for Energy and Transport.3

As for investment costs C I ti , the price for the PV panels has been taken from the
PREOC price database,4 whilst the price for the CHP has been gathered from the
on-line seller myTub.5 A 40% reduction has been applied to the investment costs to

2 http://www.solarworld.de/en/home/.
3 http://re.jrc.ec.europa.eu/pvgis/apps4/pvest.php.
4 http://www.preoc.es/.
5 http://www.mytub.co.uk/product_information.php?product=465447.
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Table 2 PV technology
availability (ratio)

i j t Gt
i, j

PV Winter 2013–2017 0.30

PV Spring 2013–2017 0.48

PV Summer 2013–2017 0.63

PV Autumn 2013–2017 0.25

Table 3 Strategic solutions for
the two-stage problem

i t xti

RTE 2013 45.65

PV 2013 57.65

PV 2014 1.78

take into account available subsidies in the market.6 This parameter also gathers a cost
of contracting RTE of 50 EUR/kW, which increases at the same rate as the energy
cost. For the operational costs COt

i, j , the base fuel prices for electricity and natural
gas are 0.134571 EUR/kWh and 0.05056 EUR/kWh for RTE and CHP, respectively,
based on the EnRiMa project deliverable D1.1 “requirement assessment”, and no cost
for PV. As a short horizon is considered, the lifetime parameter LTi , which has been
set to 20 years, has no influence on the result. Finally, the duration time is set to 91
days × 8 hours, considering 13 weeks each period.

Solving the SP problem the strategic decisions to be made are (see Table 3): con-
tracting 45.65 kW to RTE and installing 57.65 kW of PV the first year, and extend the
PV installation the second year in 1.77 kW. Note that the actual decisions to be made
are those for the first year.

The total cost stemming from those decisions is 68,595EUR. Ifwe assumed average
values for the uncertain parameters, i.e., solve thedeterministic problemusing themean
values represented in Fig. 3 as the solid thick line, we would get a total cost of 66.920
EURand slightly different values for the decision variables. The deterministic problem
can be seen as a single-scenario version of the stochastic problem (11)–(16). Given the
figures, one could think that the deterministic solution is better than the stochastic one.
But this is an illusion, because if we analyze the variability (robustness) of solutions
using separately the 100 different scenarios, we realize that the solution returned by
the deterministic optimization is unfeasible for 56 of them. This means that more than
half the times the capacity of the building will not be able to fulfill the requirements of
energy. On the contrary, the solution returned by the SP problem is a robust solution
against all the scenarios.

To compute the value of stochastic solution (VSS), the first-stage decisions obtained
in the deterministic problem, i.e., considering parameters’ average values, are fixed in
the SP problem (11)–(16), which is then solved. The solution of this problem is called
the expected result of using the expected value problem (Birge 1982) and represented
by F(x∗det ), while the solution of the SP problem is represented by F(x∗sto). In this

6 http://www.faen.es/nueva/Intranet/documentos/3577_Bases.
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case, as F(x∗det ) is unfeasible, it is considered infinite and therefore, the VSS is
infinite:

F(x∗det ) − F(x∗sto) = ∞ − 68, 595 = ∞.

It is important to remark that even if F(x∗det ) is feasible, the VSS is positive, and
the magnitude will depend on the uncertainty structure. The value F(x∗sto) is smaller
than F(x∗det ) because the stochastic model has a richer set of feasible solutions, i.e.,
the deterministic solution x∗det is a degenerated version of x∗sto.

4 DSS framework

4.1 Overview

The proposed framework relies on the use of AlgebraicModeling Languages (AMLs),
in contrast to the use of whole matrices to represent the optimization problems. The
advantages of AMLs versus matrix-like systems have been largely discussed (Fourer
1983;Kuip 1993). Recent advances onAMLs can be found inKallrath (2012b). Never-
theless, usually optimization software accepts matrix files with the model coefficients
and actually modeling software generates the matrix from the algebraic language.
However, the process is usually more straightforward and less prone-error when using
AMLs, as the modeler has just to write the model, and the coefficients are gener-
ated combining the data and the model. Despite AMLs have been selected to build
the framework, it is important to remark that other structured formats, e.g., markup
languages, can be used as far as they are useful to accomplish the DSS main mis-
sion, i.e., the stakeholders dialogue. For example, OS (optimization services)7 is a
COIN-OR (Computational Infrastructure for Operations Research)8 project that uses
the XML format to represent optimization problems and that is suitable to effectively
communicate within an eventual DSS. As for AMLs, they are “declarative languages
for implementing optimization problems” (Kallrath 2012a). They are able to include
the elements of optimization problems in a similar way they are formulated mathe-
matically using a given syntax that can be interpreted by the modeling software. This
approach is essential for representing the models not only for machines, but also for
humans, and allows to organize the stakeholders dialogue. There are several AMLs
available both commercial and open source.

