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ABSTRACT 

Dimctional differentiability gF a s u p p ~ r t  function of an saubg~adient  set- 
valued mapping is proved and formula for a directional derivative is gven .  

?he notion of an €subgradient proposed by R.T.Rockafel1a.r (Rockafellarl972a). appears 

to be rather useful for convex nondifferen tiable optimization. This is mainly due to their prac- 

tical advantages from a computational psint of view. but it is also important that this mapping 

has richer analytical properties than the s u b m e n t  mapping traditionally studied in convex 

analysis. 

During the last few years it was observed that this mapping has strong continuity proper- 

ties (Nurminski( 1978) a, Hiriartilrru ty 1979a). both in finite dirnensio nal and abstract spaces. 

Here we state a certain h n d  of differentiability properties of the support function of E -  

subgradient mapping which may lead to a definition of  second order differentiability of convex 

functions. Throughout the paper we stay within the framework of convex analysis, so f ( x )  will 

be a convex locally Lipschitzian function , f 8 ( g )  its conNjugate and a J ( x )  will be the set of 6- 

subgradients. For a number of technical reasons we need an add~tional assumption that the epi- 

graph of function f ( x )  does not contain nonverticd straight lines. It can be assured for 

instance by a coercivity assumption with respect to function f (x) .  

Defmtt2on The function Yp(x) defined as 



is called the support function of an ~5ubdifferential a ,  f  ( x )  

The support function V p ( x )  has an equivalent representation: 

t >  0 

which is easy to obtain from dual consideration of problem ( 1). Notice thal due to coercivity 

problem (2) always has a bounded solution. 

Duality can also be used for obtaining some auxiliary results. 

Lemma 1. For fixed x and p let g, and tx be any solutions of the problems ( I) and (2) 

respectively.'Then 

g , ~ a f  ( x +  txp)  

PmoJ Notice thal the result is obvious for €10. Also if E> 0 then t,> 0. Consider the 

Lagrange function of problem ( 1): 

in which the terms not depending on g are omitted It follo;ws from the optimality of g, and tx 

that 

For g, one has the inclusion 

which is equivalent to 

Q E. D. 



Lemma2 Let y  = x  + ~d . Then for any solution t, of problem ( 2 )  . any ~ E J  f ( x )  and 

gYEa, f  ( y )  such that 

one has 

Roof: Let 

Then for a n y  g ~ a  f  ( x )  

t , V p ( x )  = f ( x + t , p ) - f ( x ) + e  2 f ( y + t y P ) - f ( x ) + 5  f gy(x  + txp  - Y  - t y P )  

because of Lemma 1 gyea f ( y +  t,p). 

Subtrwting these two inequalities we obtain now, taking gy 6 a  f  ( y +  t y p )  such t h S  

V , ( Y ,  = pp, s 

t yV, (y )  - t ,V , (x )  5 g , ( y - 4  + ( t y -  t , ) Y , ( y )  - g ( y - 4  

and consequently 

These results make it possible to study the differentiability propelties of V p ( x ) .  

Let T, be the set of solutions of problem (2) and G,  be the solution set of problem ( 1 ) .  

The following theorem holds: 

Theorem. ?he support function V p ( x )  is directionally differenfiable and its directional deriva- 

tive is given by the formula: 



~ > ( x , d ) = m a x  min --- & - g d  
t 

Proof: Let y= x+ 74 7 > 0. Using Lemma 2 twice one can obtain twoside bounds of the 

kind 

Jfp(y)-Crp(x) S, - S  < min ---A 
7 

- t 

for any g,cC, and gY€GJ. Passing to the limit when 7 p e s  to + 0 one can assume that 

correspondent sequences of ~ s u b m e n t s  and subgradients in upper and lower boundaries 

converge to some limits. From u.s.c of Tx ,see for instance (Hogan 1973a). with related 

bibliography, it follows that the cornsponden t sequence of solutions tvyeTJ can be assumed 

convergent to some limit in Tx as we!l. 

Then 

g r - S  S-S v ~ ( J ) Y ~ ( x )  2 max - 1 > min gz - gd h- 
r +O 7 r +O t tx t 

for arbitrary gXeG, and some p a f  (x). 

Also 

--V,(J>-Y,(x) -- 
lim -- < lim min - 4 -s, 

r +o 7 t = min 
r 0 

where g: E a J ( x ) .  



gr -g 
min 9 i< min 

K-gd gr -g 5 max min d 
t t 

for arbitrary gX€Gr and some CE G, which means that 

Sr -g 
max rnin M d  > min m a x y  

t 

So far as strict inequality is impossible in this case then 

lim ~ p ( ~ ) - - v p ( x )  = - -VP(j ) -Vp(x)  lim = max min gr - g  
t + o  t r +o t t 

A final remark should be made on the order of rnin max operations in expression (3). 

The proof of the theorem shows that it is irrelevant in which order these operations are per- 

formed. An additional argument for that is that the function f(x,y.8) = 8(x-)b for 

0 c 8, < 9 2 has a saddle point in variables (y,9) and x, w h e ~  x and y are taken from 

some compact sets. 

References 

Rockafellar l 9 E a  RT. Rockafellar, Convex Analysis, Princeton University Press ( 1972). 

Nurrninski( l978)a E Nurminski, "Continiuity of E s u  b m e n  t mappings," Khne i ika  ( 

Cybernetics) 5, pp. 148-149 (790-791) (1977 ( 1978)). 

HiriartUrmtyl979a J.-B Hiriartllrruty, "Lipschitz r-continuity of the approximate 

subdifferential of a convex function," Technical report, Universite de Clermont-Fenand 

I1 Complexe Scientifique des Cezeaux Departement de Mathematiques Appliquees b i t e  

Po stale n 45 ( D). 



Hogan1973a W.W. Hogan, "Point-toset maps in mathematical programming," SIAM Review 

15. pp.591603 (1973). 


