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FOREWORD 

The public provision of urban facilities and services often 
takes the form of a few central supply points serving a large 
number of spatially dispersed demand points: for example, 
hospitals, schools, libraries, and emergency services such as 
fire and police. A fundamental characteristic of such systems 
is the spatial separation between suppliers and consumers. No 
market signals exist to identify efficient and inefficient geo- 
graphical arrangements, thus the location problem is one that 
arises in both East and West, in planned and in market economies. 

This problem is being studied at IIASA by the Public Facil- 
ity Location Task (formerly the Normative Location Modeling Task) 
which started in 1979. The expected results of this Task are a 
comprehensive state-of-the-art survey of current theories and 
applications, an established network of international contacts 
among scholars and institutions in different countries, a frame- 
work for comparison, unification, and generalization of existing 
approaches, as well as the formulation of new problems and 
approaches in the field of optimal location theory. 

This paper develops some research issues outlined in a pre- 
vious paper (WP-80-79), concerning the generalization of spatial- 
interaction activities. The descriptive model proposed in 
Section 2 is of special interest in its own right, since its 
applicability goes beyond location problems, and Section 3, 
although primarily theoretical in character, concludes with an 
outline of some operational algorithms whose application to real- 
world examples will constitute one of the next steps for research 
in the Public Facility Location Task. 

A list of publications in the Public Facility Location 
Series appears at the end of this paper. 

Andrei Rogers 
Chairman 
Human Settlements 
and Services Area 



ABSTRACT 

This paper has two aims. The first one is to build a gener- 
alization of the doubly-constrained spatial interaction model, 
in order to account for sensitiveness of demand to accessibility 
and congestion and for possible multiple interacting activities. 
In Section 2 it is shown how this can be done by keeping an 
extremal representation for the model, which is closely related 
to the Neuburger's consumer surplus maximizing principle. The 
second aim is to embed the model developed in Section 2 in a 
multiactivity optimal location problem, and to develop opera- 
tional tools to solve the resulting mathematical programming 
problems. This subject is treated in Section 3. Section 4 is 
devoted to the discussion of three possible applications: the 
urban system, the health care system, and the retail system. 
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A MULTIACTIVITY LOCATION MODEL 
WITH ACCESSIBILITY- AND 
CONGESTION-SENSITIVE DEMAND 

1. GENERAL INTRODUCTION 

Although most location-allocation models deal with a single 

category of facilities at a time, in real urban areas different 

facilities, activities, and settlements are present at the same 

time. Usually interactions take place among them in terms of 

customers' journeys, exchange of goods, money flows, and infor- 

mation. These interactions tie all activities together, and 

have to be taken into account in model building of both a des- 

criptive and a normative character. 

Many descriptive models of multiactivity systems have been 

built since the well-known Model o f  M e t r o p o l i s  (Lowry, 1964), 

and their mathematical formulation and economic interpretation 

have recently been greatly improved (see MacGill and Wilson, 1979 

for a review). The introduction of normative features (i.e., 

the optimal size and location of physical stocks) also appears 

in some works (such as Coelho and Williams, 1978; Boyce and 

LeBlanc, 1979; Leonardi, 1979). 

In this paper a new class of models is proposed, which, 

it is felt, will improve existing ones in two respects. 

a. S e n s i t i v i t y  o f  demand t o  a c c e s s i b i l i t y  and c o n g e s t i o n  

i s  t a k e n  i n t o  a c c o u n t .  Most existing models assume 



production and/or attraction constrained spatial inter- 

actions. It is, however, sensible to assume that total 

demand production is not given beforehand, but is itself 

an endogenous variable of the spatial-interaction system. 

Specifically, it is reasonable to assume that demand for 

activities increases with accessibility. Moreover, it 

is sensible to assume that demand is also sensitive to 

congestion, that is, the more a facility is crowded, the 

less attractive it will be for customers. It will be 

shown that both features can be introduced in spatial 

interaction models in a very natural way, with no signif- 

icant changes in their general structure. 

b. P o s s i b l e  cornbinator ia l  and i n d i v i s i b i l i t y  f e a t u r e s  i n  

t h e  l o c a t i o n  and s i z e  o f  s t o c k s  are  t a k e n  i n t o  a c c o u n t ,  

Most existing models assume simple linear costs for 

establishing and maintaining stocks, thus being unable to 

account for economies of scale, bounds on the number of 

facilities, and bounds on their feasible sizes. On the 

other hand, most of these features have been introduced 

very well in the so-called "plant location" models devel- 

oped in Operations Research (OR) (for example Erklenkotter, 

1978). The usual objective function of plant location 

models is not very useful in Regional Science applica- 

tions, since it is linear and induces an unrealistic 

spatial interaction behavior (i.e., users always choose 

the nearest destination, with no possible cross substi- 

tution). The objective functions based on Neuburger's 

(1971) measure of consumer surplus, however, embed 

realistic spatial interactions very well. It is there- 

fore natural to take advantage of the best parts of both 

approaches: namely, to use a Neuburger-type objective 

function and plant-location-type cost functions and 

constraints. It will be shown how this gives rise to 

a family of combinatorial optimization problems of a new 

kind. 



Although this paper will focus on the general theoretical and 

computational problems posed by these new models, some possible 

applications are discussed in Section 4. They are: 

i. The a p p l i c a t i o n  t o  Lowry- type  s y s t e m s ,  In this case 

the optimization concerns the location of housing and 

services, taking the relationships among them into 

account. This is not new: it has been the subject of 

many previous works. A completely new insight, how- 

ever, is given by introducing accessibility- and 

congestion-sensitive mechanisms. They introduce sev- 

eral interesting realistic features, such as the forma- 

tion of unused housing stocks, of location-dependant 

service-attendance ratios, and of different levels of 

congestion across space. Another possible improvement 

results from introducing combinatorial structures in 

the cost functions and in the constraints, since it is 

well known that real urban planning and management 

problems are faced with indivisibilities, threshold- 

like constraints, scale effects, and the unrealistic 

spatial allocations obtained by continuous models, 

i The a p p l i c a t i o n  t o  m u l t i  l e v e l  s e r v i c e  s y s t e m s .  Many 

services have many sta~es, or levels, which users will 

possibly go through in a given order. A typical exam- 

ple is given by a health care system, where users may 

enter the system at the lower level (usually made up 

of widespread small general-purpose facilities) and 

possibly be sent to higher, more localized levels 

(usually made up of larger facilities for specialized 

treatments). The introduction of sensitivity to 

accessibility and congestion is fully justified in 

these systems, of course, as well as indivisibilities 

and scale economies. Furthermore, in the example of 

the health care system, it is possible to have some 

stages in which transport between levels has the charac- 

ter of an emergency, rather than the normal spatial- 

interaction behavior, This will produce mixed models, 



iii. 

where some stages behave according to spatial inter- 

action, and others behave more like the OR plant 

location models (with possible maximum travel time 

constraints) . 
The application to multiple-destination service systems, 

There are many instances where consumers make trips 

with many destinations, instead of home-return trips 

with a single destination. Most trips to retail activi- 

ties are of the former kind, since usually customers 

have a shopping program made up of different goods, not 

necessarily available in the same place. But the use- 

fulness of a round-trip scheme is not limited to shop- 

ping. Many generally different kinds of services have 

interactions within them, in the sense that part of the 

demand attracted by any one of the services may generate 

demand for another, depending on accessibilities. Apart 

from considerations similar to those for cases i and ii, 

it is of special interest for this case to have results 

on possible aggregations, that is, ways of building 

possible multipurpose facilities. This is surely rel- 

evant for retail activities, in which possible optimal 

patterns for shopping -centers may be revealed, taking 

into account both spatial interaction and economies of 

scale. 

Not all of the above problems can be solved easily, of course. 

Therefore, together with the general optimality conditions, 

approximate heuristic solution methods are developed here. Most 

of them are shown to be even more interesting and useful than the 

exact ones, since their general form is an approximate ranking 

rule, based on cost/benefit indicators, possibly to be improved 

by successive approximations. The cost/benefit indicators 

usually have intuitive interpretations, being made up of terms 

related to accessibility, congestion, demand potential, and so on. 

A few general references will be given. The approach used 

in Section 2 to introduce accessibility and congestion sensitive- 

ness is very closely related to the approach proposed by Walsh 

and Gibberd ( 1 9 8 0 ) ,  although it has been developed independently. 



( E a r l i e r  r e l a t e d  work i s  a l s o  found i n  Dacey and N o r c l i f f e ,  1976; 

and i n  J e f f e r s o n  and S c o t t ,  1979.)  The g e n e r a l  s t r u c t u r e  of  t h e  

o p t i m a l  l o c a t i o n  problem deve loped  i n  S e c t i o n  3 i s  r e l a t e d  t o  t h e  

one proposed i n  Leonard i  ( 1 9 7 9 ) ,  a l t h o u g h  it h a s  been s u b s t a n -  

t i a l l y  r e v i s e d  and ex tended  and f i n d i n g s  of more r e c e n t  r e s e a r c h  

( L e o n a r d i ,  1980a and b )  have  been t a k e n  i n t o  a c c o u n t .  

