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A Survey of Applications of Integer and

Combinatorial Programming in Logistics

by .r'eremy 1". Shapiro

Introduction.

There are a number of definitional ground rules to be

established before we enter into our survey. First, an appli

cation is taken to be a study in which concern over a real

world problem caused the formulation of an integer or combina

torial programming model, the collection of data for this

model, and the calculation of numerical solutions using a

computer. This is in contrast to studies in other social

science fields where mathematical models are used to obtain

qunlitative insights without necessRrily requirin~ data and

numerical calculations.

A second ground rule is to agree that we will not try to

define logistics, but rather to consider specific illustrative

applications which most of us would agree address logistics

problems. These applications are chosen from the functional

areas of distribution, location, scheduline, production/

inventory control, communications and reliability.

Another reason for considering illustrative applications is

that the number of applications is enormous and a comprehensive

survey is not possible. Our purpose instead is to discuss by

example the underlying principles used in these applications.

The principles are derived from the synergism that exists between
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mathematical programmin~ theory as it relates to algorithms,

the construction and use of computer systems, and the institu

tional aspects of the applications themselves.
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Discrete Programming

In mathematical terms t the most general statement of the

class of mathematical programming models we will discuss is the

following. The object is to maximize the quantity f(x) where the

vector x is cnosen from a finite or denumerable set X contained

in a finite dimensional space t say Rn . The set X may be given

implicitly or defined explicitly by a set of constraint functions

including integrality restrictions on the variable values.

Discrete programming differs from nonlinear programming in that

differential methods cannot be usect directly to analyze the

objective and constraint functions. Moreover t convex combinations

of solutions from X may not themselves be points in X and

therefore linear programming approximations may be inexact.

Within.the class of discrete programminv, problems there

are two overlapping subclasses: integer programming and

combinatorial programming problems. We can think of integer

programming problems as being of the form

min flex) + f 2 (y)

s.t. Al(X) + A2 (y) > b-
x > 0 t Y ~ 0 and integer t

where usually A2(y) = A2Yt i.e., the function A2 (y) is a linear

function, and slightly less often f 2 (y) = f 2y. For a system

problem such as this one, one uses integer programming system

theory including number theory and branch and bound (e.g.,

Geoffrion and Marsten (1972), Gorry, Northup and Shapiro (1973)).
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By contrast, combinatorial programming problems have a

less explicit mathematical statement. They contain network

optimization problems as substructures including shortest route,

maximal flow, minimum spanning tree and minimum cost flow problems.

All of these network optimization problems can be solved by "good"

algorithms which means algorithms with a number of steps upper

bounded by a polynomial in the parameters of the problem

(Edmonds (1911), Karp (1912». An algorithm is not "good" if

it is possible for the algorithm to require on some problems a

number of steps that grows exponentially with the parameters of

the problem. "Good" algorithms are good in a practical as well

as theoretical sense and network optimization problems of

significant size can often be solved in a matter of a few seconds

on large scale computers (Glover et al (1974».

There are other relatively simple combinatorial optimization

problems which appear as subproblems in applications. These

include simple coverin~ and matching problems (Garfinkel and

N<~mhauser (1972», discrete deterministic dynamic programming

problems (Wagner (1969», and others. Although "good" algorithms

may not exist for these problems, they are often easy to solve

relative to the complex combinatorial programming problems found

in practice.

Specifically, the combinatorial programming models arising

in logistics applications are often a synthesis of several

similar or different problems of the above types, plus complicating

constraints or relations. Practically all of these problems can

be formulated as integer programming problems, but often the
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special structure of the problem is lost. A good example of

this is the symmetric traveling salesman problem for which there

is an integerprogrammin~ formulation with approximately 2n

constraints, where n is the number of cities to be visited (Held

and Karp (1970».' The majority of these constraints, however,

describes a minimal spanning tree problem, and Held and Karp

(1970, 1971) exploit this structure in a special purpose

algorithm for the traveling salesman that involves the solution

of an effective n constraint approximation of the problem.

The choice of an integer programming or combinatorial

programming formulation of a discrete optimization problem is

closely related to the choice one must make between a general

purpose or special purpose algorithm for the given problem.

