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1. INTRODUCTION

Consider the integral (in the sense of Aumann [1]) of a set-valued
mapping in the form ¢ — F(¢r} U, where F(¢) is nxm matrix and Uc R™
That is,

T T
I=J F(ryUdt= {J F(ryu(r) dr, u(t)e U, u( -y e L1, T)}. )

By the very definition 7 is in parametric form depending linearly on the
“parameter”

u(-)e# =u(-Ye L1y, T);u(t)e U}

The numerical treatment of such integrals (which implicitly or explicitly
arise in control theory) requires approximation of / by means of sets being
parametrized by a finite dimensional parameter, i.e.,

1,={Jp);peP,c RN} (2)

There is a number of ways to do this and many of them are exploited in the

numerical methods for optimal control problems, guaranteed estimation

of uncertain systems, etc. One simple way is to consider only piece-wise

constant selections u(-) of Uin (1). If 1, < --- <t, , are the jJump points
483

0022-247X/93 $5.00

Copyright ¢ 1993 by Academic Press, Inc.
All rights of reproduction in any form reserved.



484 DOITCHINOV AND VELIOV

and u,e U are the values of u(-)in [1,,1,,,],i=0,.., N— 1 both1,, .1, ,
and uy, .., uy , considered as parameters, then

Nt 'ER
INz{ Z f Fs)dsu;to<t, < - <ty=T, ug, ..., uN,,eU} (3)

k=0 "1k
is in the form of (2) and under quite general assumptions.

lim H(l,, 1)=0,

N = +

where H is the Hausdorff distance between compact sets. It happens even
that I, = I for sufficiently large N (for instance if U is a polyhedron and
the entries of F(.) are analytic functions). The parameter p in (2) is
p=(ty,.ln_, Uy, .., Uy ) and the dependence of J.(p) on the second
group of parameters is linear. (In our consideration we of course presume
computability of all the integrals

B(s. t):f' F(7) dt,

s

in order to concentrate on the specificity of the set-valuedness.) An essen-
tial shortcoming of the approximation (3) is the possibly complicated
dependence of J(-) on «,,.. ¢y ,. Moreover, the constraints on
1), .., ty  in (3) result in interconnection of the summands in (3) which
causes computational inconvenience. For this reason, it may be preferable
to fix the jump points ¢, rather than to consider them as parameters.

If we fix the grid 1, .., 1y =T setting for simplicity t,=1t,+kh, h=
(T —t,)/N, then (3) should be replaced with

N -1
IN:{Z ¢(tksrk+1)uk;ukECOU}. (4)

k=0

If F(-) is Lipschitz continuous then it is easy to verify that
41
A’;,:H(co B(tgs 1. 1) U,j F(r)Udz)schz
ke

for some constant ¢ which is independent of N and 4. On the other hand,
simple examples show (and this is typical) that even for analytic F(-)

4%, = c'h?,

where ¢’ is also independent of N and k (take for inStance n=2, m=1,
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F(ry=(,1)*, U=[—-1,1], ¢’=0.25). From these inequalities one can
conclude that

H(Ily, ) <e(T—1,)*/N

and that better order than 1/N is not probable in this estimation.
The good news is that in fact the estimate

H(ly, DS C/N?

does hold if F(-) is of bounded variation. In other words, despite that
errors 4%, of all the summands in (4) can be of order 1/N?, the error of the
sum remains of order 1/N?, which means that the errors do not accumulate.
This follows from the result proven in Section 3.

In Section 2 we investigate a more general problem, namely the order of
approximation of / by using selections of U in (1) which are piece-wise
constant and have a limited number of jumps (say p) in each of the inter-
vals [¢;, t,,,]. We establish a similar result to the one above (the latter
corresponding to p=0), but depending also on some geometric properties
of U.

