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Abstract 

Horiuchi & Coale (1982) have suggested a simple formula to improve the estimates of 
the expectation of life at old age, a formula that was questioned as unrealistic by Mitra 
(1984; 1985), whose alternative approach was in return criticized for being prone to biases 
due to age exaggeration (Coale 1985). The discussion between the researchers have not 
been resolved. This lack of agreement and the simplifying assumptions behind both 
approaches prevented their integration in the practical toolkit of demographic analysis. 
This paper shows that both methods are useful in drastically reducing the estimation errors 
in life expectancy. The disputes were largely due to inconsistent inputs rather than 
methodological contradictions. Furthermore, the methods produce by far better results as 
compared to the popular alternative, the extrapolation of the death rates. In combination 
the two alternative methods may even lead to a better outcome. 
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Expectation of Life at Old Age:  
Revisiting Horiuchi-Coale and Reconciling with Mitra 

Dalkhat M. Ediev 

1. Introduction

The life table model, which describes the survival of individuals throughout their life 
course, is an important tool in studying mortality and its many implications such as 
insurance policies, social policies and population projections. It builds upon age-specific 
death rates and produces various indicators of mortality, survival and longevity for the 
age groups. A limitation of the model appears at the older age where data scarcity or 
deficiency forces statisticians to disregard age details and aggregate the available data 
into a single “open age interval”.  

Typical data problems that prevent the extension of the life table to an older age 
are age exaggeration and other types of age misreporting, such as poorly documented 
return migration following retirement and missing death records. Currently, different 
approaches come into operation to solve or circumvent this hitch. The World Health 
Organization (WHO) (Mathers & Ho 2014) used to extrapolate the death rates above the 
age of 85 by assuming a logistic mortality model. The United Nations (1982) construct 
life tables for developing countries by fitting the Gompertz-Makeham model at younger 
ages and closing at age 85+. The Human Mortality Database (HMD) (Wilmoth et al. 
2007) also corrects the original data at ages 80+. A recent study by Randall and Coast 
(2016) suggests that the data quality at ages 60+ in low-income countries is yet “very 
rough” with only a limited improvement over time in African countries. Even in 
developed countries with generally good mortality data, incompleteness of migrant 
registration or misreported ages at death may bias the mortality estimates for the elderly 
(Preston et al. 1996; Khlat & Courbage 1996; Kibele et al. 2008). In regional demography 
and demography of social groups, small population size may be another source of data 
limitation that demands lowering the age at the start of the open age interval, so that to 
include at least some death events (Scherbov & Ediev 2011). 

Choosing a broader open age interval that begins at younger age may help mitigate 
some of the data quality problems, including the problems of age exaggeration and small 
population size. Lowering the age at the beginning of the open age interval, however, may 
itself have severe consequences for the quality of life table estimates because of 
departures from stationarity which is conventionally assumed for the age composition at 
the open age interval (Preston et al. 2001). In a stationary population, life expectancy at 
the beginning of the open age interval is inverse to the death rate: 

݁ ൌ ାܯ
ିଵ, (1) 
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hereinafter, ܽ denotes the starting age of the open age interval; ݁ is the life expectancy 
at age ܽ; and ܯା is the death rate in the open age interval. In this paper, we call (1) the 
classical estimate (approach).  

The classical approach is not the only one available for cases with age reporting 
problems. The most common alternative method to calculate the last ‘problematic’ age 
range of the life table is extrapolation of death rates based on their change at younger 
ages in combination with a mortality model (United Nations 1982; Wilmoth et al. 2007; 
Mathers & Ho 2014; Missov et al. 2016). Extrapolation does not assume population 
stationarity or any other population model. Such extrapolation, however, ignores the 
original empirical data pertaining to the open age interval. Furthermore, as we 
demonstrate in this paper, the extrapolation method tends to be less accurate in terms of 
life expectancy than the other methods considered here. 

Two other alternatives to the classical approach also work with the open age 
interval, just like the classical method, but relax the stationarity assumption presumed in 
(1). Indeed, populations are rarely stationary. Improving survival, changing fertility and 
immigration modify the population age composition. Growing populations are typically 
of younger age composition, with more weight on younger ages with lower mortality 
(Preston et al. 2001); their death rate in the open age interval is lower than in a stationary 
population with similar mortality. As a result, the classical method is prone to 
overestimate life expectancies for such populations. A step forward as compared to the 
zero-growth stationary population model is the stable population model that assumes, 
generally speaking, that allows for population growth and produces population structures 
younger or older than the corresponding stationary populations (Preston et al. 2001). This 
model – in combination with the Gompertz mortality model – was used by Horiuchi and 
Coale (1982) to develop the following simple formula to improve the classical estimate: 

݁ ൌ ାܯ
ିଵ݁ିఉೌெೌశ

షഀೌ ,       (2) 

here, r is the annual growth rate of the population in the open age interval; ߙ and ߚ are 
the model parameters (for numerical values, see Horiuchi & Coale 1982 or Table 1). 