IJnfortunately, this choice cannot always be made as definitively

as it can be for the travelin~ salesman problem. The conflict

can be resolved in large part, however, by the modular design

0f integer programming and network optimization computer codes

so that the synthesis required for a specific application can be

made without a complete set-up. As we shall see, the synthesis

of a model from its component parts can be effected by the

application of dual or price directive decomposition methods

of mathematical programming. Decomposition'can also be effected

by resource directive methods, but this approach has found little

if any application. See Lasdon (1970) for a discussion of

these approaches.
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Illustrative Application One:

Multi-item Production Scheduling and Inventory Control

(Lasdon and Terjung .(1971».

Consider a manufacturing system consisting of I items

for which production is to be scheduled over T time periods.

The demand for item i in period t is the non-negative integer

r it ; this demand must be met by stock from inventory or by

production during the period. Let the variable xit denote

the production of item i in period t. The inventory of

item i at the end of period tis.

t=l, .•. ,T

where we assume Yi 0 = 0, or equivalently, initial inventory,
has been netted out of the rite Associated with xit is a

direct unit cost of production Cit. Similarly, associated

with YO t is a direct unit cost of holding inventory hOt
11.

The problem is complicated by the fact that positive produc-

tion of item i in period t uses up a quantity a i + bixit of

a scarce resource qt to be shared among the I items. The

parameters a i and b i are assumed to be non-negative.

Lasdon and Terjung (1971) applied this model to the

scheduling of automobile tires production. The scarce

resource in each period was machine capacity. The number

of different items (tires) was approximately 400, and the

planning horizon was approximately 6 periods.
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This problem can be written as the mixed integer

programmi ng problem

I
s.t. E (a o15't + boX ot ) < qt' t=l, ••• ,T

i=l 1. 1. 1. 1.

S s
E xit - Yis = E r it , s=l, ••• ,T

t=l t=l

xit < Mit c5 it , t=l, ••• ,T-

(l.la)

(l.lb)

(l.lc)

(l.ld)

YOt > 0,
1. -

15 i t = 0 or 1, t=l, ••• ,T

(l.le)

'1'
where Mit = E r is is an upper bound on the amount we would

s=t

want to produce in period t. The constraints (l.lb) state

that shared resource usage cannot exceed qt. For simplicity,

we have assumed a single resource to be shared in each pro-

duction period. The model can clearly be used when there are

K shared resources in each period. The constraints (l.lc)

relate ac-cumulated production and demand through period t to

ending inventory in period t, and the non-negativity of the

Yit implies demand must be met and not delayed (bac klogged) •

'I'he constraints (l.ld) ensure that 15 it = 1 and therefore the

fixed charge resource usage a i is incurred if production Xit

it positive in period t. Problem (1.1) is a mixed integer
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programming problem with IT zero-one variables, 2IT contin

uous variables and T + 2IT constraints. For the application

of Lasdon and Terjung, these figu~es are 240 zero-one variables,

480 continuous variables and 486 constraints which is a mixed

integer programming problem of significant size.

For future reference, define the set

(1.2)

satisfy (l.lc),(l.ld),(l.le)}.

This set describes a feasible production schedule for item

i ignoring the joint constraints (l.lb).

The integer programming formulation (1) is not effective

because it fails to exploit the special structure of the

sets Ni . This can be accomplished by dual (price rtirective)

decomposition which proceeds as follows. Assign prices

ut ~ 0 to the scarce resources qt and place the constraints

(l.lb) in the objective function to form th~ lagrangean.

T
L(u) = - E utqt

t=l

I T
+ minimum E E '{(cit+utb,)x' t(oOt,XOt,Yot)EN. i=l t=l 1 1
111 1

Letting

T
minimum E {(cot+Utbo)Xot

( ~ x y ) N t=l 1 1 1U't' °t' 't E .111 1
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the Lagrangean function clearly separates to become

T I
L(u) = - ~ utqt + L Li(u).

t=l i=l

Each of the problems (1.3) is a simple dynamic programming

shortest route calculation for scheduling item i where

the dual prices on shared resources adjust the costs as shown.

It is easily shown that L(u) is a lower bound on the

minimal objective function cost v in problem (1.1). The best

choice of prices is a vector u· Which provides the greatest

lowe~ bound; namely, a vector u· which is optimal in the

dual problem

w = max L(u)

s.t. u > 0,

where clearly w ~ v. The rea~on for this selection of

prices i~ that if the maximal dual objective function value

w equals the minimal primal objective function value v, then

it is possible to solve (1.1) by calculation of Li(u·) for

each item i. Approximate equality between v and w obtains

when the number of items I is significantly greater than

the number of joint constraints (l.lb) in the planning

problem.

The dual problem (l.~) can be solved in a number of ways.