4.2 A reproducible research approach

Against the “copy-paste” approach frequently used to reach the final outcome of a
decision making problem, the reproducible research one adopted in the framework
proposed has a series of advantages worthy to consider, namely: (1) when coming
back to the research in the future, i.e., due to moving time horizon, the results can

7 https://projects.coin-or.org/OS.
8 http://www.coin-or.org.
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be easily obtained again; (2) in case other researchers have to contribute to the work,
all the process is at hand; changes on any step of the process (e.g., a new index
in the mathematical model) are made seamlessly just changing the appropriate data
object, the whole analysis is made again with the new information, and the changes
are automatically reflected in the output results; and (3) the results can be verified
by independent reviewers. The latter is particularly important in health research and
other disciplines where security is an issue. A paradigmatic example to realize the
importance of reproducible research is the scandal of the Duke cancer trials (CBS
2015; TheNewYork Times 2011). For an example on energy issues see Jelliffe (2010),
where reproducible research is pointed out as a powerful tool for the mainstream
climate scientists.

To fulfill the requirements for a DSS detailed in Sect. “Optimization of building
infrastructure systems under uncertainty”, a reproducible research approach is advis-
able. In the following subsection, a specific implementation of the general framework
reflected in Fig. 1 is presented, including the model, the data, the algorithms and the
solution, covering the needs for stakeholders dialogue at any level.

4.3 Implementation

The general framework outlined above can be implemented using different technolo-
gies according to the stakeholders needs, as far as their dialogue is assured. In this
subsection, a possible implementation using the programming language and statistical
software R (R Core Team 2013) is shown. The R Project for Statistical Computing
is becoming the “de-facto standard for data analysis”, according to more and more
authors from a variety of disciplines, fromEcology to Econometrics (Cano et al. 2012).

Some of the advantages of choosing R as the statistical software for a DSS are: It
is Open Source; it has Reproducible Research and Literate Programming capabilities
(Leisch 2002); it can be used as an integrated framework for models, data and solvers;
it supports advanced data analysis (pre- and post-), graphics and reporting; interfacing
with other languages such as C or Fortran is possible, as well as wrapping other
programs within R scripts.

These capabilities allow the researcher to apply innovative methods and coherent
results increasing the productivity and reducing errors and unproductive time. More-
over, R runs in almost any system and configuration, the installation is easy, and there
are thousands of contributed packages for a wide range of applications available at
several repositories. This extensibility provides the framework with the capability of
adaptation to the stakeholders dialogue’s requirements through the creation of new
libraries and functions, either public or private. Last but not least, the active R-Core
development team jointly with the huge community of users provide an incredible sup-
port level (without warranty, skeptics would say), difficult to surpass by other support
schemes.

One of the capabilities of this implementation of the framework is to represent the
models in LaTEX format, which is one of the “Practitioner’s Wish List Towards Alge-
braic Modeling Systems” according to Kallrath (2012c). The AML selected for this
implementation of the framework has beenGAMS. Nonetheless, the classes explained
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Fig. 4 The optimr package structure

below can be easily extended to other languages. This is possible due to the fact that
the SMS is generically represented within the DSS using specific R data structures.
Moreover, R provides functionality for all the required tasks within the DSS, includ-
ing data analysis, visualization and representation tasks, allowing communicating to
different optimization software through inner interfaces. Data cleaning and manage-
ment can also be easily done with R and user interfaces can be provided, both through
other technologies or through libraries devoted to user interfacing. Note that the spirit
of the framework can apparently be applied using other programming and analysis
tools.