2. A GENERAL ACCESSIBILITY- AND CONGESTION-SENSITIVE MULTI- 
ACTIVITY SPATIAL INTERACTION MODEL 

2.1 A G e n e r a l i z a t i o n  of  t h e  ~ o u b l y - C o n s t r a i n e d  S p a t i a l  
I n t e r a c t i o n  Model 

According t o  t h e  u s u a l  d o u b l y - c o n s t r a i n e d  s p a t i a l  i n t e r a c -  

t i o n  model,  t h e  t o t a l  number of t r i p s  f o r  e a c h  o r i g i n - d e s t i n a t i o n  

p a i r  ( i , j )  and f o r  a  g i v e n  t r i p  purpose  i s  d e t e r m i n e d  bv t h e  s e t  

o f  e q u a t i o n s  

where 

'i j 
i s  t h e  number of  t r i p s  from o r i g i n  i t o  

d e s t i n a t i o n  j 

Gi is  t h e  t o t a l  number o f  t r i p s  g e n e r a t e d  from i 

A i s  t h e  t o t a l  number o f  t r i p s  a t t r a c t e d  i n  j  
j 

f i j  
i s  a  measure of t h e  impedance t o  t r a v e l  from 

i t o  j ;  u s u a l l y ,  b u t  n o t  n e c e s s a r i l y ,  

I J  

f i j  = 
, where Cij  i s  t h e  c o s t  o f  a  

t r i p  from i t o  j and f3 i s  a  g i v e n  n o n n e g a t i v e  

c o n s t a n t ,  c a l l e d  t h e  s p a c e  d i s c o u n t  r a t e  



u v .  a r e  b a l a n c i n g  f a c t o r s  of b i p r o p o r t i o n a l i t y  
i ' J 

I n  t h e  models of  t h e  above t y p e  t h e  t o t a l  t r i p  g e n e r a t i o n s  and 

a t t r a c t i o n s  a r e  u s u a l l y  assumed t o  be de te rmined  exogenously  and 

i n d e p e n d e n t l y  of t h e  s p a t i a l  i n t e r a c t i o n  p r o c e s s .  

L e t  it now be assumed t h a t  t h e  f o l l o w i n g  q u a n t i t i e s  c a n  be 

d e f i n e d  

i s  t h e  maximum number o f  t r i p s  which c a n  be  

g e n e r a t e d  from i, s o  t h a t  Gi  - < Pi; Pi w i l l  be 

c a l l e d  t h e  p o t e n t i a l  demand i n  i 

Q j  
i s  t h e  maximum number of  t r i p s  which c a n  b e  

a t t r a c t e d  i n  j ,  s o  t h a t  A < Q j ;  Q .  w i l l  be  
j  - I 

c a l l e d  t h e  t o t a l  c a p a c i t y  i n  j  

U .  = P .  - G i  i s  t h e  d i f f e r e n c e  between t h e  p o t e n t i a l  
1 1  

demand i n  i and t h e  t r i p s  g e n e r a t e d  from i; 

Ui w i l l  b e  c a l l e d  t h e  u n s a t i s f i e d  demand i n  i 

v j  = ' J - ~  
i s  t h e  d i f f e r e n c e  between t h e  t o t a l  capac-  

j 
i t y  i n  j  and t h e  number o f  t r i p s  a t t r a c t e d  i n  

j ;  V .  w i l l  be c a l l e d  t h e  u n u s e d  c a p a c i t y  i n  j  
3 

A n a t u r a l  a s sumpt ion  which c a n  be made f o r  endogenously  

de te rmined  g e n e r a t i o n s  and a t t r a c t i o n s  i s  t h a t  t h e y  i n c r e a s e  

w i t h  u n s a t i s f i e d  demand and unused c a p a c i t y ,  r e s p e c t i v e l y .  A 

s i m p l e  mathemat ica l  t r a n s l a t i o n  o f  t h i s  a s sumpt ion  i s  g i v e n  by 

t h e  f o l l o w i n g  e q u a t i o n s  

where g  , h .  a r e  g i v e n  n o n n e g a t i v e  c o n s t a n t s .  Equa t ion  ( 1 )  
i 3 

s t a t e s  t h a t  t h e  b a l a n c i n g  f a c t o r  f o r  t h e  o r i g i n  i s  p r o p o r t i o n a l  

t o  t h e  u n s a t i s f i e d  demand. Equa t ion  ( 2 )  s t a t e s  t h a t  t h e  ba lanc-  

i n g  f a c t o r  f o r  t h e  d e s t i n a t i o n  i s  p r o p o r t i o n a l  t o  t h e  unused 

c a p a c i t y .  



Furthermore, from the definition of Ui and V the follow- 
1' 

ing equations hold 

Substitution of (1 ) and ( 2 )  in the spatial interaction model 

and addition of ( 3 )  and (4) to the list of equations yield the 

following new model 

By means of some easy rearrangements and substitutions, 

model (5)-(9) can be given the following two alternative repre- 

sentations. 

a. The production-constrained representation, in which the 

constraint on demand generation is evidenced. It is 

defined by the following equations 



The variables @i defined by (11) can be interpreted as 

a c c e s s i b i l i t y  measures in the Hansen sense (Hansen, 

1 9 5 9 ) ,  and the unused capacities play the role of 

attractiveness measures. Equations (12) give the 

generated demands as functions of accessibilities. The 

shape of the graph of these functions is shown in Figure 

1. By means of (lo), (11), and (12) sensitiveness of 

generated demand both to accessibility and to conges- 

tion has been introduced. The total generated demand 

is a nondecreasing function of accessibility, and it 

tends to the total potential demand as accessibility 

increases. On the other hand, the accessibilities 

increase with the unused capacities or, which is the 

same, decrease as the congestion in the destinations 

increase. 

Pi potential demand 

Figure 1. Generated demand as a function of 
accessibility. 



b. The a t t r a c t i o n - c o n s t r a i n e d  r e p r e s e n t a t i o n ,  in which the 

constraint on demand attraction is evidenced. This 

representation is completely symmetrical with the 

production-constrained one, and is defined by the follow- 

ing equations 

In analogy with the interpretation given above for the 

mi, the variables 11 defined by (14) can be interpreted 
j 

as p o p u l a t i o n  p o t e n t i a l s  in the Stewart sense (Steward, 

1948), and the unsatisfied demands represent populations. 

Equations (15) give the attracted demands as functions of 

potentials. The shape of the graph of these functions is 

the same as for functions (12), and is shown in Figure 2. 

attracted demand 

Qi total capacity 

I). potential 
I 

0 

Figure 2. Attracted demand as a function of potential. 



By means of (13), (14), and (15) sensitiveness of 

attracted demand both to potential and to unsatisfied 

demand has been introduced. The total attracted demand 

is a nondecreasing function of potential, and it tends 

to the total capacity as the potential increases. On 

the other hand, the potentials increase with the unsat- 

isfied demand or, which is the same, decrease as the 

satisfied demand in the origins increases. 

The above modified form of the classical spatial interaction 

model has been built by introducing the intuitive assumptions (I), 

( 2 ) ,  (3), and (4). It will be shown that this modified model can 

be derived by an extremal principle, which is closely related to 

Neuburger consumer's surplus maximization (Neuberger, 1971). Let 

the following function be defined 

then it can be shown that the solution to the mathematical 

program 

max W(S,U,V) 
s,u,v 

is the spatial interaction model defined by (5)-(9). For the 

proof, it is first noted that the function W(S,U,V) is concave, 

because it is the sum of concave functions. Since constraints 

(17) and (18) are linear, (16)-(18) is a concave program, whose 

solution is unique. This solution must satisfy the Lagrange 

optimality conditions 



where vi and 11 are the Lagrange multipliers corresponding to 
j 

constraints (17) and (18), respectively. From (19), (20), and 

(21) it follows that 

where 

But (23) and (24) are identical with assumptions (1 1 and (2) , 



provided 

Moreover, (1 7) and (1 8) are equivalent to (3) and (4) . 
Hence, the solution to ( 1 6 ) ,  (17), (18) satisfies equations (5) - 
( 9 ) .  

If, as a special case, the terms depending on unsatisfied 

demand Ui and unused capacity V are dropped, then W reduces to 
j 

the Neuburger consumer's surplus (except for a multiplicative 

constant), provided the fij are of the form 

2.2 Introducing Many Activities 

The model discussed in Section 2.1 refers to just one trip 

purpose. Now let nany trip purposes be introduced or, equiva- 

lently, let the trip attractors in each destination be many 

different activities. The following definitions will be needed. 

is the potential demand in i for activity k. 'i 

QI is the total capacity of activity k in j. 

is the demand for activity k generated in i, that Gi 
is, the total number of trips from i which have an 

activity k as a destination. 

is the demand attracted by activity k in j, that 
j 

is, the total number of trips having as a destina- 

tion activity k which is located in j. 

is the number of trips with purpose k (that is, 'i j 
having an activity k as a destination) from origin 

i to destination j. 



fk is a measure of impedance to travel from i to j i j 
with purpose k; usually, but not necessarily, the 

k 
k --BkCi measure of impedance is of the form f = e i j r 

where ctj is the cost of traveling from i to j 
with purpose k and B are nonnegative space dis- k 
count rates. 

hk are given nonnegative constants. r j 

The following equations must hold 

The introduction of many activities is meaningful if interactions 

take place among them. Let it therefore be assumed that the 
k 

potential demand for each activity k from each location i, Pi, is 

not a given constant, but a linear function of the demand 

attracted by all activities in i. This assumption is stated by 

the equations 

or, after substitution from ( 2 8 )  



k  where yk and a  a r e  g i v e n  n o n n e g a t i v e  c o n s t a n t s .  The t e r m s  Yi 
i r k  

c a n  b e  i n t e r p r e t e d  a s  exogenous  i n p u t s ,  w h i l e  t h e  c o e f f i c i e n t s  

a a r e  d e f i n e d  a s  f o l l o w s  
rk 

a  r k  i s  t h e  p o t e n t i a l  demand f o r  a c t i v i t y  k  p roduced  

by a  u n i t  o f  a t t r a c t e d  demand i n  a c t i v i t y  r.  