Adjustment (2) was challenged by Mitra (1984; 1985) who also assumed 
population stability and derived a closed form solution: 

݁ ൌ ାܯ
ିଵ݁ିൣெೌశ

షభି൫ଵାெೌశ
షభ൯ሺ௫̅ିሻ൧,     (3) 

where ̅ݔ stands for the mean age of the population in the open age interval. Using his 
method, Mitra came to estimates fairly close to the classical ones and suggested that the 
adjustment by Horiuchi-Coale was unrealistic. Mitra’s approach was, however, criticised 
for being prone to biases due to age exaggeration (Coale 1985). Indeed, having age 
exaggeration as a problem in the first place, one would cautiously use the empirical mean 
population age ̅ݔ in an adjustment procedure. 

Partly because the discussion between Horiuchi-Coale and Mitra was never 
resolved, but also due to the strong assumptions used in both approaches, their methods 
have not made it to a wider practical use by demographers and population statisticians.  

Two developments since the time of discussion between Horiuchi-Coale and 
Mitra call for revisiting their results. First, the empirical basis for mortality studies and 
computational resources have advanced substantially, as it is reflected in the rich 
collection of high quality data in the HMD (2016). This enables the development and 
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testing of methods on a sounder empirical base, and relaxes some of the original 
assumptions. Second, life expectancy in many countries has systematically advanced 
since 1980. On the one hand, better survival to old age boosts the importance of the open 
age interval for life table estimates. On the other hand, higher (and improving) life 
expectancies call for testing if the old methodology works well on current data. Our paper 
is a response to these needs and introduces some useful modifications to the original 
adjustment formulas. We also aim at reconciling the dispute between Horiuchi-Coale and 
Mitra and combining both alternative methods for a better outcome. 

 

Table 1. Original parameters of the Horiuchi-Coale model (Alfa, Beta), the Beta-
parameter of the model re-estimated on the Human Mortality Database data (Beta.hmd), 
and the coefficients (estimated on HMD data) of the regression model (5) for the mean 
population age in the open age interval (C, ݇ଵ, ݇ଶ). 

Sex a Alfa Beta Beta.hmd C ݇ଵ ݇ଶ 

Female 40 1.0 0.283 0.321 50.045 0.241 -4.918 

Female 55 1.1 0.207 0.241 61.025 0.303 -4.503 

Female 65 1.4 0.095 0.100 69.200 0.335 -3.670 

Female 75 1.4 0.095 0.109 77.701 0.380 -2.676 

Female 85 1.4 0.095 0.104 86.460 0.470 -1.883 

Female 95 1.4 0.095 0.062 95.591 0.626 -0.867 

Male 40 1.0 0.283 0.330 50.924 0.196 -3.919 

Male 55 1.1 0.207 0.236 61.406 0.269 -3.722 

Male 65 1.4 0.095 0.102 69.229 0.318 -3.180 

Male 75 1.4 0.095 0.108 77.563 0.379 -2.398 

Male 85 1.4 0.095 0.102 86.355 0.482 -1.863 

Male 95 1.4 0.095 0.058 95.633 0.609 -0.914 

Total 40 1.0 0.283 0.308 50.839 0.206 -3.849 

Total 55 1.1 0.207 0.234 61.115 0.293 -4.030 

Total 65 1.4 0.095 0.099 69.117 0.335 -3.324 

Total 75 1.4 0.095 0.108 77.583 0.387 -2.481 

Total 85 1.4 0.095 0.102 86.405 0.477 -1.803 

Total 95 1.4 0.095 0.061 95.518 0.658 -0.929 

Note: a = starting age of the open age interval. 
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2. Testing the models of expectation of life at old age on 
empirical data 

To examine the biases in estimated life expectancy for selected estimation methods at 
different open age intervals, we use all period life tables, single-year mortality data, and 
population exposures contained in the HMD (2016)1. Altogether, the database (data 
downloaded on 12.02.2016) contains 4436 country-calendar years for each gender 
(males, females, total), for 46 countries/populations, spans over the years 1751 to 2014, 
and life expectancies at birth from 16.7 to 86.4 years. For each of the 3x4436 database 
entries we recalculate its life table assuming alternative open age intervals (the threshold 
age a spanning from 55 to 95 years) and various estimation methods.  

For each open age interval, we calculate the aggregated death rate for the open 
age interval using the death rates and population exposures from the HMD: 

ାܯ ൌ
∑ ெೣೣഘ
ೣసೌ

∑ ೣഘ
ೣసೌ

,        (4) 

here ܯ௫ and ௫ܲ are the HMD death rate and the population exposure at age ݔ; and ߱ is 
the maximum attainable age group (110+ in HMD). After obtaining the death rate for the 
open age interval, we apply alternative life table methods and compare the results to the 
life table that is based on the full age scale spanning up to the age 110+. 

First, we apply the classical life table method (1) and use estimates (4) and the 
death rates at ages below age a to calculate a new “truncated” life table for each HMD 
entry. Life expectancy from the truncated life table is compared to life expectancy from 
the full life table; where the “full” life table stands for the life table with the maximum 
possible, a=110. The difference between the two gives the estimation error in the classical 
life table method due to the truncation of the data at the selected open age interval.  