More precisely, let %,(s, 1) be the set of all piece-wise constant selections
of U on [s, t], which have at most p jumps. Then consider

Nt
IN_,,=co{ Z J Fs)u,(s)ds;u, (- YelU (1, t;, ), i=0, ...,N—l}. (5)

i=0 " h

We suppose that U is a compact convex polyhedron and define g = ¢(U) to
be the number of the nonparallel edges of U; that is, the maximal number
g for which there are ¢ edges of U, every two of them nonparallel. Under
the appropriate smoothness condition on F(-) we prove the estimate

H(Iy ,, 1) S c/N?* e, (6)

where [p/q] is the integer part of p/q.
From (6) one can guess that for a nonpolyhedral set U (say an ellipsoid)
no better estimate than 1/N? is true, no matter how large a value of p, is

used. This is actually the case as shown by an example.

In Section 4 we indicate some applications of the above results and some
open problems.

409.179°2-12
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2. HIGHER THAN SECOND ORDER APPROXIMATIONS

In this section we consider the approximation (5) of the integral (1),
where p > 0. The set U is supposed to be a convex compact polyhedron and
the number g = ¢(U) is defined as in Section 1.

We note that the variation \/] f/ of a function f defined almost
everywhere in [#,, 7] is the supremum of the sums

k

Z ‘f(ti)‘f(ti-#l)‘

i=1
over all the finite collections of points 7,<1,--- <t,,, < T for which f(¢,),
i=1,..,t,,,, is defined.

Denote r= [ p/q] as the integer part of p/q.

THEOREM 1. Let F(-) be r-times differentiable, let the rth derivative be
Lipschitz continuous, and the (r + 1)st derivative be of bounded variation.
Then there exists a constant C such that (6) holds for every integer N.

In the proof we use the following two lemmas.

LemMma 1. Let ¢: [ty, T)] - R be with the same differentiability
properties as F in Theorem 1. Then for every oy, o\, ..., &, € [ 1y, T] it holds

o(0)=glaa) +¢'(x,) | dsy+ o (@) [ [ dssdsi+ -

2 v A

t Sr—1 ! Sr
£ [ [ dsds o [ [0 s ) s,y s
aQ Gr—1 ag X,

LEMMA 2. Let y(-). [to, T]1— R" be Lipschitz continuous and let lj/(-)
be of bounded variations. Denote by K,({) the set of those k for which the
Sunction () vanishes at least once in (L, t; . ().

Then

4

0] dtsh(Z Vi l\xbllm).

ke K,(y) Tk

Proof. This inequality is obvious if K,(y) is empty or if it contains only
one number, thus let (¢,, ¢, ), j=1,..,5>1, be the intervals in which y(-)
vanishes. To simplify the notations denote a;=1,, ,=¢, . According to
Theorem 2.3.7 in Clarke [2] there are s;€(a;, §;,,) such that 0e dy(s,),
where 0y is the Clarke subdifferential of .
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There are 1€ («;, ;) such that
B, .
[ 11 de<nie) (7)

Moreover, 7, can be chosen to be different from s,, i=1, ..., s— 1. Theorem
2.5.1 of [2] implies that for a given ¢ >0 there are 5;<s,<s; such that the
derivatives ¥(s;) and ¥ (s7) exist,

180(s7) + (1 =S Wr(s))l <e

for some 6,€ [0,1] and 7, 1, ¢ [s5}, 57 1.
Consider the following two cases

(1) s;e(r;, 7, ) Then

W ()] + 1t )] < () — d(s)) + (1 = 8, )W (s)) — ¥ (s)))]
(T, ) — () + (0 () — P (s + 2

ﬁj+| .

<V ¥+2e

(2) 5;<71, (5,>1;,, is analogous). Then similarly

B)+I

W (x) + Wt DI <2V ¥+ 2 (8)

%

Thus (8) holds in any case and implies

J

W) <2V ¥+ Wl L + 26s.
=1 fo

Taking into account (7) and the free choice of ¢ we complete the proof.
Q.ED.