The f u n c t i o n  W(S,U,V) i n t r o d u c e d  i n  S e c t i o n  2.1 c a n  b e  g e n e r a -  

l i z e d  a s  f o l l o w s  

k  k  
'i W(S,U,V) = - i 8. - 1) - u*(laiX - 1) - I v; (lq 3 - 1) i j k  Ik i 1 k  I 

I f  e q u a t i o n s  ( 2 9 )  a r e  added  t o  t h e  l i s t  o f  c o n s t r a i n t s ,  t h e  

f o l l o w i n g  g e n e r a l i z a t i o n  o f  ( 1  6 )  - ( 1  8 )  is  o b t a i n e d  

max W(S,U,V) 
s , u , v , p  

The v a r i a b l e s  pk h a v e  been  added  t o  t h e  l i s t  o f  m a x i m i z a t i o n  i 
v a r i a b l e s  i n  ( 3 0 ) ,  s i n c e  now t h e y  a r e  no l o n g e r  g i v e n  c o n s t a n t s .  

The Lagrange  o p t i m a l i t y  c o n d i t i o n s  f o r  ( 3 0 )  - ( 3 3 )  a r e  



u 
i - log - k  

- .k = 0 
1 

9 i 

k k k  where vif u j r  A .  are the Lagrange multipliers corresponding to 
1 

constraints (31), (32), and (33), respectively. From (34), (35), 

(36), and (37) it follows that 

where 



On t h e  o t h e r  hand, summation of ( 3 8 )  o v e r  j and e q u a t i o n  (25)  

y i e l d  

where 

vk mZ = : f i j  can  be i n t e r p r e t e d  a s  an  a c c e s s i b i l i t y  
7 

j 
measure,  i n  a n a l o g y  w i t h  (11)  

S u b s t i t u t i o n  o f  (41)  i n t o  (40)  g i v e s  f o r  t h e  v  k 
j 

Equa t ion  ( 4 2 )  g i v e s  much i n s i g h t  i n  t h e  way a c t i v i t i e s  i n t e r a c t .  

I f  it i s  compared w i t h  i t s  ana logous  ( 2 )  f o r  t h e  s i m p l e  c a s e ,  

it i s  s e e n  t h a t  t h e  a t t r a c t i v e n e s s  o f  a c t i v i t y  k  i n  d e s t i n a t i o n  j 

i s  s t i l l  p r o p o r t i o n a l  t o  t h e  unused c a p a c i t y  vk b u t  it i s  a l s o  
j 

p r o p o r t i o n a l  t o  t h e  t e r m  

t h a t  i s ,  t h e  p r o d u c t  o f  t h e  r a t i o s  o f  a c c e s s i b i l i t i e s  t o  g e n e r a t e d  

demands f o r  a l l  a c t i v i t i e s  r i n  j .  These r a t i o s  a r e  r a i s e d  t o  t h e  

power a  k r ,  which i s  a  measure o f  t h e  i n t e n s i t y  o f  i n t e r a c t i o n  

between a c t i v i t i e s  k and r. T h e r e f o r e ,  t h e  v a l u e  of  ( 4 3 )  i s  mainly  

de te rmined  by t h e  a c t i v i t i e s  which have s t r o n g  i n t e r a c t i o n s  w i t h  k. 

I f ,  a s  a  s p e c i a l  c a s e ,  a  = 0  f o r  some r ,  t h e n  k  and r have no 
k r  

i n t e r a c t i o n  a t  a l l ,  and t h e  c o r r e s p o n d i n g  f a c t o r  i n  (43)  r e d u c e s  

t o  1. I f ,  a s  a  l i m i t i n g  c a s e ,  a l l  akr  = 0, t h e r e  i s  no i n t e r a c t i o n  

among a c t i v i t i e s ,  t h e  v a l u e  o f  (43)  r e d u c e s  t o  1 ,  and t h e  v a l u e  o f  

(42)  r e d u c e s  t o  



which is the same as (2), except for the superscript k. In 

other words, the model with many activies reduces to a set of 

independent models with a single activity. 

k If (42) is substituted into $i, the following equations are 

obtained 

In equations (44) the multiplier effect of accessibilities on 

themselves, and hence on demand generation, is evidenced. All 

accessibilities from all locations and to all activities are tied 

together by (44), and these ties are stronger the higher the 

values of the coeffients akr . 

2.3 An Example: The Lowry Model Revisited 

The usefulness of model (30)-(33) is shown by the following 

example. Let an urban system be given, which is assumed to behave 

according to the classic economic base theory, as it has been 

introduced in the well' known Lowry model (Lowry, 1964). In order 

to get a qualitative understanding for the structure of the model, 

some very crude simplifying assumptions will be introduced. 

These assumptions are the following. 

a. The urban system has only two types of endogenous 

activities, housing and service, with no further 

breakdown. 

b. Only one exogenous input is given, the basic sector, 

with no further breakdown. 

c. The households are homogenous, and only the householder 

works. 

d. The demand for housing arises only from the basic 

sector and the service sector. 

e. The demand for services arises only from the housing 

sector. 



Let k =  1 label the housing sector and k = 2  label the service 

sector, and introduce the following definitions. 

I 

'i j 
is the number of households living in j ,  whose 

householders work in i. 

2 
'i j is the number of daily trips made by house- 

holds living in i to services located in j. 

is the potential demand for housing from it 

that is, the total number of households whose 

householders work in i. 

is the potential demand for service from i, 

that is, the maximum number of daily trips to 

services which can be made by households 

living in i . 

Q ;  
is the total capacity for housing in j, that 

is, the total number of dwelling units, or 

the housing stock, in j. 

2 
Qi is the total capacity for services in j, that 

J 

is, the total size of services, or the service 

stock, in j. (Q: is assumed to be measured in 
J 

terms of maximum number of daily customers 

that can be served). 

1 
Gi is the demand for housing generated in i, that 

1 - 1 1 is, Gi - E Sij ; in general Gi 
1 < Pi, that is, 

j 
not all the potential demand for housing is 

necessarily satisfied. 



2  
Gi 

is t h e  demand f o r  s e r v i c e  g e n e r a t e d  i n  i t  t h a t  
2  2  i n  g e n e r a l  G~ i s ,  Gi = t S i j  i 

2  
< P i t  t h a t  i s ,  

j 
t h e  maximum number o f  p o s s i b l e  t r i p s  t o  s e r v i c e s  

i s  n o t  n e c e s s a r i l y  made. 

A '  i s  t h e  demand f o r  hous ing  a t t r a c t e d  i n  j ,  t h a t  
j I I I I 

i s ,  A = L S i j ;  i n  g e n e r a l  A < Q j ,  t h a t  i s ,  
j 

I 

n o t  a l l  t h e  housing s t o c k  is n e c e s s a r i l y  used. 

i s  t h e  demand f o r  s e r v i c e  a t t r a c t e d  i n  j, t h a t  
2  2 2 

i s ,  = Si j ;  i n  g e n e r a l  A < Q j  , t h a t  i s ,  n o t  
j  1 j 

a l l  t h e  s e r v i c e  c a p a c i t y  i s  n e c e s s a r i l y  used. 

1 
'i i s  t h e  number of  households  whose householder  

works i n  t h e  b a s i c  s e c t o r .  

a1 2 
i s  t h e  p o t e n t i a l  number of  d a i l y  t r i p s  t o  

s e r v i c e s  made by a household ,  

a  
2 1 i s  t h e  r a t i o  between workers  i n  t h e  s e r v i c e  

s e c t o r  and t o t a l  a t t r a c t e d  s e r v i c e  demand. 

1 - Assumptions b ,  d l  and e imply t h a t  Yi = 0 ,  a l l  - 0, a 2 2  = 0. 

Equa t ions  ( 2 9 )  assume t h e  s imple  form 

Equat ion ( 4 5 )  s t a t e s  t h a t  t h e  t o t a l  p o t e n t i a l  demand f o r  housing 

i s  e q u a l  t o  t h e  number of  workers  i n  t h e  b a s i c  s e c t o r ,  p l u s  t h e  

number o f  workers  i n  t h e  s e r v i c e  s e c t o r .  Equat ion ( 4 6 )  s t a t e s  

t h a t  t h e  t o t a l  p o t e n t i a l  demand f o r  s e r v i c e  i s  e q u a l  t o  t h e  

maximum number o f  d a i l y  t r i p s  t o  s e r v i c e s  which can be made by 



households. 

If equation (42) is applied to the housing sector, it takes 

the form 

where 

1 l - A  
= Qj 

is the unused housing stock in j 
j 

4 f is the accessibility to services from j 

Therefore, the attractiveness of location j as a place of 
1 residence, as measured by v,, increases both with the availabil- 

1 '  
ity of dwelling units, V and with the accessibility to services, 

j ' 
The main trade-off in residential choice is thus embodied in $ +  

( G 7 )  . The third trade-off term, the home-to-work travel cost, is 

introduced if the production-constrained representation (see 

Section 2.1) is used for the slj 

1 1 
where 4 = i v1 f1 and v is defined as in (47) . Since f . j ijf 

7 j ij 
J 

depends on the cost of traveling from i to j, plus possibly some 

additional costs associated with location j (like the rent), (48) 

shows how availability of houses, accessibility to services, 

home-to-work travel cost and location costs determine the overall 

attractiveness for residential location, Other results easily 



derived from the production-constrained representation are 

the demand for housing (49) 

generated in j  

the unsatisfied demand (50) 

for housing in i 

Equation (51) can be given a more meaningful and simpler form. 