One algorithm is generalized linear programming, otherwise

known as Dantzig-Wolfe decomposition (Lasdon (1970». This

is the approach taken by Lasdon and Terjung who, in addition,
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used the generalized upper bounding technique (Lasdon (1970»

to solve the linear programming SUbproblems which arise in

the use of this algorithm. Further discussion about general

ized linear programming and duality is contained in Magnanti,

Shapiro and Wagner (1973).

If there is a sUbstantial duality gap betwee.n the primal

problem (1.1) and the dual problem (1.4) (i.e., if v - w is

a large positive number), then problem (1.1) becomes more

difficult to solve. In this case, the dual decomposition

approach needs to be combined with branch and bound (see

Fisher, Northup and Shapiro (1974». To the best of my know

ledge, the model (1.1) ha5 never been used to analyze a

real-life logistics problem where the number of joint con-

s trai nt::; (l . III ) is of the same order of mal.':ni tude as the

number of items for which production is being scheduled

and a large duality ~ap is likely.

Another application of combinatorial methods to p~oduc

tion is contained in Mueller-Merbach (1973). He considers

a production system consisting of a hierarchy of assemblies

to be merged into final products. The assembly process is

described as a network for the purposes of analyzing

explosion of material requirements and costs.
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Illustrative Application Two:

Warehouse Location and Multi-Commodity distribution

(Geoffrion and Graves (1973».

In the previous application, we considered a discrete

optimization problem for which the mixed integer programming

formulation was inefficient because it failed to. exploit

special structure. We consider now an application in which

mixed integer programming was successfully applied. The model

used in the application is an example of a large class

called location-allocation problems (see Lea (1973) for an

extensive bib liography) •

The application of Geoffrion and Graves involved a

two-level distribution system with plants each producing

a number of different commodities to be shipped to ware-

houses from which wholesale customers are supplied. These

decisions to be made were: (1) what warehouse sites should

he used; (2) what should be the siz~ of each warehouse;

(3) which customers should be served by each warehouse; and

(It) what is the optimal pattern of multi-commodity transpor-

t.a tion flows?

Let i be the index for commodities, j the index for

plants, k the index for P0ssib1e warehouse sites and 1 the

index for customers. Define the variables xijkl as the non

negati ve amount of commodity i produced in plant j for

delivery to customer 1 via a warehouse at site k. Let the

zero-one variable jk determine whether (zk = 1) Dr not
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\

(zk = 0) a warehouse is constructed at location k. Let the

zero-one variable Ykl determine whether (Ykl = 1) or not

(Ykl = 0) customer 1 is supplied from warehouse k.

The warehouse location and multi-commodity distribtuion

problem can be-written as the mixed integer programming

problem

min ECijkl xijkl + E {fkzk + vk I dil Ykl}
ijkl k il

(2.la)

s.t. I xijkl < s··- J.J
kl

L xijkl = dil Ykl
.j

1.: Ykl" = I

k

-v zk < E dil Ykl < vk zk-:..}{ -
il

all ij

all ikl

all I

all k

(2.1b)

(2.lc)

(2.ld)

(2.le)

Linear configuration constrai.nts on y and z

Xijkl > 0 for all ijkl

Ykl = 0 or I for all k, I

zk = 0 or I for all k

(2.lf)

(2.lg)

The constraints (2.lb) limit the supply of commodity

that can be shipped from plant j. The constraints (2.lc) and

(2.ld) together state that the demand for commodity i by

customer I must be met and by shipment from exactly one
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warehouse. The constraints (2.1e) state that if warehouse

site k is selected (Zk = 1), then total storage of all

commodities for all customers supplied from k must be

between the lower and upper linits !k and Vk • The constraints

(2.1f) are a variety of logical constraints on the zero-

one decision variables such as E l' zk ~ 1 implying no more
k£K

than one warehouse site can be selected from a subset Kl

of the possible sites. Finally, ;the objective function

(2.1a) consists of linear terms and fixed change terms

involving the variables Ykl and zk.

For the application of Geoffrion and Graves, there were

17 different commodities, 14 plants, 45 possible warehouse

sites and 121 customers. The mixed integer programming

problem (2.1) consisted of 11.854 rows, 727 binding variables

and 25.513 continuous variables. These large figures are

somewhat misleading because the continuous part of the

problem consists of a number of transportation problems

with simple structure. Fortunately, it was possible to

exploit these structures, and at the same time solve the

mixed integer programming problem, by the use of Benders'

m8thod for mixed integer programming as shown schematically

in figure 1.