In a similar fashion, we examine the estimation errors in the methods of Horiuchi-
Coale (2) and Mitra (3), and in the popular method where death rates are extrapolated into 
the open age interval based on their rate of increase at younger age. For extrapolations, 
we use the Gompertz model (Gompertz 1825; Doray 2008) where the force of mortality 
increases exponentially with age. After some experimentation, we opt for the marginally 
better extrapolation without jump of the death rate at age a; with parameters fit on 20-
years-of-age-long age intervals below the open age interval. This extrapolation is close to 
the common practices for low-quality data cases. The Gompertz model is also useful as a 
bridge to the work by Horiuchi-Coale who relied on the model in developing their own 
method. 

Results for life expectancy at birth in the classical life table method for open age 
intervals 55+, 65+, 75+, 85+, and 95+ are presented in Figure 1 and Table 2. On the 

                                                 
1 HMD modifies (smooths and extrapolates) the original data at some ages above age 80 using the logistic 
model. This might have distorted our findings for the highest open age intervals, especially for the 
extrapolation method. Yet, after re-running our calculations on the raw, not modified, death rates also 
provided in the HMD, we came to results similar to those presented in this paper. Root mean squared errors 
(RMSE) obtained on raw data differ only in the second digit after comma from the RMSEs presented in 
Table 2 for all methods, except for the extrapolation. Even for the extrapolation method, there was only one 
case when RMSE based on the raw data differed in the first digit after comma from the results presented in 
Table 2 and was substantial in relative terms: females, life expectancy at birth range 40-50 years, a= 85 
(RMSE on the smoothed death rates: 0.04; RMSE on the raw data: 0.16). 
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horizontal scale of the figure, we put the life expectancy at birth from the full life table, 
and the vertical scale represents the difference between life expectancies at birth in the 
truncated and full life tables. 

The estimation errors in the classical method are predominantly positive because 
of the worldwide growth of elderly population in the course of demographic transition, 
which produced population age structures younger (of lower mortality) than the structure 
of stationary populations assumed in the method. The biases were relatively small (yet, 
quite substantial) for periods with shorter life expectancy at birth and soared to high levels 
as life expectancy grew. This comes well in agreement with the formal derivations by 
Horiuchi-Coale and Mitra. Currently, closing the life table at age 65, both sexes 
combined, would produce an upward bias in life expectancy at birth as high as 10 years 
in some countries and more than 2.5 years in many other cases. These errors, with the 
secular trend of life expectancy increasing by about two years per decade (Oeppen & 
Vaupel 2002; White 2002), correspond to gains of life expectancy over 12-50 years. If 
data permits closing the life table at age 75 or 85, the estimation errors are down to under 
4 or 0.5 years respectively. Closing the life tables at age 95 yields only minor errors in e0, 
while closing at age 55 drives the errors to unacceptably high levels. The errors are 
generally higher when considering only the female populations or both sexes together.  

In Figure 2 and Table 2, we show the estimation errors in life expectancy ea at the 
beginning of the open age interval as percent of the life expectancy from the 
corresponding full life table. Our interest in this kind of estimation errors is driven by the 
usual practice in population projections, where the population of the open age interval is 
projected on the basis of the life table death rate for that age group (Preston et al. 2001). 
As Figure 2 illustrates, substituting the actual population change in the open age interval 
by its estimate, based on the life table death rate, may lead to annual downward biases of 
dozens of percent in the numbers of deaths in the open age interval.  

Numerical results for the adjustments by Horiuchi-Coale and Mitra as well as the 
extrapolation method are presented in Figure 3 and Table 2 (as a refernce, we also put the 
results for the classical method into Figure 3). We improved the stability of the Horiuchi-
Coale and Mitra formulas by using the population growth rates averaged over 10-year 
periods prior to the estimaton year. If we used the annual rates (results not presented here), 
the adjusted life expectancies would contain more outliers, especially in the Mitra 
method. 

In all procedures, errors tend to increase as life expectancy grows. Interestingly, 
all methods tend to err more often to the positive side, i.e. they overestimate life 
expectancy, although the non-classical methods are free from the classical method’s 
sources of error that is nested in the stationarity assumption. The reasons for the positive 
errors are different among the methods. The extrapolation method produces positive or 
negative errors depending on wether the death rates increase steeper above or below the 
minimal age of the open age interval. Mortality acceleration at younger old ages (Horiuchi 
1997; Horiuchi & Wilmoth 1997), which is more typical in female populations, explains 
positive biases in the extrapolation method as seen in Figure 3 (notice the stronger pattern 
of positive biases for females). At the same time, mortality deceleration at older ages 
(Horiuchi & Wilmoth 1997; Horiuchi & Wilmoth 1998; Horiuchi et al. 2003) may explain 
somewhat more prevalent negative biases of the extrapolation method at the open age 
interval 85+ and the tendency of the method to produce negative errors for the open age 
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interval 95+ (results not shown here). The Horiuchi-Coale and Mitra methods, in their 
turn, tend to produce positive errors, because protracted periods of mortality decline at 
old age, as observed in many countries, produce population age structures even younger 
than the stable populations assumed in the two methods (Horiuchi & Preston 1988; 
Guillot 2003; Ediev 2014). 