From (49) and (50) it follows that 

theref ore 

1 
G; 1 1  1 

= E U .  f../g. = l y  Z i fij 1 is the unsatisfied housing 
1 1 1 1  j 

i +i i demand potential, as 

defined in the attraction- 

constrained representation 

of Section 2.1 

Substitution of this result into (51) yields 

Equation (52) embodies the spatial interaction process in the 

most synthetic and intuitive way. It says that the total housing 

demand attracted in j is proportional to the availability 

of houses in j ,  v1 to the potential which is a measure of 
j  1 '  



n e a r n e s s  o f  j t o  u n s a t i s f i e d  h o u s i n g  demand, and  t o  t h e  a c c e s s i -  

b i l i t y  t o  s e r v i c e s  f rom j ,  r a i s e d  t o  t h e  power a 12 '  which i s  t h e  

maximum d a i l y  f r e q u e n c y  o f  home- to - se rv ice  t r i p s .  From ( 5 2 )  an  

e q u a t i o n  f o r  t h e  unused  h o u s i n g  s t o c k  i s  e a s i l y  d e r i v e d .  I f :  

i s  s u b s t i t u t e d  f o r  A' i n  ( 5 2 ) ,  and  t h e  r e s u l t i n g  e q u a t i o n  i s  
'I j 

s o l v e d  f o r  V '  it i s  found  t h a t  
j '  

E q u a t i o n  ( 5 3 )  s a y s  t h a t t h e  f o r m a t i o n  o f  unused  h o u s i n g  s t o c k  

ma in ly  t a k e s  p l a c e  i n  l o c a t i o n s  f a r  f rom b o t h  s e r v i c e s  and  from 

p l a c e s  o f  work,  where  t h e  h o u s i n g  demand ar ises .  T h i s  i s  e x a c t l y  

what  m i g h t  b e  e x p e c t e d .  However, f rom ( 5 2 )  it i s  s e e n  t h a t  t h e  

unused h o u s i n g  s t o c k  i s  an  a t t r a c t i n g  f a c t o r  f o r  new h o u s i n g  

demand. T h e r e f o r e ,  t h e  h o u s i n g  demand i s  f o r c e d  t o  t r a d e  o f f  

a c c e s s i b i l i t y  t o  s e r v i c e s  and  n e a r n e s s  t o  t h e  p l a c e  o f  work 

(which would s o l e l y  g u i d e  t h e i r  c h o i c e ,  o t h e r  t h i n g s  b e i n g  e q u a l )  

w i t h  a v a i l a b i l i t y  o f  h o u s e s ,  which a c t s  as a c o n s t r a i n t .  The 

r e s u l t i n g  s p a t i a l  p a t t e r n  i s  a c o n c e n t r a t i o n  o f  h o u s e h o l d s  i n  

l o c a t i o n s  w i t h  h i g h e s t  a c c e s s i b i l i t y  t o  s e r v i c e s  and  p l a c e s  o f  

work,  whose h o u s i n g  c a p a c i t y  i s  n e a r  t o  s a t u r a t i o n ,  and  a l o w e r  

d e n s i t y  o f  h o u s e h o l d s  i n  t h e  less a c c e s s i b l e  l o c a t i o n s ,  where  

unused  h o u s i n g  s t o c k  may p o s s i b l y  b e  found.  T h i s  i s  i n d e e d  v e r y  

c l o s e  t o  wha t  a c t u a l l y  happens  i n  r e a l  u r b a n  s y s t e m s ,  and  it i s  

a l s o  v e r y  s i m i l a r  t o  what  t h e  c l a s s i c  Lowry model p r e d i c t s .  

However, when t o t a l  demand grows f a s t e r  t h a n  t h e  h o u s i n g  s t o c k ,  

a l l  l o c a t i o n s  t e n d  t o  b e  s a t u r a t e d ,  w h e t h e r  t h e i r  a c c e s s i b i l i t y  

is  h i g h  o r  l o w .  T h i s  b e h a v i o r  i s  a lso v e r y  close t o  t h e  a c t u a l  

b e h a v i o r  o f  c o n g e s t e d  u r b a n  s y s t e m s ,  b u t  it c a n n o t  b e  a c c o u n t e d  

f o r  by t h e  c lassic  " u n c o n s t r a i n e d "  Lowry model.  



The analysis which has been carried out for the housing 

sector applies to the service sector as well, and it will not be 

repeated here. 

3. THE OPTIMAL LOCATION PROBLEM 

3.1 The Primal Problem 

In Section 2 the analysis of the descriptive process has 

been carried out. Now the problem of how to control the multi- 

activity spatial interaction system in some optimal way will be 

posed. That is, given that customers behave as if they were 

looking for the optimal solutions to problems (30) - (33) , how can 
a public authority improve this optimizing behavior by suitably 

choosing the values for the physical stocks of activities, that 
k 

is, the capacitites Q ? The above question implies the assump- 
j 

tion that the goal of the customers (maximizing the function W 

defined in Section 2,2) is in agreement with that of the public 

authority, so that no conflicting-goal problem arises between 

customers and public authority. The public authority is also 

assumed to pay the costs to establish the capacities Q Letthe 
j. 

cost functions be of the form 

where ak is a fixed-charge cost to be paid for establishing an 
j 

activity k in location j, while bk is a unit cost. Fixed charges 
j 

have the effect of introducing economies of scale and threshold 

effects, as it will be shown later. 

The optimization problem can be split in two steps: 

a. choose a subset of locations and a subset of 

activities to be established for each chosen 

location; 

b. given the result of step a, find the optimal size 

of the activities to be established in each chosen 

location. 



While step a gives rise to a combinatorial problem, step 

b is a smooth mathematical programming problem. Let therefore 

step b be solved first, and step a be introduced in the next 

section. It will be thus assumed that the chosen locations and 

activities are given, and only the capacities Qk have to be found. 
j 

The resulting mathematical programming problem is the same as 

(30)-(33), the only difference being that establishing costs are 

subtracted from the objective function W, and the capacities Q 
k 
j 

are added to the list of decision variables: 

max k k  W(S,U,V) - A L ak + L Q. b 
stUtVtptQ (jk jk I j) 

The parameter X which multiplies the cost term in (54) is a 

trade-off parameter, weighting costs against benefits. Usually 

a sensitivity analysis has to be made on A, in order to assess 

the appropriate trade-off level. Alternatively, X may be inter- 

preted as a Lagrange multiplier arising from the relaxation of a 

budget constraint. 

Formulation (54)-(57) is somewhat redundant. First, since 

the locations and activities are assumed to be given, the sum of 

the fixed-charge costs is constant, and can be dropped from the 
k 

objective function (54). Secondly, there is no use to keep Pi 

and ~k in the list of decision variables, since by means of 
I 

equations (55) and (56) they can be expressed in terms of the 
k variables Sij, Uit V Therefore, after some substitutions and 

j 



rearrangements, problem (54) - (57) reduces to: 

max W(S,U,V) - X C b 
k k k 

s,u,v jk 
j (' i 'ij + J 

Problem (58)-(59) will be referred to as the "primal" problem. 

3.2 Some Duality Results 

The saddle-point problem equivalent to (58)-(59) is 

min max L(S,U,V,v) 
v s,u,v 

where the Lagrangean function L is defined as: 

and the vk are the Lagrange multipliers, or dual variables, corres- 
1 

ponding to constraints (59). The vanishing of the derivatives of 

L with respect to the primal variables yields the following 

equations 

sk ij -~b : - ~ k +  c % v r = 0  , or 

r 3 1 160) 



By means of equations (60) , (61 ) , and (62) the primal variables 
can be expressed in terms of the dual variables in closed form. 

Substitution into L and some rearrangements yield the following 

unconstrained "dual" problem 

min D(v) 
v 

where the dual objective function D is defined as 

k 
D(v) = 

ijk ij ik j k J  ik 

k 
and the functions s:~ (v) , Ui (v) , and the constants vk are defined 

j 
by equations (60), (61), and (62). The dual objective function 

can be given an intuitive interpretation. From equation (32), 

the total capacity of activity k in location j, Q~ is given by 
1' 

so that 

is the total capacity (64) 

of activity k in location 

j, as a function of the 

dual variables 

If (64) is substituted into (63), the dual function becomes 

The first two terms of (65) are the total unsatisfied demand 

and the total capacity, respectively. The philosophy behind 

minimization of D(v) is therefore a balance between a welfare 

goal (minimizing unsatisfied demand) and an efficiency goal 



(min imiz ing  t h e  t o t a l  c a p a c i t y ) .  Now l e t  t h e  c o r n b i n a t o r i a l  p a r t  

o f  t h e  problem ( s t e p  a  o f  S e c t i o n  3 .1 )  b e  i n t r o d u c e d .  D e f i n e  

t h e  b o o l e a n  v a r i a b l e s  

Xk = ( 1 ,  i f  a n  a c t i v i t y  k  i s  l o c a t e d  i n  j 
j 0,  o t h e r w i s e  

F u r t h e r  c o n s t r a i n t s  may be  i n t r o d u c e d  on t h e  number o f  

a c t i v i t i e s  which  c a n  be  e s t a b l i s h e d  i n  t h e  same l o c a t i o n .  F o r  

s i m p l i c i t y ,  i t  w i l l  b e  p r o v i s i o n a l l y  assumed t h a t  o n l y  one  

a c t i v i t y  c a n  be  e s t a b l i s h e d  i n  e a c h  l o c a t i o n .  The a s s u m p t i o n  

seems r e s t r i c t i v e ,  b u t  it may be e a s i l y  r e l a x e d ,  as  it w i l l  b e  

done  i n  l a t e r  s e c t i o n s .  I n  t e r m s  o f  t h e  b o o l e a n  v a r i a b l e s ,  t h e  

a s s u m p t i o n  g i v e s  r i se  t o  t h e  c o n s t r a i n t s  

I f  t h e  b o o l e a n  v a r i a b l e s  and t h e  sum o f  t h e  f i x e d  c h a r g e s  (which 

now i s  no l o n g e r  a  c o n s t a n t )  a r e  s u i t a b l y  i n t r o d u c e d  i n  ( 6 5 ) ,  

t h e  f o l l o w i n g  m o d i f i e d  d u a l  f u n c t i o n  i s  o b t a i n e d  

k  k 
D ( V , X )  = C [ u i ( V ) + v :  Y!] + L xk [ l j k ( w )  - h a . ]  

3 I 3 
( 6 6 )  

i k  j k  

T h i s  f u n c t i o n  h a s  t o  b e  minimized  w i t h  r e s p e c t  t o  t h e  d u a l  

v a r i a b l e s  vk and maximized w i t h  r e s p e c t  t o  t h e  v a r i a b l e s  x k  
1 j ' 

The r e s u l t i n g  problem i s  

max min D ( v , x )  
x  v  



An upper bound to the optimal value of D is obtained by relaxing 

constraint (69) and replacing it with the weaker condition: 

where the variables xf are allowed to assume any real value in 

the unit interval. But the right-hand side inequality in (70) 

is redundant, since it is already implied by constraints (68). 