TRANSPORTATION MODELS
,FOR EACH COMMODITY,

INTEGER VARIABLES" SHADOW PRICES
- 1 -..

INTEGER VARIABLES~ 2 SHADOW PRICES
~

•······
·
•

·- IP ·············
INTEGER VARIABLES · SHADOW PRICES

~ 17 -..

INTEGER CONSTRAINT

FIGURE 1
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The integer programming subproblem (IP) involved the

variable Ykl and zk and the constraints (2.ld), (2 .le ) ,

(2.lf) and the zero-one constraints in (2.lg) plus

constraints approximating the objective function (2.la)

from below. The transportation models ~onsisted for each

commodity i of (2.lb) and (2.lc) where the variables Ykl

were fixed at zero-one values. The objective functions

consisted of the linear terms.E c iJ·kl xi ·kl for each
Jkl J-

commodity i. Benders' method proceeds by alternatively

solving the integer programming subproblem and the contin

uous transportation problem. It stops when the integer

constraint derived from the transportation SUbproblems

does not cut off the previously optimal solution to the

integer programming SUbproblem.

As we indicated, each solution of IP produced a

better lower bound to the optimal objective function value

in (2.1). Moreover, each solution of the 17 transportation

problems produced a feasible mixed integer programming

solution to (2.1). Thus, it is possible to terminate compu

tation before optimality is reached (or proven), and have a

bound on the objective function cost loss due to non-optimality.
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Illustrative Application Three:

Optimal pesign of Offshore Natural-Gas Pipeline System

(Rothfarb et al (1970».

The previous two examples have involved continuous as

well as discrete decision variables and therefore they re

quired mixed methods of solution. SpecificallY~ dual pricing

of scarce resources was required in order to adjust the costs

on discrete decision variables. By contrast, the application

to be discussed here is purely discrete and requires combi

natorial algorithms adapted from algorithms for simpler

problems o'f similar type. Moreover, the complexi ty of the

problem necessitates the use o,f heuristic methods because

optimality is too costly to obtain.

Figure 2 depicts a typical design of a pipeline system

connecting offshore gas fields (nodes) to an onshore separ

ation and compressor plant. The location of the fields is

assumed given and the graph of the system is always a tree

(i.e., one and only one path from a gas field to the plant).

The pipeline system is required to carry known flow per day

from each gas field according as

flow = K (pressure change)2

'pipe lenOgth
pipe diameter

where K is a proportiona~ity constant.
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SEPARATOR AND
COMPRESSOR PLANT

FIGURE 2
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the selection of minimal cost pipeline diameter

given a pipeline network and delivery rcquirer;,entsj

the design of a minimal cost pipeline network given

gas field locations and delivery requirements.

(2)

The variables on the right side of (3.1) are the design

parameters. In addition, there are upper bound constraints

on pressure due to safety and design considerations, and

lower bounds due to delivery requirements at the plant.

The cost of a pipeline link depends on its diameter and the

depth of the water. The plant costs depend upon flow and

delivered pressure.

The two main problems addressed by Rothfarb et al were:

(1 )

Problem (1) is a SUbproblem of problem (2).

Problem (1) was surprisingly difficult to optimize

because the relation (3.1) and the pipe costs are nonlinear,

the number of different pipe diameters was 7 and the number

of gas fields was 20 or more. As a result, the number of

design combinations was quite large and the nonlinearities

m~de it difficult to identify dominating subsets of the combi

nations. Heuristic rules were developed to eliminate apparent

uneconomical diameter combinations without exhaustive enumer

ation. The heuriRtics were based on looking at critical paths

which are those to the ends of the trees where the flow and

therefore the pipe diameters are smallest. The heuristics

entailed local optimization at these ends followed by a

merging of the nodes at the end into a single node with a

aggregate design and flow requirements. The analysis was
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then repeated on the reduced network.

Problem (2) subsumes problem (1) and required additional

heuristics. First, it is known that the pipes connected

directly to the plants, called arms, play an important role

in determining overall cost. It is assumed either that these

are given by the user, or problem (2) must be solved for all

possible combinations of arms. An automatic tree generator

is used to generate a distribution of candidates for solution.

Two guidelines were used:

(1) efficient trees have low total pipe length; and

(2) efficient trees have nearly equal flow in their

arms.

If the first guideline were the only criterion, then the

problem of pipeline network design could be solved as a mini

mum spanning tree problem by a "good" algorithm.