The Horiuchi-Coale formula provides a remarkable improvement over the 
classical method in terms of estimation errors, although the parameters for the formula 
were estimated back in the 1980s. The vast reduction of estimation errors, after applying 
the adjustment, indicates that the method is rather robust to violations of its underlying 
assumptions (the Gompertzian death rates and stable population age strcuture). Table 2 
also includes results for the Horiuchi-Coale formula where we kept the original values 
for the parameter ߙ but re-estimated the other parameter ߚ based on our database (“H.-
C. (hmd)” columns of Table 2; see Table 1 for the re-estimated parameter values). 
Updating the model parameters provides only a marginal improvement in terms of root-
mean squared error (RMSE). The method’s RMSEs may perhaps be further reduced by 
fitting the model to more homogeneous data (to groups of populations with similar 
mortality dynamics and growth histories). 

The Mitra formula is generally more accurate than the Horiuchi-Coale method 
(Table 2). However, the method appeared to be prone to produce outliers, especially 
overestimates of life expectancy (Figure 3; similar results for other open age intervals are 
not shown here). The formula involves the population mean age in the open age interval, 
 an indicator easy to calculate for populations with good-quality data, such as the HMD ,ݔ̅
populations, but problematic for populations with age exaggeration. Hence, we checked, 
if the formula remains accurate after substituting ̅ݔ by its prediction based on the 
regression involving the growth rate and the observed death rate: 

ݔ̅ ൌ ܥ  ݇ଵܯା
ିଵ  ݇ଶܯݎା

ିଵ      (5) 

(see Table 1 for model parameters estimated on HMD data). Absolute and percentage 
RMSEs of estimate (5) are presented in the last two columns of Table 2. Results for the 
Mitra formula with the approximate mean age (5) are shown in Table 2, in the “Mitra 
(regr.)” columns. Substituting the true mean age by its indirect estimate only marginally 
increases RMSEs. Even based on indirect mean age estimates, the method remains more 
accurate than the Horiuchi-Coale method. The differences between the two methods, 
however, are minor as compared to the errors in the classical method. 

The extrapolation method, surprisingly, does not improve over the classical 
method in terms of bias and is rather unstable. It shows higher RMSEs as compared to 
the classical life table method and is by far less acurrate than both the Horiuchi-Coale and 
Mitra approaches. Note that we used the Gompertz model that assumes exponential 
growth of the death rates as a function of age. If we used a more optimistic logistic-type 
model (e.g., the Kannisto model (Thatcher et al. 1998) fits better the pattern of mortality 
decelaration at oldest old age and is used by the WHO and the HMD), the upward biases 
in life expectancy estimates would be even higher (selected results for the Kannisto model 
are presented in section 3). 
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Figure 1. Estimation errors in life expectancy at birth obtained by the classical life table 
method for selected open age intervals (starting at ages shown in the right-hand side of 
the panes), men, women and both sexes combined (in years). Author’s calculations 
based on the Human Mortality Database (HMD 2016).
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Figure 2. Estimation errors in life expectancy at the starting age of the open age interval 
for the classical life table method (starting ages of the selected open age intervals are 
shown in the right-hand side of the panes), men, women and both sexes combined (in 
percent). Author’s calculations based on the Human Mortality Database (HMD 2016).
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Figure 3. Estimation errors in life expectancy at birth obtained by selected methods 
(methods indicated in the right-hand side of the panes) for the open age interval 75+, 
men, women and both sexes combined (in years). Author’s calculations based on the 
Human Mortality Database (HMD 2016). 
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Table 2. Root mean squared errors (RMSE) in life expectancy at birth e0, percentage of RMSEs in life expectancy in the open age interval ea (by method) 
and RMSEs in the mean population age in the open age interval (model (5)): by sex, level of life expectancy at birth and open age interval (a+). 

   RMSE in e0 by method (years) Percentage RMSE in ea by method (percent) RMSE in the 
mean pop. 
age, years 

RMSE in the 
mean pop. 

age, percent Sex 
e0 

range a Classical Extrapol. H.-C. 
H.-C. 
(hmd) Mitra 

Mitra 
(regr.) Classical Extrapol. H.-C. 

H.-C. 
(hmd) Mitra 

Mitra 
(regr.) 