Therefore, the relaxed version of (67)-(69) becomes 

max min D(V,X) 
X v 

Problem (71)-(73) is a saddle-point problem. It is therefore 

natural to look at D(v,x) as the Lagrangean function associated 

with some "primal" problem, the variables xk playing the role of 
j 

Lagrange multipliers. It will be shown that such a "primal" 

problem indeed exists, and it is given by the following mathe- 

matical program 

min P (v, z) 
V l Z  

where the function P (v, z) is defined as 



To show that (74)-(76) is equivalent to (71)-(73), the following 

"Lagrangean" function is introduced 

where xk and E are the Lagrange multipliers corresponding to 
j j 

constraints (75) and (76), respectively. Problem (74)-(76) is 

equivalent to the following  addle-point problem 

max min B(v,z,x,~) 
X,E V,Z 

(The nonnegativity constraints on the multipliers are required 

because constraints (75) and (76) are inequalities. ) The 

vanishing of the derivatives of with respect to z implies 
j 

  qua ti on (80) and constraints (78) and (79) imply 

therefore (80) is equivalent to (72). Substitution of (80) into 



(77) yields: 

and since the terms in z and €,cancel out a comparison with ( 6 6 )  
j I 

shows that 

It follows that problem ( 7 7 )  - ( 7 9 )  is equivalent to problem ( 7 1  ) - 
( 7 3 )  , and hence that problem ( 7 4 )  - ( 7 6 )  is equivalent to problem 

( 7 1  ) - ( 7 3 )  . 
A more detailed description of the general structure of the 

solution to ( 7 4 ) - ( 7 6 )  will now be given. The way the function 

P ( v , z )  has been built always forces the variables z to assume 
j 

the lowest possible value in the optimal solution of ( 7 4 )  - ( 7 6 )  . 
From constraints ( 7 5 )  and ( 7 6 )  it follows that it must be either 

k k z = max [ Q .  ( v )  - Aa. ] 
j k I I 

or both, which ever is greater. When only ( 8 1 )  holds, a k* 

which maximizes its right-hand side exists such that 

while for every k # k* it must be 



T h e r e f o r e ,  c o n s t r a i n t  ( 7 5 )  i s  b i n d i n g  f o r  a c t i v i t y  k* o n l y ,  a n d  

n o n b i n d i n g  f o r  a l l  o t h e r  a c t i v i t i e s .  I t  f o l l o w s  t h a t  t h e  m u l t i -  

p l i e r s  o f  c o n s t r a i n t s  ( 7 5 )  a r e  

f o r  k # k* 

On t h e  o t h e r  hand ,  s i n c e  ( 8 2 )  d o e s  n o t  h o l d ,  c o n s t r a i n t  ( 7 6 )  

i s  n o n b i n d i n g ,  t h e r e f o r e  it mus t  b e  

S u b s t i t u t i o n  o f  ( 8 5 ) ,  ( 8 6 )  and  ( 8 7 )  i n t o  ( 8 0 )  y i e l d s  

t h a t  i s ,  t h e  l o c a t i o n  j - i s  c h o s e n  t o  e s t a b l i s h  a n  a c t i v i t y  k*. 

I t  i s  i m p o r t a n t  t o  n o t i c e  t h a t  ( 8 8 )  y i e l d s  a n a t u r a l  i n t e g e r  

s o l u t i o n ,  t h a t  i s ,  o n e  wh ich  is  f e a s i b l e  f o r  t h e  o r i g i n a l  com- 

b i n a t o r i a l  p rob lem.  

When o n l y  ( 8 2 )  h o l d s ,  t h e n  it f o l l o w s  t h a t  

k 
Qj ( v )  - l a k  < 0  f o r  a l l  k 

j 

t h a t  i s ,  c o n s t r a i n t s  ( 7 5 )  a r e  n o n b i n d i n g  f o r  a l l  a c t i v i t i e s ,  and  

t h e  c o r r e s p o n d i n g  m u l t i p l i e r s  w i l l  b e  

f o r  a l l  k 

I n  o t h e r  words ,  no  a c t i v i t y  w i l l  b e  e s t a b l i s h e d  i n  

l o c a t i o n  j .  Again it i s  i m p o r t a n t  t o  n o t i c e  t h a t  ( 9 0 )  y i e l d s  a  

n a t u r a l  i n t e g e r  s o l u t i o n .  



When both (81) and (82) hold, then (85) and (86) hold as 

well, but instead of (87) it must be 

and from (80) it follows that 

That is, a natural integer solution is no longer assured and 

fractional values for xk* may be (and usually are) introduced. 
j 

Equations (81) and (82) suggest a new possible formulation 

of problem (74)-(76). From (81) and (82) it follows that 

and if this result is substituted in P(V,Z) the following non- 

smooth optimization problem is obtained: 

min G(v) 
v 

where the function G(v) is defined as 

k k - 
[ui(v) + V~Y;] + 1 max {max [Q.(v) - hak],O} 

j k 
3 3 

Problem (92) is computationally attractive, since it is 

unconstrained and contains only the variables v The price to 
i' 

be paid for this simplicity is the nonsmoothness of the function 

G. 

A summary of the main duality and equivalence results is - - - 
useful. If x, V, z denote the optimal values for the correspond- 



ing arrhys of variables, the following equalities hold 

For general nonoptimal values x,v,z the following inequalities 

hold 

If, as a special case, x is the optimal integer solution, it is 

seen from ( 8 5 )  that G ( v )  provides the tighter upper bound to 

D (v ,x) . Anyway, both G and P can be used to compute upper bounds 

to D, depending on computational convenience. Problem ( 9 2 )  is 

simple, but nonsmooth, as already stated. Problem ( 7 4 )  - ( 7 6 )  is 

a smooth convex programming problem but has the nonlinear con- 

straints ( 7 5 ) .  If an algorithm to solve either ( 9 2 )  or ( 7 4 )  - ( 7 6 )  

is available, it can be used to find the optimal relaxed values 

for the x If all the xk assume natural integer values, then 
1. j 

the original cornbinatorial problem is solved, and no further 

refinement is needed. If some xk assume fractional values, a 
3 

branch-bound refinement procedure may be started. 

3.3 Heuristic Approximations 

The problems introduced in Section 3.2 may be hard to solve 

exactly, and the requirement of integer values for the variables 

xk makes the task even harder. 
j 

However, there are many reasons why applications to real 

problems should not be obsessed with finding exact solutions. 

First, the input data and the definition of the physical setting 

are always less precise than an exact algorithm seems to imply. 

The set of possible locations, for instance, is usually a set of 

zones in which a given area is subdivided, and there is much 

arbitrariness in this subdivision. An exact algorithm would 

possibly be very sensitive to changes in the subdivision, but in 

the real world such changes are meaningless. Secondly, finding 

an exact solution corresponding to a given set of input data is 



rn~ch less interesting and useful than having a whole spectrum 

of solutions corresponding to different sets of input data. A 

sensitivity analysis has typically to be carried out on para- 

meters like the space discount rate, the travel costs, the trade- 

off between benefits and costs, the elasticity of demand to 

accessibility, the minimum feasible size for the activities, and 

so on. Finding an exact solution for all the possible cornbina- 

tions of different values for these parameters is usually prohib- 

itive. Third, producing numerical solutions is not the only aim 

of optimal location models, nor is it necessarily the main one, 

Qualitative understanding of the relationships among the main 

factors affecting location patterns is often a much more inter- 

esting goal, both in theory and in applications. 

The reasons listed above suggest that fast and easy 

heuristic approximations could be a useful tool for optimal 

location problems. 