This illustrative application is only one of many

examples of network design and analysis for problems where

exact optimization is difficult. An attractive possibility
,

is to use man-machine interactive computer programs to find

satisfactory designs. Such a program has been constructed

by Schneider et al (1972) to design urban transportation

networks.

A class of network design problems from an entirely

different application area giving rise to optimization

problems with similar mathematical structure are co~puter

communications network design problems. A number of remote

terminals are to be attached to a central computer by a
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communications network. The costs to be minimized are line

costs plus concentrator costs for those nodes where many

lines are accumulated. See Frank et al (1971) for a

discussion of models of this type.
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Application Four: .

Routing Problems.

We have not found in the literature a single application

of the routing problem illustrating many of its ~~pects.

A simple version of this problem is the following. A

trucking company must deliver a quantity qi of a single

commodity to customer i for i = 1, ••• ,m. The compcmy h3.s

an unlimited number of trucks of capacity Q which can trans-

port the commodity from the warehouse to the customers. We

assume qi ~ Q for all i and orders cannot be split between

two or more delivery trucks. The objective is to minimize

the total dist~nce traveled by the delivery trucks. Let

d .. = d .. denote the distance from customer i to custome-r j
1.J J1.

where dOj is the distance from the warehouse to customer j .

Figure 3 depicts a typical problem of this type with a

solution involving four trucks.

An integer programming formulation of the problem

has been given by Balinski and Quandt (1964). A generic

activity aj , called a tour, is an m-vector with compo

nents

a.. =1.J

1

o

if delivery route j visits

customer i

otherwise

m
, where the a .. satisfy t a1.'. q. ~ Q. The objective function

1.J :l. =1 J 1.



/

FIGURE 3
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coefficient c. associated with a. is the shortest distance
J J

tour, starting and ending at the warehouse, of the customers

visited by the activity. The calculation of c. is a traveling
J

salesman problem. The delivery problem is solved by solving

the set partitioning problems.

n
min 1:

j =1

n
s.t. 1:

j=l

c. x.
J J

a.. X.
l.J J

= 1 1 = 1, ... ,m (1.1.1)

xj = 0 or 1, j = l, ... ,n

where n is the total number of tours satisfying
n
1: a .. qi ~ Q. This number can be quite large and Balinksi

i=l l.J

and Quandt suggest a column generation technique Himilar
to the one discussed in the multi-item production scheduling

example. Of course, there are a number of generalizations of

the problem as stated inclUding the use of trucks of

different sizes, multi-commodity delivery, etc.

Hausman and Gilmour (1961) applied a model of this

general type to the problem of scheduling fuel-oil delivery

to home customers. The costs of delivery included a fixed

cost for each delivery in addition to distance traveled,
/

and the frequency of delivery was a factor in the problem.

The optimal tour distance for each group of customers

serviced by a single delivery truck was approx~mated by

multiple regression, using a few simple statistics for the
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group. Practical problems involving 120 customers were

solved with a substantial cost reduction over hand solutions.

An important class of routing problems with the- form

(4.1) are the airline crew scheduling problems (e.g., see

Arabeyre et a1 (1969) and Simpson (1969». For these

problems, the "customers" are cities and the "warehouse" is

a home base for crews and planes. A route map is given

with the existing flights, and their times, which must be

flown between cities during a given time period, usually

a few days or a week. An activity a. corresponds to a
J

sequence of cities connected by flights that can be flown by

a crew without violating safety and union constraints. The

cost Cj of such an activity are the bonuses, per-diem and

overtime payments. In practical applications of the airline

crew scheduling problem, there can be more than one home

base for crews, and additional constraints limiting the

number of crews which can begin and end their tours at each

home base.

Laderman (1966) and Lasdon (1973) have formulated and

solved some large routing problems for ships on the Great

Lakes. Mevert (1974) reports on a large trans-Atlantic

shipping problem which has been formulated as a problem of

the type (4.1) with a number of side constraints.
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Conclusions

We have tried to present applications of integer and

combinatorial programming in logistics which illustrate

the current state-of-the-art of these methods and some

principles to be applied to new applications. There are a

number of application areas which were not mentioned

including, for example, reliabilH:y (Kershenbaum and

Van Slyke (1912», decision CPM (Crowston (1970», and the

setting of traffic signals (Little (1)66». Finally, we

have tried to indicate a representative rather than an

exhaustive list of references. Extensive bibliographies

can be found in Garfinkel and Nemhauser (1912) and

Scott (1910).
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