Female 40-50 55 0.75 6.60 0.40 0.41 0.47 0.46 8.05 73.76 4.54 4.64 5.33 5.22 0.58 0.88 

Female 40-50 65 0.25 0.70 0.17 0.17 0.23 0.22 5.17 15.61 3.67 3.71 4.83 4.72 0.43 0.59 

Female 40-50 75 0.06 0.16 0.05 0.05 0.05 0.05 3.40 8.42 2.78 2.85 2.93 2.88 0.37 0.47 

Female 40-50 85 0.01 0.03 0.01 0.01 0.02 0.02 2.21 9.50 2.29 2.36 3.03 2.65 0.32 0.36 

Female 50-60 55 1.53 10.23 0.57 0.54 0.38 0.48 11.86 81.82 4.54 4.31 3.14 3.90 0.57 0.86 

Female 50-60 65 0.53 1.45 0.23 0.23 0.21 0.24 7.65 21.53 3.41 3.38 3.07 3.51 0.42 0.58 

Female 50-60 75 0.12 0.25 0.07 0.08 0.08 0.08 4.54 12.93 2.82 2.85 2.73 2.89 0.37 0.46 

Female 50-60 85 0.01 0.04 0.01 0.01 0.01 0.01 2.60 7.94 2.00 2.04 2.08 2.09 0.24 0.27 

Female 60-70 55 3.57 18.78 0.79 0.77 0.43 0.57 21.21 114.15 4.63 4.59 2.52 3.34 0.52 0.79 

Female 60-70 65 1.23 1.56 0.29 0.29 0.19 0.25 12.99 17.34 3.11 3.12 1.99 2.65 0.39 0.53 

Female 60-70 75 0.25 0.29 0.09 0.09 0.06 0.09 6.55 9.15 2.54 2.53 1.77 2.30 0.47 0.58 

Female 60-70 85 0.02 0.06 0.01 0.01 0.01 0.01 3.11 8.14 1.95 1.95 1.81 1.97 0.44 0.48 

Female 70-80 55 5.38 3.32 1.36 1.19 0.99 1.08 24.14 15.00 5.99 5.29 4.53 4.93 0.57 0.85 

Female 70-80 65 2.33 2.18 0.49 0.48 0.37 0.42 16.87 15.72 3.53 3.48 2.70 3.06 0.37 0.50 

Female 70-80 75 0.67 0.56 0.16 0.15 0.11 0.13 10.10 8.25 2.56 2.35 1.75 2.14 0.29 0.36 

Female 70-80 85 0.09 0.10 0.03 0.03 0.02 0.03 4.78 7.20 1.70 1.72 1.34 1.57 0.22 0.24 

Female 80-90 55 8.08 23.67 1.90 1.61 0.96 1.17 28.64 81.77 6.86 5.81 3.50 4.22 0.56 0.81 

Female 80-90 65 3.78 4.71 0.91 0.89 0.64 0.74 20.07 25.14 4.91 4.79 3.45 3.95 0.37 0.48 

Female 80-90 75 1.42 2.11 0.34 0.27 0.20 0.27 13.80 20.10 3.35 2.72 2.04 2.60 0.25 0.30 

Female 80-90 85 0.26 0.16 0.09 0.08 0.06 0.08 7.43 4.46 2.54 2.37 1.67 2.33 0.26 0.29 

Male 40-50 55 0.71 3.47 0.26 0.24 0.20 0.24 8.26 45.83 3.27 3.07 2.59 3.01 0.45 0.70 

Male 40-50 65 0.22 0.62 0.10 0.09 0.09 0.10 5.24 15.58 2.57 2.56 2.47 2.73 0.35 0.48 

Male 40-50 75 0.04 0.09 0.02 0.02 0.02 0.02 3.05 7.71 2.05 2.04 1.89 2.12 0.29 0.37 

Male 40-50 85 0.00 0.02 0.00 0.00 0.00 0.00 1.73 9.38 1.58 1.60 1.53 1.58 0.23 0.26 

Male 50-60 55 1.49 4.23 0.46 0.43 0.32 0.39 12.30 34.85 4.03 3.80 2.71 3.38 0.47 0.72 

Male 50-60 65 0.50 0.99 0.17 0.17 0.13 0.16 8.05 16.32 2.97 2.90 2.25 2.74 0.37 0.51 

Male 50-60 75 0.10 0.18 0.05 0.05 0.04 0.05 4.65 9.42 2.56 2.51 2.13 2.51 0.38 0.47 

Male 50-60 85 0.01 0.03 0.01 0.01 0.00 0.01 2.53 7.78 1.90 1.91 1.63 1.82 0.27 0.31 

Male 60-70 55 2.45 2.76 0.55 0.58 0.47 0.48 15.32 17.23 3.49 3.71 3.00 3.06 0.43 0.66 
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   RMSE in e0 by method (years) Percentage RMSE in ea by method (percent) RMSE in the 
mean pop. 
age, years 

RMSE in the 
mean pop. 

age, percent Sex 
e0 

range a Classical Extrapol. H.-C. 
H.-C. 
(hmd) Mitra 

Mitra 
(regr.) Classical Extrapol. H.-C. 

H.-C. 
(hmd) Mitra 

Mitra 
(regr.) 