A heuristic approach to solving (74)-(76), subject to the 

integrality conditions on the multipliers xk may be developed 
j' 

starting from equations (81)-( 91), which can be summarized as 

follows 

let k* maximize 

k 
Q. (v) - Xa k 
I j 

then 

The above result refers to general (noninteger) values for 
k x . Since, however, an integer solution is looked for, it will 
j 

be assumed that only integer values will be introduced in the 



trial solutions. Therefore equation (95) can be dropped and the 

following heuristic optimality conditions are obtained: 

Conditions (97) and (98) state a very reasonable efficiency 

principle. If the total size required by the activity k* in 

location j is greater than, or equal to, the fixed charge a:* to 
J 

be paid for establishing it (multiplied by the trade-off para- 

meter A), than j is a good location for activity k*, and it is 

worth establishing it there. If the total size required by the 

activity k* in location j is less than the fixed charge term, 

then j is a bad location for activity k*, which will not be 

established there. From (97) and (98) a very simple interpre- 

tation of the fixed-charge term follows: ~a~ i s  t h e  minimum 
j 

f e a s i b l e  s i z e  f o r  a n  a c t i v i t y  k i n  l o c a t i o n  j ,  This interpre- 

tation is very useful in applications, since it is often easier 

to assess the values for the minimum feasible sizes, rather than 

for the fixed costs. Conditions (97) and (98) can be rephrased 

in the following first rule of thumb (ROT1) : 

ROTl  c h o o s e  o n l y  t h o s e  l o c a t i o n s  where a t  l e a s t  one  

a c t i v i t y  r e q u i r e s  a  c a p a c i t y  a t  l e a s t  a s  g r e a t  

a s  t h e  minimum f e a s i b l e  s i z e ;  e s t a b l i s h  i n  e a c h  

o f  t h e s e  l o c a t i o n s  o n l y  t h e  a c t i v i t y  w i t h  t h e  

h i g h e s t  d i f f e r e n c e  b e t w e e n  r e q u i r e d  c a p a c i t y  

and minimum s i z e  

The rationale behind ROTl is that only those activities will be 

established that attract enough demand to justify at least the 

minimum feasible size. The reason why only one activity is 

possibly established in each location is because of constraints 

(72). But now these constraints can be easily relaxed, and 



the more general case, in which many different activities can 

be established in the same location, can be introduced. The 

efficiency conditions for this case are stated in the following, 

second rule of thumb (ROT2): 

ROT2  s t e p  I f o r  e a c h  p o s s i b l e  l o c a t i o n ,  r a n k  t h e  

a c t i v i t i e s  a c c o r d i n g  t o  t h e  d i f f e r e n c e  

b e t w e e n  r e q u i r e d  c a p a c i t y  and  minimum 

f e a s i b l e  s i z e ;  i f  t h i s  d i f f e r e n c e  i s  

n e g a t i v e ,  d rop  t h e  c o r r e s p o n d i n ?  a c t < v -  

i t i e s  f rom t h e  l i s t  

s t e p  2 e s t a b l i s h  i n  e a c h  l o c a t i o n  a s  many 

a c t i v i t i e s  a s  p o s s i b l e ,  c h o o s i n g  them 

a c c o r d i n g  t o  t h e  r a n k i n g  o b t a i n e d  i n  

s t e p  I 

There is some vagueness in step 2, since the precise meaning 

of "as many activities as possible" has not been defined. How- 

ever, it is felt that it is better to keep this vagueness, and 

leave the decision maker some freedom on judging by inspection 

when to stop picking up activities from the list. This freedom 

is needed because the constraints imposed in each zone by the 

limited availability of space and by the already existing phys- 

ical stocks act in a nonsmooth and hardly quantifiable way. 

The tools provided by ROT2 do not solve the problem of how to 

meet these constraints in the best way, which is left to town 

designers and architects. ROT2 simply yields a set of indicators 

by means of which activities and locations can be ranked for a 

possible choice. 

It is worth recalling that, although the indicators and the 

ranking produced by ROT2 are very simple and intuitive, they are 

rooted in a rigorous ground, since ROT2 has been obtained by 

suitably approximating and generalizing the exact -0ptimality 

conditions (94), (95), and (96). 

Both ROT1 and ROT2 can be used to generate improved values 
k for the variables x . The general structure of a possible 
j 

iterative algorithm is shown in the block diagram of Figure 3. 
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The diagram is self-explanatory and only a few comments are 

needed. The function D(v,x) is the one defined by (66). Step 

1 is quite arbitrary and any initial guess can be used. However, 

since the algorithm is a heuristic one, independence of the 

final solution from the initial guess may not be assured. There- 

fore, it is worth putting some effort in finding a good initial 

guess. When no better assumption is available, two possible 

starts are: 

1. all activities are established in all locations; 

2. no activity is established in any location. 

Although assumption 1 may seem more reasonable, assumption 

2 has some definite computational advantages. This can be 

shown by performing the first iteration of the algorithm. If 
k all x = 0, then 
j 

min D (v,x) 
V 

reduces to 

k ( + vk .) min I g2 e 
v ik i 'i 

[(99) follows from (61) and (66)]. Standard calculus yields 

the solution to (99) 

and substitution of (100) into (64) yields the total capacities 

required in each location 



The right-hand side of (101) depends only on given constant 

terms, and can be computed beforehand. Going now to step 5 of 

the algorithm, the differences 

are computed and used to update the xk either by ROT1 or by 
j' 

ROT2. A sensible updating can be performed only if some of the 

differences (102) are positive. If, however, it is found at this 

step that - all the differences (102) are negative, the algorithm 

stops after two iterations, and the final solution is the same as 

the starting guess 2, that is doing nothing. When this happens, 

no location problem exists. It is therefore suggested to use the 

start. 2, in order to let the algorithm check for this possibility 

from the very beginning. It is also suggested that, when the 

algorithm has such a stop, input data should be carefully checked 

for possible mistakes. 

The method suggested for step 2is computationally the best 

one, since the mathematical program 

min D(V,X) 
v 

for x fixed reduces to 

min ~ ( v )  
v 

where D (v) is the function defined by (63) or (65) . Problem 

(103) is a simple convex unconstrained minimization problem, 

which can be solved by standard techniques. However, it might 

be felt that it is rather abstract, since it is defined in terms 

of the dual variables, to which no immediate intuitive meaning 

can be given. It may therefore be useful to reformulate the 

resulting capacities ak in terms of the more "physical" quantities 
j 

and indicators introduced in Section 2.2. Some rearrangements of 



( 3 2 ) ,  ( 3 8 ) ,  ( 3 9 ) ,  and ( 4 2 )  yield 

where all the variables have been already defined in Sections 2.1 

and 2.2, The main definitions will be briefly restated 

vk is the unused capacity of activity k in location j 
j 

$5 is the accessibility to activities r from location j 

Q 
is the potential of unsatisfied demand for activity 

k in location j 

G~ is the demand for activity r generated in location j 
j 

Equation ( 1 0 4 )  gives an intuitive interpretation of the mechanism 

implied by ( 1 0 3 ) ,  and indicators like accessibilities and poten- 

tials give further elements to evaluate the resulting location 

pattern. It might be argued that some iterative scheme based on 

( 104 )  , together with ( 3 1  ) , ( 3 2 )  , ( 3 3 )  , could be devised, without 
resorting to the dual formulation ( 1 0 3 ) .  Such a scheme could 

actually be built, in close analogy with the original method pro- 

posed by Lowry ( 1 9 6 4 ) .  However, it would be computationally very 

poor, compared to the efficiency of ( 1 0 3 ) .  

In step 3  of Figure 3  a stopping rule based on the value of 

the dual objective function is suggested. A stronger stopping 
k rule could be based cn the array {x.), that is: s t o p  when t h e  

k 3 same {x.) i s  o b t a i n e d  i n  two s u c c e s s i v e  s t e p s ,  However, such a 
3 k condition may possibly never be met, since the x can assume only 

j 
integer values. Cycling may occur, indicating that possible 

multiple solutions exist, or that the algorithm is not able to 



give any further improvement- The rule based on the value of 

the dual objective function seems therefore more stable. 

The algorithm of Figure 3 assumes that all the parameters 

are held constant. It will now be shown how it can be gener- 

alized to perform some sensitivity analysis. As an example, let 

it be assumed that a sensitivity analysis on the trade-off 

parameter X is needed. A possible algorithm is shown in the 

block diagram of Figure 4. In this algorithm it has been assumed 

that only ROT2 is used. A few explanations will be given. The 

functions D(V) and D(v,x) are defined by equations (65) and (66), 

respectively. The sensitivity analysis starts with X = O ,  that is 

no costs are paid to establish the activities (alternatively, no 

constraint is put on the minimum feasible size of the activities), 

D(v,x) reduces D(v), and all activities are established in all 

locations.* This is the meaning of the initial steps 1 and 2, 

In step 3 a nonzero trade-off paramter is introduced, and its 

initial value is set equal to a given step size T. Steps 5-11 

closely resemble the routine 2-6 of the algorithm of Figure 3. 

There are two major differences, however. First, the initial 

trial solution is replaced by the solution produced in the last 

iteration over A. It is argued that small changes in X produce 
k k small changes in the array ix.), so that the optimal {x.) for a 
3 k 3 

given X should be a good start to find the optimal {x.) for A+ T. 
3 

In this way, the information gained at each iteration over X is 

used to speed up the convergence at the next iteration. Secondly, 

the new stopping rule 7 has been introduced. Its meaning has 

already been discussed in connection with the problem of the 

choice of an initial start for the algorithm of Figure 3. When 

the value of X is such that 

k Q.(v) < Xa k 
j 

for all j and k 
3 

*Here it is assumed for simplicity that ROT2 is used with no 
constraints on the number of activities to be established in 
each location. A modified version of the algorithm which takes 
such constraints into account can be easily developed. 
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then no location problem exists, and no further sensitivity 

analysis over X is needed. However, it should be noticed that 

the logic behind the algorithm of Figure 3  here is turned upside- 

down. For the algorithm of Figure 3 a start with no activity in 

no location has been suggested. In the algorithm of Figure Q a 

start with all activities. in all locations is required, and 

conditions ( 1 0 5 )  are used as a final stopping rule. This is 

because in the algorithm of Figure 4 conditions ( 1 0 5 )  are reached 

in a natural way, and have nothing to do with possible mistakes 

or inconsistencies in the input data. 

In step 1 2  of Figure 4 the value of X is updated by incre- 

menting it with the step size T ,  and the whole process is repeated. 

The above approach can be extended to include the sensitiv- 

ity analysis on other meaningful parameters, like the space 

discount factor. The details of these extensions will not be 

developed here. 