LemMma 3. Let ¢(-): [ty, T]— R be as in Lemma 1. Denote by K, , (@)
the set of those K for which ¢(-) vanishes at least at (r+1) points in
[terteis ) Then

k41 T
L [ewnash (1o L 42V et ). )

ke K, (@) "t 0

Proof. For each ke K, (¢) there are aq, ..., a, € [#, t,, ] such that
o(a,)=0, i=0,..,r. Then (9) follows from Lemma 1 and Lemma 2

applied to (- )= (). Q.ED.
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Proof of Theorem 1. Since

H(y, 1)=mi)§ (pUI D)= p(I| 1y, ),

where p(/| X)=max. .y {/, x> is the support function of the compact set
X, we need to estimate

N -1

erax<(p(t),u>dt—‘2 max J’k” {o(t), u 1)) dt,

1y uwev k=0 U)E Xl ti.y)

where @(r)= F(¢)*/ and * means the transposition.

Let g, ..., g, be unit vectors such that every edge e of U is parallel to
some of these vectors, indicated by g,
Denote

@ (1)=<olt), &>
and
Ji.={i; ¢;(1)=0 at more than r points from (1., t,, )}

For each k=0, .., N~ 1 we define a relation of equivalence ~ in the set
¥ of all vertices of U in the following way. For two vertices ¢’ and v” we
say that v’ ~, 0" (v" equivalent to v"”) if there is a sequence e,, .., e, of
neighbouring edges of U connecting v’ and v” and such that i(e,) e J, for
every j=1, .., 5.

Let V, be the factor set of ¥~ with respect to ~, and let #,: ¥ — V, be
the natural mapping of ¥" on V,. For every we V', we fix arbitrarily an ele-
ment S,(w)e ¥ such that 2, S (w)=w.

Denote

U()y=1{ve ¥ {o(t),v) =ple(t)| U)}
and

Vl()=2,U(), re(te, te a1

We prove that V,(¢) is single valued excepting at most p points from
(14, 1, 1) and that it is constant in every interval of single-valuedness.

The second claim is obvious since U(-) is upper semicontinuous and the
set ¥ is finite.

If te(r,, t, ) 1s a point at which V(t) is not single valued then there
is a sequence of neighbouring edges of U connecting two vertices v’ and v”
of U, v/, v"elU(t), Z,v'#P,v" such that {(¢(1), g,,,> =0 for everyone
edge e of them. At least one of these edges is such- that i(e)¢.J, since
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otherwise v and v” would be equivalent. Thus for at least one

ie{l,..,q}\J, we have ¢,(r)=0. This implies that the number of the

points t€ (4, t,, ) at which V,(¢) is not single valued cannot be greater

than (g —[|J.|) r < qr <p, where |J,| is the number of the elements of J,.
Now we can define correctly

a(r) =S, V(1)

as a single valued function excepting at most p points in (2, 7, , ), 4(-)
being a piece-wise constant with not more than p jumps. Thus
U(-)e#,(ty, t, ) for every k=0, .., N—1. We prove that

f <(p(’),u(t)>dt>f P((ﬂ t)l ) hr+2

where C does not depend on N and / and this will complete the proof of
the theorem.

Take te (2, ¢, ,) for which V,(¢) is single-valued and take an arbitrary
vo€ U(t). Then estimate

A(1) = p(e(1)| U) — (1), al1) ) = (1), vo — (1) ).

Since v, ~, i(t) there is sequence of neighbouring (and different) edges
[ve, vy ] oy [U,_1s 0, ], v, =u(2), every one of which is parallel to some
g,€Ji,i=1,..,5 Thus

A< Y (o) v—v, ><c Y 1Kolt) g,

i=1 ieJy

where c is the length of the longest edge of U.
Let K(i) be the set of those k for which g,e J,. Then

fA(z)dz<c ¥ Zf' o di=c3 T [ .ty ai

fo k=0 iely i=1 ke K@) %

T
<oy (u@g”“um,+z\/<p5'+”><c

i=1 1o

Q.ED.

Remark. 1If U is a coordinate polyhedron in R™, ie

U={u=(u,..,u,)ucla,bli=1,.,m},
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then ovbiously g=m and p=m switching points in every interval
[te, 1, + ] are enough to ensure approximation of I of order 1/N°. The
proof of Theorem 1 implies in fact a slightly stronger result, namely that
one jump of every component of u(-) in every interval [¢,, 1, ,] is enough
for third order accuracy. In Section 4 we indicate some applications of the
last fact.