Male 60-70 65 0.82 0.68 0.21 0.22 0.16 0.18 9.58 8.36 2.52 2.60 1.89 2.17 0.36 0.49 

Male 60-70 75 0.17 0.20 0.06 0.06 0.05 0.06 5.43 7.20 2.07 2.12 1.63 1.92 0.32 0.39 

Male 60-70 85 0.02 0.03 0.01 0.01 0.01 0.01 2.74 6.19 1.71 1.74 1.60 1.66 0.28 0.31 

Male 70-80 55 5.34 3.02 1.30 1.06 0.66 0.77 24.10 13.85 6.00 4.95 3.17 3.62 0.43 0.64 

Male 70-80 65 2.19 1.30 0.51 0.46 0.36 0.40 16.35 9.65 3.83 3.59 2.79 3.06 0.29 0.39 

Male 70-80 75 0.66 0.53 0.16 0.13 0.11 0.13 10.44 8.39 2.66 2.23 1.81 2.09 0.22 0.28 

Male 70-80 85 0.09 0.06 0.03 0.03 0.02 0.03 5.22 4.47 1.88 1.80 1.21 1.72 0.20 0.23 

Total 40-50 55 11.01 9.56 1.91 1.75 0.65 1.00 41.98 36.36 7.34 6.73 2.48 3.82 0.49 0.72 

Total 40-50 65 4.30 1.54 0.51 0.37 0.27 0.51 25.39 9.18 2.96 2.18 1.58 2.95 0.38 0.51 

Total 40-50 75 1.06 1.97 0.33 0.25 0.19 0.22 12.10 21.67 3.82 2.90 2.24 2.51 0.17 0.21 

Total 40-50 85 0.19 0.09 0.06 0.05 0.03 0.05 7.12 3.48 2.13 1.86 1.21 1.77 0.16 0.19 

Total 50-60 55 0.72 4.80 0.33 0.31 0.32 0.34 8.09 57.95 3.83 3.76 3.89 4.02 0.52 0.79 

Total 50-60 65 0.22 0.65 0.13 0.13 0.18 0.18 4.93 15.28 3.13 3.15 4.10 4.07 0.38 0.53 

Total 50-60 75 0.05 0.09 0.03 0.03 0.03 0.03 3.05 6.24 2.24 2.27 2.14 2.28 0.32 0.40 

Total 50-60 85 0.01 0.02 0.01 0.01 0.01 0.01 1.88 8.65 1.77 1.80 1.89 1.83 0.24 0.27 

Total 60-70 55 1.47 5.74 0.48 0.45 0.30 0.39 11.81 47.86 4.00 3.78 2.53 3.26 0.47 0.72 

Total 60-70 65 0.50 1.16 0.18 0.17 0.13 0.16 7.58 17.95 2.80 2.74 2.01 2.56 0.35 0.49 

Total 60-70 75 0.10 0.16 0.05 0.05 0.05 0.06 4.26 7.56 2.40 2.40 2.22 2.43 0.33 0.41 

Total 60-70 85 0.01 0.03 0.01 0.01 0.01 0.01 2.31 6.72 1.58 1.60 1.38 1.58 0.22 0.25 

Total 70-80 55 3.12 3.93 0.66 0.62 0.48 0.54 18.72 25.25 4.01 3.79 2.96 3.29 0.49 0.74 

Total 70-80 65 1.08 0.94 0.25 0.25 0.18 0.22 11.69 10.59 2.78 2.79 2.02 2.48 0.36 0.49 

Total 70-80 75 0.23 0.23 0.08 0.08 0.06 0.07 6.32 6.88 2.35 2.36 1.81 2.16 0.39 0.48 

Total 70-80 85 0.02 0.04 0.01 0.01 0.01 0.01 2.87 6.50 1.76 1.79 1.77 1.71 0.35 0.39 

Total 80-90 55 4.54 2.52 1.21 1.06 0.77 0.82 20.94 11.87 5.47 4.87 3.72 3.86 0.48 0.71 

Total 80-90 65 1.95 1.25 0.45 0.44 0.34 0.37 14.76 9.39 3.40 3.31 2.56 2.78 0.34 0.45 

Total 80-90 75 0.59 0.53 0.15 0.13 0.10 0.12 9.36 8.21 2.40 2.15 1.63 1.97 0.25 0.31 

Total 80-90 85 0.08 0.07 0.03 0.03 0.02 0.03 4.76 4.88 1.66 1.65 1.18 1.55 0.21 0.24 

Note: e0= life expectancy at birth; a=starting age of the open age interval; “Classical”= classical life table method; “Extrapol.”=extrapolation of the death rates using the Gompertz 
model; “H.-C.”=Horiuchi-Coale formula; “H.-C. (hmd)”=Horiuchi-Coale formula with the Beta parameter re-estimated on the HMD data; “Mitra”=Mitra formula; “Mitra 
(regr.)”=Mitra formula with the mean population age in the open age interval substituted from the indirect estimate (5); “RMSE” = root-mean squared estimation errors; “Percentage 
RMSE” = root-mean squared estimation errors as percent of true values “mean pop. age”= mean population age in the open age interval indirectly estimated using model (5).
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3. Reconciling Horiuchi-Coale and Mitra formulas. Conditioned 
extrapolation of death rates 

Our above results show that both the Horiuchi-Coale and Mitra formulas perform well in 
reducing life expectancy estimation errors caused by aggregating data for the open age 
interval. The Mitra method is marginally more accurate but less stable. Its reliance on the 
possibly exaggerated mean population age may be overcome by using the indirect 
estimates of the mean age (5). Both methods are by far superior to the classical and the 
extrapolation methods. It is a pity that the two methods did not make it to a wider practical 
use and rather surprising that their authors came to contradicting results in their papers.  