4. SOME APPLICATIONS 

4.1 The Urban System 

The descriptive model of a simplified urban system has been 

already outlined in Section 2.3. Here it will be shown how this 

model can be embedded in a mathematical program which optimizes 

the location of housing and services. The same notation and 

assumptions of Section 2.3 will be kept, and the following further 

assumptions will be introduced. 

a. The unsatisfied demand for housing is always zero, that 

is, the housing demand is accessibility insensitive. 

This assumption implies that the housing stock will 

always be made big enough to satisfy all the demand. 

It also implies 

1  
i = 0  for all i 

b. The unused capacity for services is always zero, that 

is, the service demand is congestion insensitive. This 



assumption implies 

h2 = 0 for all j 
j 

c. The costs for establishing the housing and the service 

facilities consists of the fixed charge term only. 

Otherwise stated, instead of establishing costs, minimum 

size requirements are introduced. Moreover, the minimum 

feasible sizes are the same for all locations. 

d. No constraints are placed on the number of different 

activities which may be established in each location, 

that is, housing and services may always be located in 

the same place. 

The above assumptions have been introduced for sake of simplifi- 

cation, although there is no real computational obstacle to solve 

the problem in its more general form. 

Assumption a prevents the formation of unsatisfied hous- 

ing demand. The existence of such a demand implies introducing 

phenomena like cohabitation, overcrowding, and formation of slums, 

which are surely realistic features of many real urban systems. 

However, it is felt that such phenomena need the introduction of 

variables other than accessibility and available capacity to be 

fully explained, and this would go beyond the scope of this sim- 

plified example. Assumptions b and c imply that all the service 

facilities are equally attractive, and only their accessibility 

determines the customers' choice. This is clearly an oversimpli- 

fication in the more realistic case where the service sector is 

disaggregated in many subsectors. Assumption d is indeed very 

realistic in an aggregate model, although it is no longer so when 

services and possibly housing are disaggregated. 

In spite of the above limitations, it is felt that the 

analysis of such a simplified model will be useful to understand 

the basic structure of the relationship between location patterns 

and space, without overshadowing it with other social and economic 

details. 



Application of equations (60) yields 

1 2 
1 1 - ( v i - a  v.) l 2  the households working in i 

i j 'ij = 
and living in j 

the trips made by housholds 

living in i to services in j 

the unsatisfied demand for 

services in i 

the unused housing capacity 

in j 

and substitution of the above results into (64) gives 

the total housing capacity 

required in j 

I L a 
= e 2lVjIf2 ij e -Vi the total service (107) 

i capacity required in j 

Equations (106) and (107) can be introduced in the algorithms 

of Figure 3 and 4; if the following quantities are defined 

z 1 the minimum feasible size for a housing 

facility 

z 2 the minimum feasible size for a service 

facility 



then the heuristic optimality conditions ( 9 7 )  and ( 9 8 )  become 

establish a housing stock of size Q 1 if Q: 2 2 ,  j 

in j 

establish a service stock of size Q 2 if Q: 2  z 2  j 

in j 

Equations ( 1 0 6 )  and ( 1 0 7 )  are very simple, and express the 
1  2 required capacities in terms of the dual variables vi and v i . 

If, however, a more "physicaln representation is preferred, then 

equation ( 1 0 4 )  may be used, and the result is 

where 

$tl is the accessibility to the housing stock for 
householders working in j 

$ti is the accessibility to services for households 

living in j 

$: 
is the potential of housing demand in j 

$: 
is the potential of service demand in j 

G1 is the demand for housing generated in j, that 
j 

is, the number of householders working in j 

G2 is the demand for services generated in j, that 
j 

is, the number of trips to services made by 

households living in j 



While the interpretation of equation (108) is straightforward, 

equation (109) requires some explanation. It may seem strange 
L that the total service capacity in j ,  Q;, is proportional to a 
J 

power of the accessibility to the housing stock from j, $3. 
But it must be recalled that services need workers, and thus 

generate housing demand. Equation (109) states a simple balanc- 

ing principle, by means of which service location is determined 
2 

both by nearness to demand (by means of demand potential q . ) ,  
l 

and by nearness to housing facilities required for workers in 
1 

the service sector (by means of the accessibility $ . ) .  
I 

4.2 The Health Care System 

Let a health care system be given which satisfies the 

following assumptions. 

a. The system consists of N.types of facilities, each 

type numbered from 1 to N. A facility belongs to 

level k if it is of type k. 

b. Patients go to a facility of level k f l  either from 

their residence or from a facility of level k -  1. 

Patients go to a facility of level 1 only from their 

residence. 

c. The service capacity is fully used in all levels, that 

is, the health care demand is congestion insensitive. 

d. The minimum feasible size of the facilities of each 

level is given. 

The ordering of health care facilities into levels is usually 

associated with different degrees and specializations of treat- 

ments. For instance, the first leyrel might include general- 

purpose day-care facilities, usually fairly scattered and acces- 

sible; the second level might include urban hospitals, where 

more specialized and infrequent treatments are available, 

usually localized in few places; the third level might include 

regional hospitals, where very specialized treatments are avail- 

able, usually very localized. The number of levels may vary 

with different health care organizations in different countries. 

Assumption b should be relaxed if further disaggregations of 



specialities within the same level are introduced. In this case 

a tree structure, rather than a simple ordering, might be more 

appropriate. However, here only the aggregate case will be 

considered, in order to keep the example as simple as possible. 

The following definitions will be needed 

a k,k+l 
is the fraction of patients in the facil- 

ities of level k which require a treatment 

in a facility of level k+l. It will be 

assumed that 0 < a k,k+l 
< 1 for all 

k =  1, ..., N -  1, and a N,N+1 
= 0 

is the demand for facilities of level k 

from the residences in i 

is the minimum feasible size for a facility 

of level k 

Application of equations (60) and (61) yields 

k k+l 
k - -(vi - ak,k+~ Vj 1 

e Sij - fij I for k # N 

and substitution of the above results into (64) gives for the 

required capacities 

for k # ~  (110) 



The heuristic optimality conditions (97) and (98) become 

k > Z  if Qj - establish a facility of level k in 

location j 

A reinterpretation of (110) and (111) by means of equation 

(104) is also possible. The required service capacities, express- 

ed in terms of accessibilities, potentials, and generated demands, 

are 

Equation (112) states that the size of the facility of 

level k required in location j depends both on the demand poten- 

tial for level k (a term depending on the residences and the 

levels below k) and on the accessibility to the facilities of 

level k+l. Equation (113) states that the size of the facility 

of the highest level, N, required in location j depends only on 

the demand potential for level N, that is, from the residences 

and the levels below N. 

A special case is worth being mentioned, which is relevant 

for the health care example. Although it has always been assumed 

that customers behave according to a spatial interaction model, 

it may be possible that the transport of patients between some 

levels assumes an emergency character. In this case, the choice 

of the destination is no longer left to the customer; moreover, 

it is reasonable to assume that the accessibility sensitiveness 

disappears, since all emergency cases must be served. One 



p o s s i b l e  a p p r o a c h  t o  i n t r o d u c e  emergency t r i p s  i n  t h e  o p t i m i z a -  

t i o n  model i s  a s  f o l l o w s .  I f  r i s  t h e  l e v e l  t o  which  emergency 

t r i p s  a r e  made, t h e  c o r r e s p o n d i n g  t e r m s  

i n  t h e  p r i m a l  o b j e c t i v e  f u n c t i o n  ( 3 0 )  a r e  r e p l a c e d  by t h e  s i n g l e  

t e r m  

where 
i s  t h e  t r a v e l  t i m e  be tween  l o c a t i o n s  i and  j .  More- 

o v e r ,  t h e  i n e q u a l i t y  

i s  added  t o  t h e  l i s t  o f  c o n s t r a i n t s .  I t  may b e  e a s i l y  shown 

t h a t  t h e  terms ur ( v) and  Qr ( v) d i s a p p e a r  f rom t h e  d u a l  o b j e c t i v e  
1 -I 

f u n c t i o n  ( 6 5 )  , a n d  t h e  d u a i  p rob lem i s  n o  l o n g e r  u n c o n s t r a i n e d ,  

s i n c e  t h e  c o n s t r a i n t s  

mus t  b e  m e t .  I t  may a l s o  be  shown t h a t  t h e  c h o i c e  o f  t h e  d e s t i n -  

a t i o n  i n  t h i s  case r e d u c e s  t o  t h e  n e a r e s t - f a c i l i t y  r u l e .  The re -  

f o r e ,  t h e  r e q u i r e d  c a p a c i t y  f o r  a f a c i l i t y  o f  l e v e l  r i n  l o c a t i o n  

j i s  n o  l o n g e r  g i v e n  by  ( 6 4 ) ,  b u t  by 



4.3 The Retail System 

Let the multilevel assumption of the health care example 

be relaxed, so that trips between each pair of activities are 

possible. The resulting model is an appropriate one for systems 

where customers make trips with multiple destinations. A 

typical example is given by a retail system, where customers go 

shopping for different goods, not necessarily available in the 

same location. The behavioral model for such a system assumes 

the most general form discussed in Section 2.2, if the following 

definitions are introduced 

is the number of trips originating from house- 'i 
holds living in i and having a retail activity k 

as a first destination 

a rk is the fraction of customers served in a retail 

activity r which looks for a retail activity k 

as the next destination 

If no new assumptions are introduced, the resulting conditions 

for the optimal sizes are analogous to the ones obtained for the 

preceding examples. However, the retail system example poses a 

new interesting problem on the supply side, which is worth being 

discussed. So far it has been assumed that each activity gives 

rise to different facilities, and no common costs are shared 

among them. But in the retail case it may be sensible to lump a 

subset of different activities together, so as to reach overall 

economies of scale which each single activity could not reach. 