An R package called optimr.9 has been developed as an implementation of the
framework described in this paper to deal with the model, the data, and the solu-
tions. The optimr package revolves around two classes of objects: optimSMS and
optimInstance. The former contains the Symbolic Model Specification (SMS),
i.e., the mathematical model including all the entities such as parameters and variables
and their interrelations. The latter contains the data of the particular instance of the
problem to be solved. Figure 4 shows an outline of the package structure. Once the
model is defined as an optimSMS object, the data are used to feed the model by
means of an optimInstance object. Both levels of information can be represented
in both human and machine readable formats through standard R objects of class
data.frame.

The optimSMS class is composed by several members: Descriptive strings name,
sDes, and lDes; Model entities consts, sets, vars, and pars for constants
(scalars), sets, decision variables and model parameters respectively; Relations are
stored in eqs and terms, for the equations and the terms respectively, using a tree

9 Available at: https://github.com/emilopezcano/optimr.
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structure. It also has a bunch of methods to get and represent the SMS. Thus, we
can get expressions of any model entity in a given format, e.g., GAMS or LaTEX, or
data structures containing the information. The creation and addition of elements in a
SMS is made through specific functions. The models in Sect. 2 can be easily created
using R scripts (see the optimr package documentation). Moreover, the inclusion of
risk measures such as Conditional Value at Risk (CVaR) as described in Cano et al.
(2014b) is also possible. Once the SMS is in an optimSMS object, any expression
can be straightforwardly obtained. Combining different expressions and working with
text in R, complex representations of the models can be produced.

As for the instance, i.e., the concretemodel to be solved using specific data, it can be
stored inoptimInstance class objects. An instance always corresponds to amodel,
and, therefore, to create an optimInstance object it is needed an optimSMS
object. Once created, elements (actual sets, parameter values and equations to include)
are added to the instance, related to its SMS. The slots (members) of an instance can be
also accessed easily using self-explained functions. Then, the optimization problem
can be automatically generated in the appropriate format, e.g., a GAMS file, through
a specific method, then solved with the own R optimization capabilities or calling an
interface such as that included in the gdxrrw10 package, creating an output file with
the solution. Finally, the solution can be imported to the optimInstance object
and present the results to the stakeholders. Note that at any point data analysis and
visualization can be straightforwardly performed over the data, as they are stored in
homogeneous and consistent data structures. Finally, the package and the framework
is intended to be available for generic problems use, beyond the models and problem
tackled in this article.

It is important to remark that the process described above and outlined in Fig. 4
fulfills, in an outstanding way, the stakeholders dialog approach represented in Fig. 1
and detailed throughout the paper. Examples of (downloadable) data and code to use
with the optimr package can be found in Cano et al. (2015).

5 Concluding remarks

The model and DSS presented in this paper have been tested using real data from
the EnRiMa project. Results demonstrate the importance of using stochastic strategic-
operational models improving the outcomes of deterministic models, i.e., providing
robust solutions for long-term energy supply planning under uncertainty and risks
management. In particular, using average values, deterministic models provide degen-
erated solutions violating simplest energy supply security requirements and even being
infeasible for all real scenarios.

Decision support is not a static action, but rather an iterative process that requires
stakeholders dialogue. Moreover, strategic decisions under uncertainty require the
application of advanced models that provide robust solutions against all the possible
scenarios under security requirements.Applications of inadequateDSS (regardingdata
treatment, models’ structure, analysis of results, etc.) generates serious risks of adopt-

10 http://support.gams-software.com/doku.php?id=gdxrrw:interfacing_gams_and_r.
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ing wrong policies and irreversible developments. The proposed framework explicitly
deals with those requisites in a flexible and extensible way. The DSS’s model includes
random horizons and stopping time moments, which are necessary to enforce the
stakeholders-DSS dialogue at any point of a decisionmaking process that may provide
feedbacks to the DSS structure including the model and data. Reproducible research
techniques can be applied over different decision problems and environments taking
advantage of a common structure and acquired knowledge. Moreover, as remarked in
Sect. 4, the framework fulfills one of the “Practitioner’s Wish List Towards Algebraic
Modeling Systems”, which represents in fact an example of the stakeholders’ needs
that this work solves. As already mentioned, the framework as a whole has been suc-
cessfully implemented in the EnRiMa project, including complete models gathering
the building energy features (Cano et al. 2014a) and risk management (Cano et al.
2016). Moreover, the optimr R package is available to be used with other models
and instances.