It is worthwhile to note, however, that a large part of numerical differences 
between Horiuchi-Coale and Mitra were, in fact, due to different inputs used in their 
calculations rather than methodological differences. In particular, the largest discrepancy 
in the original papers was for e65 for El Salvador in 1961: Mitra’s estimates were larger 
by 3.12 years for women and 3.02 years for men. When we recalculated the life 
expectancies using similar inputs in both approaches (Mitra 1984, pp.11–12), we found 
that the two approaches are more consistent: Mitra’s formula gives estimates by 1.69 and 
1.27 years larger, respectively. After our recalculation, the estimates become much closer 
also for Canada, Japan, Switzerland, UK, Mexico, and Malaysia. Altogether, the two 
methods differ by more than one year in only two cases, El Salvador and Puerto Rico, out 
of 13. If one takes into account that the Mitra method was relying on potentially biased 
official estimates of the mean population age in the open age interval, it becomes clear 
that the authors were more consistent than they concluded. 

One way of utilising both approaches might be to use the Horiuchi-Coale method 
to adjust the conventional life expectancy estimates as a first step and, in the second step, 
use the Mitra formula to obtain the estimate of the mean population age in the open age 
interval (deriving from Eq. (3)): 

ݔ̅ ൌ ܽ 
ଵାಾೌశ

ೝ
ሺೌெೌశሻ

ெೌశା
.       (6) 

Here, life expectancy ݁  may be substituted by the Horiuchi-Coale estimate (2). This way, 
it might be possible not only to compensate the estimates of life expectancy for biases 
caused by data aggregation but also to assess the magnitude of age exaggeration in the 
data (an approach alternative to our estimate (5)). Testing model (6) on HMD data 
(detailed results not shown here), we found that the method is inferior to the regression 
method (5). RMSEs of estimates (6) were, in principle, acceptably low (shorter than one 
year) but much higher (by up to several times) as compared to the RMSE of the regression 
approach. Nonetheless, one should be encouraged to check, which approach of assessing 
the mean age is better fitted to a specific country case. 

Another way of combining the two approaches might be to implement them in 
parallel (substituting the indirectly estimated mean age (5) into the Mitra formula) and 
use the difference between the two estimates in a rough check for possible outliers. 

Our results show that the extrapolation of death rates using a mortality model does 
not improve much over the classical model in terms of the life expectancy estimation bias. 
However, one may combine the more accurate adjusted estimates of life expectancy ݁ 
with the extrapolation model by constraining the parameters of the latter to fit the life 
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expectancy estimate. For the Gompertz and Kannisto models that contain only two 
parameters, we suggest fixing the model’s death rate to the original death rate at the age 
below the open age interval, ܯିଵ, and finding the other parameter of the model by fitting 
them to the life expectancy ݁ from either the Horiuchi-Coale or Mitra formulas. In the 
Gompertz model, 

௫ܯ ൌ  ሺ௫ିାଵሻ,         (7)݁ܥ

one might set ܥ ൌ  ,ିଵ and fit ܾ to the ݁ estimate; while in the Kannisto modelܯ

௫ܯ ൌ
್ሺೣషೌశభሻ

ଵା್ሺೣషೌశభሻ
,        (8) 

one would set ܥ ൌ ெೌషభ

ଵିெೌషభ
 and fit ܾ to the ݁ estimate. In Figure 4 we present 

extrapolations (conventional and conditioned on ݁ from the Horiuchi-Coale method) 
applying the two mortality models to the death rates in Japan in 2012, at selected open 
age intervals (a=65, 75, or 85 years). In all cases the constrained extrapolations fit the 
actual death rates better than the unconstrained ones, although the improvement was small 
in the case of males, open age interval 65+. In the worst case (females, younger open age 
interval), the conventional extrapolations may mislead producing the death rates by up to 
ten times lower than the actual rates at old age. Generally, the Kannisto model fits the age 
pattern of the death rates better than the Gompertz model, although the two models behave 
rather similar at younger ages. At open age interval starting at least at 75 years, the 
Kannisto model conditioned on the life expectancy estimate produces the best outcomes, 
staying very close to the empirical rates.  

4. Discussion 

Our results show that the violation of the stationary population assumption of the classical 
life table method has strong consequences for the accuracy of life expectancy estimates. 
The errors in the classical method increase as mortality declines. For a currently low-
mortality population, closing the life table at age 65 would produce an HMD-average 
upward bias of more than 3 years and even larger RMSEs in the life expectancy at birth 
calculated by the classical method. Continuing increases in life expectancy will drive the 
biases of the classical method to even higher levels. 