Now we show by examples that: 1) the estimation (6) is exact at least in
the sense that p < ¢ in general is not enough for third order accuracy in (6);
and 2) if U is a ball then (6) holds only with ¢/N? in the right-hand side,
independently of how large p is.

ExampLE 1. Take n=r=2, [1,, T]=1[0,1].

kIT
P Cos 2;
= = k=0, ..,
F(t) (O 1) and U=co . el q
4q

It is easy to calculate that

H(jh Ft) U dt, co {j' F()ult) de; (-) e, (0, h)}) > ch?
¢} 0 4

for an appropriate ¢ > 0.

ExXaMPLE 2. Taken=r=2,1[t, T)=1]0,1].

cost sint
F(r)=< . ) U={ueR%u <1}
—sint cost

It turns out that

H(L‘ Fy U, {Z J-I“IF(’)uk(f)df; uk(-)efllp(zk,tkﬂ)})

k=0 "t
hZ( 1 h?
2___ — ——
48\(p+1)° 80

whatever the number p of possible jumps in [7,7,,,] is. In the next section
we prove that the left-hand side of the above inequality is actually of order
2 with respect to A, even for p=0.
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3. SECOND ORDER APPROXIMATION

In this section we investigate the approximation of the integral (1) by
finite sums of the type of (4). The more general case

T
1=j F(1, V) di (10)

0

will be considered, where F(-): [17,, T]— R" is a maping and ¥V is an
arbitrary (abstract) set.

By definition F(1, V)= {F(t, v}, ve V}. The approximation (4) is now in
the form

N1,
1N=co{ [ R vy drvevii=o, ...,N—l}. (11)
i=0 Vi

We assume the following:
(A1) F(t, V) is compact for every 1€ [1,, T];
(A2) F(-, v} is Lipschitz continuous in [ty, T], uniformly in ve V.

Under the above conditions [ is a convex and compact set and

H(ly, )= max (1) = p(I111)).

In order to estimate the right-hand side we introduce the following notion
of joint variation of a family of functions. Let { f(-,v)},., be a family of
functions parametrized by v (where as above V i1s an arbitrary set) every
one of them defined for a.e. 1€ [1,,7]. We say that the family is of bounded
joint variation if there is a number w such that

Y £t 0) = fltrs s 0) < (12)

i=1

for all finite collections t,<t, < - <t,,,<T, v,,..v,eV for which
flt,,v;) and f(1,,,,v;) are defined i=1, .., 5. If {f(-,v)},., is of bounded
joint variation then the intimum of those numbers w which satisfy (12) will
be called the joint variation of the family and will be denoted by
INT SV

We mention that boudedness of the joint variation of a family is a
stronger property than uniform boundedness of the variations of the func-
tions from this family. The following proposition is a motivation for the
above definition.
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PROPOSITION 1. Let conditions (A1) and (A2) be satisfied and let the
variation of (6/81) p(I| F(-, V)) be bounded uniformly in [, |{| =1, and the
Joint variation of the family {(8/0t) F(-,v)}, ., be bounded. Then

0 é
\/8P(1|F V))+J\/ F(,V)> (13)

=1 1

(T—1,)?
H(IN,I)s—gj—V;—(

for every integer N.

The claim is closely related to the more general result in Ivanov
[3, Theorem 8.1] and we only sketch the proof, which is similar to that in
Sendov and Popov [6].

Proof. From (11) we have

Hi D<max S [ (1 Fu )= L F0)3) d

i=0 "0

where v, € V is such that

CHUF(t;+ 0.5k, v,)> = p(| F(t, + 0.5h, V)).

Hence, denoting &, =¢;+0.54, @(t)=p(/{|F(t, V}), and (1) = </, F(¢,v,))
for te [, ¢t;, ), and using that @(£;)=¢(&,;) we have

Hiw n<man 3 | [ ot -0+ ot 0 - - 0= v+ a

i=1,"%

N-1

hi2
<max Y Uo (&= )+ @&+ 1) —20(E,)) dt

Wi=1 "o

[ wemnrpe - al

2

< L (VerV (1mem)

which implies (13). Q.ED.