Futureworkwill include the use of themodels in other real-world situations, explor-
ing further energy features such as energy storage.As far as theRpackage is concerned,
to enhance stakeholders dialogue capabilities, further formats will be implemented, in
addition to the ones supported in the current version, i.e., LaTEX and GAMS. Further
research over these resultswill be the in-depth analysis of global policies and long-term
uncertainty modeling, as well as the benchmarking of the strategic two-stage dynamic
model against computationally-intensive multi-stage models. Definitely, the proposed
idea of learning-by-doing based on the moving time horizon (Sect. 2.3) provided a
way to escape from irreversible predetermined in advance (at t = 0) decisions using
adaptive endogenous scenario generators.
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6 Literature review and background

In the last decades several regulatory and market changes have altered the way energy
is being produced and used. Those changes in Europe were mainly focused on elec-
tricity markets (Jamasb and Pollitt 2005). Nevertheless, more recent regulations try to
deal with energy as awhole. Some of themore relevant policies are: the EU climate and
energy package,11 whose aim is to ensure the European Union meets the 20-20-20 tar-

11 http://ec.europa.eu/clima/policies/package/index_en.htm.
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gets (roughly, 20 % emissions reduction, 20 % energy consumption from renewables,
and 20 % energy efficiency improvement); the Energy Efficiency Plan 2011;12 The
liberalization of energy markets (first directives for electricity in 1996 and for gas in
1998, second ones in 2003, and the third liberalization package based on the Commis-
sion’s energy package as of 2007); Renewable sources policies (Directive 2009/28/EC
on the promotion of renewables, Net-Zero Energy Building (NZEB) strategies, see for
example Hernandez and Kenny (2010) or Pless and Torcellini (2010), Net metering,
or Feed-In-Tariffs).

Regarding the strategic energy systems planning, different approaches can be found
in the literature. Some of them deal with specific technologies (Siddiqui et al. 2005;
Stadler et al. 2009). Other optimization models are designed from the production
point of view (Hobbs 1995; El-Khattam et al. 2004; Heydari and Siddiqui 2010). In
Villumsen and Philpott (2012), Stochastic Optimization (STO) is applied to capacity
planning of electricity transmission networks with transmission switching, while Cai
et al. (2008) focus on a regional perspective. The type of two-stage stochastic models
with a fixed time horizon T presented in Sect. 2 can be found in the book by Conejo
et al. (2010). Random time horizons are analyzed in relation to stopping timemoments
in catastrophic risk management by Ermoliev et al. (2010). Only recent papers tackle
systems planning at the building level (Salvador and Grieu 2012; Kumbaroğlu and
Madlener 2011).

In terms of Information and Communication Technologies (ICT) solutions for
energy-efficient buildings and areas of public use, most of the existing analyses follow
either a power systems engineering framework (Weinberg et al. 1991; van Sambeek
2000), or a deterministic optimization approach (Hobbs 1995; Siddiqui et al. 2005;
King and Morgan 2007; Marnay et al. 2008; Stadler et al. 2009) that is unable to pro-
vide robust decisions against inherent uncertainties (Ermoliev and Wets 1988). Even
though STO has been applied for a long time to cope with uncertainties in other fields,
there were not approaches based on the use of STO techniques to treat uncertainties
for energy efficiency in buildings.

The solution of the stochastic problem involves adjusting operational decisions to
hit long-term targets if additional information about prices, demand and weather is
revealed in the future (Gritsevskii and Nakicenovic 2000; Gritsevskii and Ermoliev
2012). A key innovation of the dynamic stochastic DSS presented in this paper is
a combination of the proven methodology for modeling energy flows in buildings
(Siddiqui et al. 2005) with the advances in effective coping with uncertainty (Ermoliev
and Wets 1988; Gritsevskii and Ermoliev 2012).

With regard to DSSs, different approaches can be found in the literature. Some
of them focus on the model as a way to provide decision support, other focus on
the infrastructure of the DSS, or on a particular application (Salewicz and Nakayama
2004). In Tanaka et al. (1995) a DSS for multicriteria decision making which includes
decision maker interaction was proposed. A generic core to build optimization-based
DSSs is presented inGonzález et al. (2009), Conejo et al. (2010), defining a framework
for developing a DSS with web services. An implementation of machine-readable

12 http://ec.europa.eu/energy/efficiency/action_plan/action_plan_en.htm.
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models can be found as Structure Modeling Language (SML) in Geoffrion (1992a)
and Geoffrion (1992b). A brief history of DSS can be found in Power (2007). Some
of the topics discussed in Shim et al. (2002) are tackled in the framework proposed in
this paper. Though a cutting-edge topic, only very recent works deal extensively with
Reproducible Research (Stodden et al. 2013). This approach is crucial in conducting
dialogues in our dynamic stochastic DSS. As for decision making problems, it is a
vast area entailing a considerable number of contributions, see for example Bell et al.
(1988); French et al. (2009); Klein et al. (1993).