This problem may be paraphrased as the problem of the o p t i m a l  

L o c a t i o n  and c o m p o s i t i o n  o f  s h o p p i n g  c e n t r e s .  A slight generali- 

zation of the assumptions on establishing costs is required. 

Let the total cost for establishing a shopping centre in location 

j be given by the sum of 

ak + bk Q: 
j 

a linear-plus-fixed charge cost to be 
3 

paid for each activity k 



where 

( 1 , i f  j i s  t h e  n e a r e s t  l o c a t i o n  o f  a 
f a c i l i t y  of  l e v e l  r 

b i j  = 1 0  , o t h e r w i s e  

Another  approach  t o  i n t r o d u c e  emergency t r i p s  i s  a s  f o l l o w s .  

A v e r y  s t e e p  f u n c t i o n  f ( t )  o f  t r a v e l  t i m e  may be d e f i n e d ,  l i k e  

t h e  one  shown i n  t h e  g raph  o f  F i g u r e  5 ,  and t h e  impedance f a c t o r  

f o r  l e v e l  r may be  g i v e n  t h e  v a l u e :  

r 
f i j  = f ( t .  . )  

11 

T h i s  approach  has  t h e  advan tage  o f  r e q u i r i n g  no changes  t o  

t h e  o r i g i n a l  f o r m u l a t i o n  o f  t h e  problem. However, c o m p u t a t i o n a l  

problems may a r i s e  from t h e  s m a l l  numbers i n t r o d u c e d  by t h e  

f u n c t i o n  f ( t )  d e f i n e d  above. 

t i m e  

t 

F i g u r e  5. A v e r y  s t e e p  decay  f u n c t i o n  o f  t r a v e l  t i m e .  



an o v e r a l l  f i x e d  c h a r g e  c o s t  t o  be  p a i d  

f o r  e s t a b l i s h i n g  a  shopp ing  c e n t r e  i n  j ,  

i n d e p e n d e n t l y  o f  i t s  s i z e  and o f  t h e  

r e t a i l  s e c t o r s  it i s  composed of  

By means of  t h e  above assumpt ions  t h e  modi f i ed  d u a l  o b j e c t i v e  

f u n c t i o n  (66)  c a n  be g e n e r a l i z e d  a s  f o l l o w s  

where t h e  new v a r i a b l e s  y  a r e  d e f i n e d  a s  
j 

The r e s u l t i n g  s a d d l e - p o i n t  problem, ana logous  t o  ( 6 7 )  - (69)  , 
i s  

- - 

max min D ( ~ , ~ I Y )  
X l Y  v  

1  , i f  a  shopping c e n t r e  i s  e s t a b l i s h e d  i n  
l o c a t i o n  j 

The c o n s t r a i n t s  ( 1 18)  have  t h e  f o l l o w i n g  meaning. When a t  

l e a s t  one  a c t i v i t y  i s  e s t a b l i s h e d  i n  j ,  t h e  way t h e  f u n c t i o n  

(116)  h a s  been b u i l t  f o r c e s  y t o  assume t h e  v a l u e  1 ,  t h a t  i s ,  
j 

a  shopping c e n t r e  i s  open i n  j .  When no a c t i v i t y  i s  e s t a b l i s h e d  

i n  j ,  t h e  y = 0 and no shopp ing  c e n t r e  i s  open i n  j .  A compari- 
j 

son o f  ( 1 1 7 ) - ( 1 1 9 )  w i t h  ( 6 7 ) - ( 6 9 )  shows t h a t  t h e  c o n s t r a i n t s  ( 6 8 ) ,  

r e q u i r i n g  no more t h a n  one  a c t i v i t y  i n  e a c h  l o c a t i o n ,  have been 

dropped.  These c o n s t r a i n t s  have a l r e a d y  been r e l a x e d  i n  S e c t i o n  

0 , o t h e r w i s e  



3.3, and for the shopping centre problem they are clearly meaning- 

less, since an optimal combination of many different activities 

in the same location is looked for. 

Problem ( 1 1 7 ) -  ( 1  1 9 )  may be called a "nested" fixed charge 

problem, since fixed costs have to be paid at two levels, the 

activity level and the location level. Arguing as for ( 9 7 )  - ( 9 8 )  , 
the following heuristic optimality conditions are obtained 

i f  t h e  s u b s e t  A o f  a c t i v i t i e s  f o r  which  
j 

i s  nonempty,  and 

a  shopping  c e n t r e  composed o f  t h e  a c t i v i t i e s  k E A  
j 

i s  e s t a b l i s h e d  i n  j; 

i f  A i s  empty ,  no shopp ing  c e n t r e  i s  e s t a b l i s h e d  
j 

i n  j 

The above conditions may be looked at as a special form of ROT2, 

where the expression "as many activities as possible" of step 2 

has been given a very precise meaning, which is: all activities 

in the subset A provided it is nonempty and ( 1 2 0 )  is satisfied. 
j 

Otherwise stated, activities are required to cover not only their 

own costs, but also the overall fixed cost for the location they 

share in common. 

5. CONCLUDING COMMENTS AND ISSUES FOR FURTHER RESEARCH 

As it has been stated many times in this paper, practical 

tools for urban planning should not place a disproportionate 

effort in looking for exact solutions to optimization problems. 

The ill-defined nature of many data and assumptions make it hard 



to give a realistic meaning to such an exactness. In the field 

of location problems, it is felt that a better understanding of 

customer behavior is by far more important than superimposing 

an "optimal" solution on poor behavioral assumptions. On the 

contrary, the main effort in the existing literature on location 

models has been placed on developing hundreds of algori'thms to 

solve problems based on empirically untenable behavioral assump- 

tions. The generalized multiactivity spatial interaction model 

proposed in Section 2 is not necessarily the best possible one, 

but it is felt that the model is able to introduce some commonly 

neglected features of customer behavior, like sensitiveness to 

accessibility and congestion, in a realistic way. When such 

features are embedded in an optimization framework, like the one 

developed in Section 3, the resulting mathematical programs are 

usually hard to solve. However, there are good reasons to 

believe that heuristic solutions to a problem based on sound 

behavioral assumptions are possibly better than exact solutions 

to a problem based on an over-simplified model of customer 

behavior. This spirit has guided the development of the methods 

suggested in Section 3.3 and further specialized in the examples 

of Section 4. It has also been shown that all the steps of 

these methods have intuitive interpretations. This may sometimes 

be dangerous, since common sense and mathematical optimality do 

not necessarily agree all the time. However, this danger is more 

than compensated for by the deeper insight which is gained in the 

structure of the location problem. 

Another major goal of this paper has been to provide 

flexible methods. The outputs of the algorithms proposed in 

Section 3.3 should be used in a qualitative way, rather than in 

a quantitative one. The resulting rules for ranking the activi- 

ties and the locations are much more important than the specific 

facility sizes resulting from a given set of input data. Sensi- 

tivity analysis has also been suggested as a standard approach, 

and possibly as the only sensible one to solve goal assessment 

problems. 

The above remarks should not be interpreted as an under- 

estimation of the importance of analyzing exact mathematical 



programming formulations. It has been shown in Section 3.2 how 

much insight can be gained simply by looking at the optimality 

conditions and at some duality relationships. Indeed, the exact 

optimality conditions and the duality results are the roots of 

the proposed heuristics. Further exploration of the formal p r o p  

erties of the exact formulations is therefore an issue for future 

research, as long as it will provide better economic interpreta- 

tions and implementable algorithms. 

Many other issues for future research can be listed. Some 

of them are obviously important, like the development of dynamic 

versions and the introduction of more complex cost functions and 

constraints. These themes will be developed in forthcoming 

papers in this series. Two of them deserve special attention for 

short term applied developments. 

The first one is calibration. The whole framework developed 

in Section 2 may become useless without an efficient technique 

for calibrating the many parameters involved in it. The main 

difficulty lies in the introduction of hardly observable quanti- 

ties, like the potential demand or the unused capacity. Such 

calibrating problems have already been solved in the simple case 

of a single activity (Walsh and Gibberd, 1980), and generaliza- 

tions to the multiactivity case are under study. 

The second one is the introduction of the transport network. 

If the proposed model is applied to the whole urban system, as 

suggested in Sections 2.3 and 4.1, then also the traffic condi- 

tions are significantly affected, and this must be accounted for 

in benefit and cost evaluation. Descriptive models combining 

multiactivity spatial interaction sytems and traffic assignment 

have been already developed by some authors, among them Evans 

(1976). A normative approach to the same problem, but with the 

transport network assumed as given, has been proposed by Boyce 

and LeBlanc (1979). The natural next step is therefore introduc- 

ing the transport network in the list of decision variables. The 

complexity of the resulting optimization problem may be discour- 

aging, if an exact algorithm is looked for. However, there are 

good reasons to believe that easily interpretable heuristics can 

be developed, along the lines suggested in this paper for the 

location problem. The use of flexible and qualitative decision 



r u l e s  i s  even more s e n s i b l e  i n  t h i s  c a s e ,  s i n c e  u s u a l l y  a  p l a n n i n g  

a u t h o r i t y  d o e s  n o t  d i s r u p t  t h e  e x i s t i n g  ne twork .  T o o l s  f o r  mana- 

g i n g  t h e  e x i s t i n g  ne twork ,  and p o s s i b l y  i n d i c a t i n g  t h e  r e q u i r e d  

changes ,  a r e  t h e r e f o r e  needed ,  and e a s i l y  i n t e r p r e t a b l e  b e n e f i t  

c o s t  i n d i c a t o r s  and r a n k i n g  r u l e s  seem t o  b e  w e l l  s u i t e d  f o r  t h i s  

p u r p o s e .  
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