The last term in (13) is often easy to be estimated in a more constructive
way. For instance, if F(-, v) is differentiable and (é/0¢) F(-, v) is Lipschitz
continuous with a constant L’ for every ve V, then

J\/ L VISL(T~1o)

n
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The next step will be to estimate the variation of (8/d¢) p(I| F(-, V)), which
will be done also in the terms of the joint variation of the family
{(8/0r) F(-,v)}, .. We use the following more general result.

PROPOSITION 2. Ler g(-,v): [ty, T1—= R, veV, be a family of functions
(V is an arbitrary set) such that

(1) 1g(ty, v)— glts, V) S L|ty — 15| for every t,, 1,,€ [tg, T] and ve V;
(ii) the family {(Og/Ot)(-, v)} e is of bounded joint variation.

Then the function g(1)=sup{g(¢, v);ve V} is Lipschitz continuous and

T T C‘;
\/8‘(-)<2L+2J\/Eg(-, V).

1 ]

Proof. From Clarke [2, Theorem 2.8.6] it follows that g(-) is Lipschitz
continuous and the Clarke’s generalized derivative dg(r) satisfies

dglry=cleo { lim gt u);t,— ¢, glt,u) > g(t)} = [a(2), b()], (1)

where in the right-hand side it stands the closed convex hull of the conden-
sation points of all sequences g/(z,, u;), for which this derivative exists and
t,—t,g(t, u;) — g(t). Since the mapping r— cg(t) is us.c. [2, Proposition
2.1.5] we can extend for convenience g(-) to the whole interval [y, 1] in
such a way that \/,Zg'(-) does not change and g(¢) € [a(?), b()] for every
te 14, T]. Actually, at a point ¢t where g() does not exist one can define
it as an arbitrary condensation point of a sequence g(t,) such that 1, —1¢
and g(1;) exists.
Take arbitrarily t,<t, < --- <t,,,< T and consider

w= Y 1801 — §(t, -

i=1

Without any restriction we can assume that g(z,) — g(¢,, ) changes its sign
alternatively with i, since otherwise one can remove some of the points {7,}
ensuring this property without changing w. Thus

w=| Y (=1 (8(1) — 8(t;,1))]. (15)

Since g(t) € [a(z), b(1)] for every te [y, T] we have

a(t)) = bt )< g(t)— gt ) <b(t,)—alt, ).
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Hence using (15) we estimate
w< Z le;—civils
=1
where c, is either a(¢,) or b(z,), i=1, ., r+ 1.
Denote

5]=0'5(’2_’l)s 5r+l=0'5(tr+l_tr)’

8, =05min {¢;,—¢t;, |, t;,,—1;},i=2,..r.

Since the ¢, are extreme points of the right-hand side of (14), for every ¢ >0
and each i=1, .., r + 1 there exist 6, [¢,, T] and v;e V such that g',(6,, v,)

exists and
16, —1;] <ed?
gli,v) > g(1,) —ed?
|gi0;, v;)—c|<sd,.
Using (18) we obtain

r+1

W< Z (g8, Ui)“g;((),ﬂ,vn 4 2e Z O, < w4+ 2e(T—ty).

i=1 i1
Consider the function
Y(s)=—gls,v)+gls,v,.,)  for et 1]
From (17) we have

Yl(t)< —glt,)+ed; + glt,) =¢8]

Yt o) = —gle ) +ele, 1)‘85,2“: —S(Slz-fl’
Hence
5 5 [ . 5 Lyl
—5(5;+5;+,)<j J(s) ds <2687 + 82, )L+
7 l,+f;6,2

2

<2682+ 62, WL+ (i, —t,—&(82+ 87, ) essup

{K/I(S), S€ [’1'*'86,;1 Liv _86?+ 1]}
and there is 7,e (1,+ 07, 1,, , —d>, ) at which {(r,) exists and

2e(1 +2L)(67 + 67

Il+l_rl

* 1)2 “8(1 +2L)(‘Si+6n’+l)-

U(r,) >

(16)
(17)
(18)

