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Analysis of a Compact Predator-Prey Model

I. The Basic Equations and Behaviour

D.D. Jones

Introduction

This paper is the first of a series dealing with the

analysis of a compact, relatively uncomplicated predator-

prey model. Here, only the basic equations are given and a

selected subset of system behaviour illustrated. Written

documentation concerning this model and its analytic investiga

tion are being documented as completed to speed communication

among interested parties. As this model is becoming a focus

for several methodological and conceptual discussions, the

need has arisen for a concise description of the equations.

The model itself stands midway between more traditional

differential or difference equation systems and complex simula-

tion models. (For a review of systems of the former type

and access to the flavor of their behaviour, see Ma~ 1973 or

Maynard Smith, 1974.) This model is not an embellishment of

simpler classic equations but rather an aggregation and conso-

lidation of a complex detailed predator-prey simulation model

developed from an extensive program of experiment and sub-

model development (Holling, 1965, 1966a, Griffiths and Holling,

1969). The objectives of that program are best summarized

in Holling 1966b. The complete model continues to be refined,

but a detailed documentation, with primary emphasis on the
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predation process has been prepared (Holling, 1973b). In its

present form the model is a synthesis of the best validated

components of the analog processes of predation and parasitism.

The performance of the simulation model exhibits dynamic

systems behaviour with far-reaching conceptual and theoretical

implications. Holling's paper (1973a) on the resilience of

ecological systems is the overture to a major reorientation

of ecological perspective. To further explore the dynamic

properties of this class of system, we mathematically and

pragmatically require an analytic system that is tractable

while providing the rich variety of behaviour found in the

full simulator.

The goal of this series of IIASA working papers is to

explore the dynamic topology of this analytic system and out

line a general protocol for analysis qf similar systems. There

is clearly room to venture back into the ecological domain

and use this model to gain insight into the biological aspects

of the predation process. However, such a move is not en

visioned in the current context. In a subsequent paper I

will include a discussion of the theoretical and experimental

foundations of this model complete with ecological assumptions

and limitations. At present I am offering a system of equa

tions for mathematical enquiry.

The Model Equations

The model is equivalent to a deterministic pair of dif

ference equations. Indeed it can be so formulated, but to
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do that would cloud, rather than clarify. The iteration

time interval is unspecified in absolute terms. During each

time step, predators attack and remove prey. Then predators

and prey both reproduce. The event orientation of the formula

tion tie the iteration most strongly to the prey generation

time.

The two state variables are the densities of predators

and of prey. At the start or each iteration the initial

densities are

x = initial prey density
(1)

y = initial predator density

The functional response of predator attacks to prey density

is

g(x) =
a xeClX

1 = (2)

Because attacks of predators on prey are distributed non-

randomly among the prey, we incorporate the negative binomial

distribution to account for this (see Griffiths and Holling,

1969). The number (per unit area) of prey attacked is z and

is expressed as

1 [+ kl ·kYX· g(X)]-k lz = f(x,y) = x 1 - 1 ~

The number of prey that escape predation is

"-
:x: = x - z (4 )
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These reproduce according to some function H(x) that provides

a density of prey x' at the beginning of the next time step.

The reproduction function used is a descriptive one. It

incorporates a minimum density reproduction threshold and a

maximum at some finite prey density.

Prey reproduction depends on three parameters:

minimum density for reproduction

M = maximum reproductive rate (5)

OPTX = prey density at maximum reproductive rate

These parameters are recombined as

y = 1 + OPTX

~ = OPTX - x = y - 1 - xo 0

~

CH = M • e = M(~)ll = M • C
11 II ~

l.i

/'<0

The final form of H(x) is

(6)

The function describing predator reproduction incorporates

both "contest" and "scramble" types (Nicholson, 195!1). The

parameter C, varyies between 0 and 1, and specifies the degree

of scramble in the process. The predator density that begins

the next iteration, y', is given as

y' = p(x,z) = c1 • Z (1 - C • Z 1 + k )
k • x + Z

(8)



-5-

In summary the equations are

g(x) :; (2)

Z :;
k • Y •

+ 1
kx

x :; x-z

'"x' :; H(x)

(4)

Y':;P(X,Z):;CIZ(l-C.Z l+k )
k • x + Z

(8)

The "graph" of this model is relatively simple (Figure 1).

The quantity y' is entered twice to emphasize the symmetry.

The broken arrows from x' to x and from y' to y indicate

a new i~eration in the time sequence.

Model Behaviour

A BASIC program was written to implement this model on

a Hewlett-Packard g830A calculator. A small subset of the

possible conditions are illustrated in Figures 2 through 5.

In the course of development of this experimental and

modelling work, certain parameters have evolved into what we

call our "Standard Case". These particular values do not

necessarily carry any fundamental biological significance;

they only serve as a common base for comparing the effect of

changes in parameter values. The "Standard Case" in the

present notation"is
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a 1 = 2.'5

a 2 = 0.0714

a = 0

k l = 30

k ::; 0.78

Xo = 0.001

Y = 1.1

M = 3.0

C = 0

cl = 0.95

Figure 2 shows a phase plane trajectory for the Standard

Case. rl'he ini tiul starting point is at "x"; the trajectory

then spirals counter-clockwise into an equilibrium point.

(The trajectory has been terminated before it reached that

point.)

The Standard Case is not globally stable. Combinations

of state variables that lead to prey densities less than Xo
result in extinction of the prey population followed by the

predators. Figure 3 shows an enlarged section of the state

plane with a disperse collection of starting conditions.