The methods developed by Horiuchi-Coale and Mitra drastically reduce 
estimation errors in the expectation of life as compared to both the classical and the 
extrapolation methods. Wider usage of these methods should be encouraged for 
populations where data on old-age mortality are missing (for example, due to small 
population size) or corrupt by age exaggeration or age misreporting in general. The 
methods may also be combined to study the extent of age exaggeration within data, 
although our alternative (5) seems to provide a better service. 

The Horiuchi-Coale and Mitra adjustments appear to be less sensitive to the 
specific features of the pattern of death rates at old age. We have checked the sensitivity 
of the methods by applying them to the raw death rates in the HMD that were not modified 
using a logistic model (according to the HMD protocol, the HMD death rates used in our 
calculations above are smoothed and modified at old age by applying a logistic model). 
Our results based on the raw death rates were similar to those based on the smoothed rates 
from HMD. In the context of sensitivity, the good performance of the Horiuchi-Coale 
method (with parameters estimated on Gompertz mortality schedules back in the 1980s) 
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on the up-to-date empirical data is worthwhile noting. Departures from a stationary 
population age composition is the main driver of estimation biases and differences 
between the estimates of life expectancy. This does not come as a big surprise if one takes 
into account that for a stationary population, irrespective of the age pattern of mortality, 
both the classical and the adjusted life expectancies are identical and equal to the true life 
expectancy. 

 

Figure 4. Constrained and unconstrained extrapolations of the death rates for Japan, 
2012, men and women, at various ages at the start of the extrapolation (a=65, 75, or 85 
years as shown in the upper parts of the panels). 

 
Note: ‘HC’= extrapolation constrained on the life expectancy ݁ from the Horiuchi-
Coale method; ‘None’=no constraints imposed (model parameters are estimated on the 
death rates for 20-years-long age frame below age a); ‘HMD’=original death rates from 
the Human Mortality Database (HMD 2016); ‘Gompertz’=death rates extrapolated 
using the Gompertz model at ages a+; ‘Kannisto’= death rates extrapolated using the 
Kannisto model at ages a+. 
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The lack of usage of the Horiuchi-Coale and Mitra methods in demographic 
analysis is even more surprising and upsetting if one notes their perfect fit to a number of 
popular indirect demographic methods. The Brass Growth Balance method, the Preston 
and Coale method, the Hill Generalized Growth Balance method, and the Bennett and 
Horiuchi Synthetic Extinct Generations method, all involve estimates of the population 
growth rate (Nations 1983; Moultrie et al. 2013). These methods provide ready inputs for 
the Horiuchi-Coale and Mitra formulas. 

The method of extrapolating the death rates into the open age interval does not 
appear to work better than the classical method. The WHO and the HMD use an S-shaped 
model for extrapolating the death rates as alternative to the J-shaped Gompertz model 
used here. Indeed, logistic-type models were shown to better fit the deceleration of 
mortality at oldest old ages (Thatcher et al. 1998; Missov et al. 2016). However, our 
results for the younger open age intervals where all mortality models fit close to each 
other, suggest that the conclusion about the inferiority of extrapolation to the Horiuchi-
Coale and Mitra methods is in general applicable to any mortality models other than the 
Gompertz model. In fact, a logistic-type model might even accentuate the upward biases 
in life expectancy estimates. In many applications, however, it is important to extend the 
age profile of the death rates into the open age interval. Although our results discourage 
from using the popular extrapolations, we suggest to improve those extrapolations by 
conditioning the life expectancy form on the more accurate Horiuchi-Coale and Mitra 
methods. Our preliminary results indicate prominence of the Kannisto model conditioned 
on the life expectancy estimate. Such improved extrapolations of the death rates into the 
older ages may be valuable for population projections and reconstructions. 

As an important consequence of the discrepancy between death rate and life 
expectancy for the open age interval, the traditional approach of projecting the population 
in the open age interval (Preston et al. 2001) may lead to overestimates by dozens of 
percent of deaths in the open age interval. The adjustment formulas considered here as 
well as related conditioned extrapolations of the death rates may be used to compensate 
for this projection bias. 

One may further improve life expectancy estimates by fitting the models on 
populations with closer history of growth and mortality reduction (e.g., of regions of a 
given country). Another direction of improvement might be considering population 
models more advanced than the stable population. For example, one may consider effects 
of the changing growth rate and mortality on the population age composition (Brouard 
1986; Horiuchi & Preston 1988; Guillot 2003; Ediev 2014). 

Life expectancy adjustments and conditioned mortality extrapolations may be 
useful in estimating multi-state life tables that would, typically, suffer from data quality 
issues. Another promising area for application might be the construction of life tables for 
cohorts that may depart from stationary age composition in the presence of migration, 
state transitions or other types of attrition. Indeed, growth rate and stable population 
concepts may not be directly applied to the birth cohort. Therefore, the Horiuchi-Coale 
method would be difficult to use in estimating the cohort life tables. However, one may 
consider using the Mitra formula where the growth parameter r is substituted by its 
approximation based on the observed death rate and the mean population age in the open 
age interval (an approach similar to Eq. (5)). 
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