(19)
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Thus we can estimate

wi <Y W)+ Y 1208, v,)— gi(z )|
i=1 i=1

r

+ z (€8 01,00 1)— gt v, )

i=1

and since 8,<1,<6,,, we have

r T
wi < Y, Y(r)+e(T— 1) 2+ 4Ly + I\ g, V) (20)

i=1 o

and we can express
r-1

Z ‘j/('(i): Z (gt viv ) — 8T s Uiy 1))+ 8T, 0, 1) — gilTy, vy)

i=1 i=1

.
<JV g, V)+2L

The last inequality combined with (19) and (20) implies that claim of the

proposition, since ¢ > 0 is arbitrary. Q.E.D.

Propositions 1 and 2 result in the following theorem.

THEOREM 2. Let conditions (A1) and (A2) be fulfilled and let the family
{(6/81) F(-, ¥)}.c, be of bounded joint variation. Then I and I, defined by
(10) and (11), correspondingly, satisfy

-

J— 2 T ]
u<2L+3J\/—;—’F(-, V)), (1)

H(Iy, < >
(.N ) 8N-

where L is the Lipschitz constant of F(-,v) and N is an arbitrary integer.

Proof. We apply Proposition 2 for g(t, v)= (!, F(t,v)) to obtain an
estimation of the variation of (&/0¢) p(/| F(-, V}) and then (21) follows from
Proposition 1. QE.D.

4. SOME APPLICATIONS AND OPEN PROBLEMS

We start with an application of Proposition 2 which concerns the
numerical integration of functions of max-type or differential equations
with such functions in the right-hand side. Namely, consider

jrf(z)dz or  %=glx 1), (22)
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where

fl=sup{ fi(x);ael},  glx,t)=sup{g.lx,1);ae},

where o/ is an arbitrary set. Proposition 2 combined with Theorem 8.1 of
(37 impiies that if the f,(-) satisfy similar conditions as in Proposition 2
then any linear composite quadrature formula, which is exact for polyno-
mials of first degree, provides second order approximation to the integral
in (22).

A similar fact holds for the differential equation in (22). Let g, be
differentiable and let ég,/dx and dg,/0t be Lipschitz continuous uniformly
in x € o/. Applying Proposition 2 one can find that the solution of an initial
value problem for (22) has a Lipschitz continuous first derivative and
second derivative with bounded variation. This means that the solution
admits a second order global approximation by means of Runge-Kutta or
Adams type methods (see Sendov and Popov [6]).

Another field of applications is in control theory, where Theorem 2
provides a basis for second order approximations to either optimal control
problems or the guaranteed systems estimation problem (see, e.g.,
Kurzhanski [4]) for linear systems

%= A(1)x + B(t)u. (23)

Here x e R” is the state variable and € R™ is either a control parameter
or a disturbance, in both cases known to be bounded: u(r)e Uc R’.
Details in this direction are contained in Veliov [8]. Here we indicate an
application of Theorem 1 for approximation of the reachable set of (23) on
a given interval [1,, T'], starting from x,:

R(1y, T; xo) = {x(T); x(to) = x,, x(-) solves (23) for some %, selection u(-)
of U}.

The reachable set can be presented by an integral in the form of (1) with
F(1)=&(T, 1) B(t), where &(t, 5) is the fundamental matrix solution of (23)
normalized at t=s.

We suppose that U is a coordinate polyhedron in R™ and since the
integral (1) decomposes to a sum of m independent integrals we may
assume without any restriction that m=1 and U=[—1, 1]. Thus we are
interested in

["rot-117a

fo
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where f(1)=®(T, r) B(z). Supposing that f(.) is twice continuously
differentiable and applying Theorem 1 we obtain that

a([ ror=1 114 feo TR0+ 00 Ao

k=0 "%

+ (11— Ik)zflfuk(t)> dtu (e (1, te 1)} < ch’, (24)

where fP=f(t:), fl=f(t), f2=05f"(z;), and as above 1, =1t,+kh,
h=(T—1,)/N. Presenting the single jump point of u,(-) on [#,,.,] in
the form ¢, + ha,, o, € [0, 1] one can express the sum in (24) as