The actual trajectories have been surpresse~ in this plot.

Initial points are marked with "x"; sUbsequent locations are

marked with "0" if they are outside the domain of attraction

or with "+" if they eventually lead to equilibrium. With

enough trial initial points , the boundary of the attractor
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domain begins to be defined as indicated by the freehand curve.

Previous explorations with the full simulation model have

identified k and C as important and sensitive parameters to

the topology of trajectories (Jones, 1973). Figure 4 (a through

f) illustrates a range of k values when C = 0 (i.e. "contest"

predator reproduction Figure 5 (a through f) is for another

k series when C = 1 ("scramble" reproduction).

The qualitative behaviour of figures 4 and 5 are summarized

in Table I. The exact division between these modes have not

been located. They could be, of course, given enough paper and

patience. The goal of the present analytic effort is to

shortcut that necessity and develop a more comprehensive pro

cedure for looking at this type of system.



(

References

[1]

[2]

Griffiths, K.J. and Holling, C.S. "A Competition Sub
model for Parasites and Predatores,"Can. Entom. 101,
1969, 785-818.

Holling, C.S. "The Functional Response of Predators to
Prey Density and Its Role in Mimicry and Population
Regulation," Mem. En~. Soc. Canada. 45, (1965), 1-60.

Holling, C. S. "'l'he Functional Response of Invertebrate
Predators to Prey Density," Mem. Ent. Soc. Canada 48,
(1966a), 1-86. --

[4J Holling, C.S. "The Strategy of Building Models of Complex
Ecological Systems," in K.E.F. Watt (ed.) Systems
Analysis in Ecology, (1966b), Academic Press, New York.

[sJ Holling, C.S. "Resilience and Stability of Ecological
Systems," Annual Review of Ecology and Systematics,
Vol. 4, (1973a), A.nnual Revs. Inc., Palo Alto.
(TIeprented as: IIASA Research Report, RR-73-3, Sept. 1973).

[7J

[8J

[lOJ

Hul.Ling, C.S. "Description of the Predation f'Jlodel,"
RlVl-'73-1, September 1973b, International Institute of
Applied Systems Analysis, Laxenburg, Austria.

Jones, D.D. "Explorations in Parameter-Space," WP-73-3,
September 1973, International Institute of Applied
Systems Analysis, Laxenburg, Austria.

May, R.M. Stability and Complexity in Model Ecosystems,
Princeton University Press, 1973.

Maynard Smith, J. Models in Ecology, Cambridge at the
University Press, 1974.

Nicholson, A.J. "An Outline of the Dynamics of Animal
populations," Aust. J. Zool, ~' (1954), 9-65.



Table I. Behaviour trend with increasing k, for C = 0 and

C = 1.

k C - 0

o o
Long Narrow Domain of

Attraction (perhaps ex

tend ing to y = co )

"oJ 0.4

0.6

0.825

Beginning of Oscillatory

Trajectories. Finite

Dorr.ain.

Neutral Orbits Inside a

Finite Domain

Global Instability

Increasing speed to

extinction.

Large Domain of Attraction

(perhaps infinite in high

x, y corner)

----------------------------- ?

Finite Domain of Attraction

Contraction of Domain 10

100
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Figure 2. Sample Trajectories for "Standard Case"
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Figure 3. Domain of Attraction for "Standard Case"

3.fd +---+----1----1---+---+---+----+

2.12

1.£1 1] [J

lSI.
PI

ESi1.
N

lSI
o

lSI
o

I5J

+

+

+

iii
o-I

+
+ +

51
o

N
I

I

DoD

-ioU

-J.lJ

-!i.B

-&.£1

-7.£1 +----t---+---+----+---....---{l!~--I-----I
CiiI

o

:r
J I

-2.U

o
bJ
D::
U.

">-
LD
t:J
....J

LDG XI PREY



Figure 4a. Sample Phase Plane Trajectory for C = 0

and k = 0.05
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Figure 4b. Sample Phase Plane Trajectory for C = 0

and k = 0.2

3. 0 +---.........--~io--+--.----+-----t---+----+

2.B

l.B

B.B

-l.U
0
1&1
u:
l:l.

..... -2.'l
>-
l.!J
tJ
...J

-J.B

-5:.Pl

-6.'1

-7.1!5
l'il lSI lSI til lSI lSI I'.liI lSI. . . . . . . .
:r r1 N - ~ N 1'1

• • • I

LOG X, PREY



Figure 4c. Sample Phase Plane Trajectory for C = 0

and k = 0.6
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Figure 4d. Sample Phase Pla;neTrajectory for C = 0

and k = 0.825
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Figure 4e. Sample Phase Plane Trajectory for C = 0

and k = 1. 0
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Figure 4f. Sample Phase Plane Trajectory for C = 0

and. k = 1. 4
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Figure Sa. Samole Phase Plane Trajectory for C = 1

and k = 0.6
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Figure Sb. Sample Phase Plane Trajectory for C = 1

and k = 1.8
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Figure 5c. Sample Phase Plane Trajectory for C = 1

and k = 3.0

3. B+----t-----tr----+----+---t-"---+----j

2.B

J.U

-loll
0
w
u:
u..

" -2.[1
>-
UJ
C
-J

-J.B

-'i.U

-!i.D

-G.B



Figure 5d. Sample Phase Plane Trajectory for C = 1

and d = 6.0
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Figure Se. Sample Phase Plane Trajectory for C = 1

and k = 10
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Figure Sf. Sample Phase Plane Trajectory for C = 1

and k = 100
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