6.1 Optimization of building infrastructure systems under uncertainty

Energy systems: Energy systems are conceived at the scope of this paper as the tech-
nologies and devices used to provide people with the energy needed for their everyday
activities. From this standpoint, we find different types of energy systems, namely:
appliances, networks, generation and transformation technologies, storage technolo-
gies, passive technologies. In what follows, the building level extent is assumed. The
meaning of building in this case can refer to different aggregation typologies, such
as single buildings, set of buildings, or spaces of public or private use. Examples of
buildings under this conception are university campuses, sports centers, administra-
tive buildings, hospitals, and airports. Therefore, the target buildings are those that are
managed by an identified party (individual or organization) that can make decisions
regarding energy systems.

Two types of decisions can be made regarding energy systems. On the one hand,
there are decisions on which systems are feasible or available. These are strategic
decisions. On the other hand, there are decisions on how to use the available systems.
These are operational decisions. Strategic decisions are made in the long term (e.g.,
years)whereas operational decisions aremade in the short term (e.g., hours). Examples
of strategic decisions are: type of contract to signwith the grid; number of PV panels to
install; renovation of building’s envelope elements. Examples of operational decisions
are: how much electricity to buy from the grid at a given hour; how much fuel to input
into a generator. Note that both types of decisions are interdependent.

Sources of uncertainty: Some decisions are made under perfect information, i.e.,
knowing all the outcomes and relevant facts affecting such decision. For example, one
can decide whether to vent a room or not knowing the inside and outside temperatures
and one’s desired comfort level. However, this is not always the case. In many decision
making processes, there is uncertainty pertaining relevant facts and figures around the
decision. In particular, decision making on energy systems is strongly affected by
both short-term and long-term uncertainties. Some of these sources of uncertainty are:
energy demand, energy costs, investment costs, or availability and efficiency of new
technologies.

DSS model component: Within the structure of the DSS outlined in Figure 1,
the model component is represented by the so-called Symbolic Model Specification
(SMS). The SMS defines the mathematical representation of the optimization model,
including all relevant subsystems and their interactions. This mathematical repre-
sentation is composed of variables, parameters, and relations between them. Such
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relations are, in turn, represented by equations and inequalities. Sets are used to repre-
sent parameters, variables, and equations domains, as well as to model conditions and
boundaries within equations. The models applied to the specific problem of energy
systems optimization at the building level are developed in Sect. 2. Details about the
implementation of the models within the framework can be found in Sect. 4.

DSS data component: Some of the availableAMLs and optimization software pack-
ages include data import and export capabilities, and even some analysis functionality.
However, it is common that analysts and modelers use specific data analysis software
to make the data available for the DSS. In this regard, there are a wide range of
options both commercial and open source. The data component of a DSS can be also
developed using general-purpose programming languages or specific programming
language libraries. Moreover, interfaces to diverse data sources may be needed to
import and export data from/to the existing data sources. For stochastic programming
(SP) or stochastic optimization (STO), scenario generators are also needed to combine
the data and the uncertainty modeling to provide the DSS with the appropriate inputs
for designing robust solutions.

The system part of the DSS: There is a component of the DSS in charge of running
the optimization, that in our case is given by the dynamic strategic-operational model
of Subsect. 2.2. Usually it is a piece of software containing the algorithms to solve opti-
mization problems, and it is in general named the solver. Solvers are usually available
as stand-alone, low-level applications that can be embedded in high-level applications,
i.e., with a user interface. Solversmay be specific for a given optimization type of prob-
lem or for different types of problems. There are a number of solvers both commercial
and open source available. The AMLs, as well as other optimization software, include
solvers that are called once the model and the data are available. In addition to AMLs,
other software packages such as spreadsheets can solve optimization problems.

In summary, it is common to find different components of a DSS. A heterogeneous
set of tools is often being used for similar tasks that unfortunately blocks stakeholders
dialogue.
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