N-1
heo Y { (1 =2a)+hfi(53—a;) + I3 —3ai)) o€ [0, 1]} (25)

k=0

Thus the reachable set of (23) is approximated by means of (the convex
hull of) 2N cubic curves in R” with accuracy 0(1/N>). We stress the fact
that each summand in (25) approximates the corresponding integral
jj:* ()[ -1, 1] dt with accuracy also O(1/N?). Thus we observe again the
effect of nonaccumulation of the errors of the summands. We mention that
in order to ensure accuracy O(1/N*) of every summand (which also gives
error O(1/N?) of the sum) one needs to use selections of U having two
jumps in every interval [1,,1,,,]. This straightforward third order
approximation of the reachable set would involve pieces of 2-dimensional
manifolds parametrized by means of cubic functions (instead of the cubic
curves used in (25)), which is a principle complication.

Let us return again to the control system (23) considering it as a

differential inclusion
xeA(t)x+ B(1) U. (26)

We note that every absolutely continuous function x(-) on [#,, T] which
satisfies (26) for a.e. t is a solution to (26). Moreover, the set of solutions
of (26) coincides with the set of solutions of (23) when « in (23) runs over
all .%,;-selections of U.

Supposing that 4(-) and B(-) have Lipschitz continuous derivatives and
that U is compact and convex, one can interpret the result of Theorem 2
as follows.

Property A. Using constant selections of U on each interval [, ¢, , ],
k =0,.., N— 1, one can approximate the reachable set of (26) with accuracy

O(1/N?).

We mention that the “straightforward” estimation of this accuracy is
O(1/N), which holds also in the case of a nonlinear control system (c.f.
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Nikol'skii [5]). On the other hand Property A was proven in Veliov [7]
also for the differential inclusion

Yef(x, )+ B(x, ) U, x(ty) e X, (27)

under natural smoothness conditions and the additional (restrictive)
hypothesis that B(x, ¢) U is strongly convex in R” for every x and . Thus
the following problem arises (and it is still open): Which is the class of
differential inclusion in the form of (27) for which Property A holds?

As mentioned above the linear differential inclusion (26) with arbitrary
convex and compact set U, and the differential inclusion (27) with strongly
convex right-hand side belongs to this class.

As a final remark we mention that if (27) possesses the above property
then it can be effectively approximated by means of set-valued analogs to
second (and higher) order finite difference schemes. For simplicity we show
this in the case of the simplest Runge—Kutta formula with third order local
accuracy. Namely, suppose the following:

(i) fand B are differentiable and the first derivatives with respect to
x and 7 are Lipschitz continuous;

(it} U< R™ is convex and compact, X, < R" is compact;

(iii) there is a compact set Z < R” such that every trajectory x(-} of
(27) which exists on some interval [¢,, T] satisfies x(f)eint Z, te [t,, T].

Consider the discrete inclusion
X1 €x,+ 0.5 { gy, by, )+ glxe + hglxy, i, u), ty, 1, u):ue U},
X()EX(), (28)

where g(x, 1, u)=f(x,t)+ B(x, t)u and as above 1, =kh, h=(T—1y)/N.
Let R be the reachable set of (27) on [1,, T] and R, be the reachable set
of (28):

Ry = {xy;there are x, ..., x, satisfying (28)}.

THeOREM 3. Let (27) possess Property A. Then there is a constant ¢ such

that
H(Ry, R)< ¢/N? (29)

for every integer N.

Proof. Denote by

Ry = {x(T); ¥(1) = flx(1), 1)
+ B(x(t), tyu(t), x(ty) € Xo, u(-)eUo(tys ty o1 ), k=0,.., N—1}
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the reachable set of (27) in the class of those selctions of U/ which are
constant on every interval [, 7., ,]. By Property A

H(R, Ry)<c/N?
for an appropriate constant c¢,. The estimation
H(Ry, Ry)<c,/N?

follows in a standard way from the classical estimation of the local
accuracy of the refined Euler method for differential equations and the
assumptions (1) and (iii). Q.ED.
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