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SUMMARY 

This paper presents an analysis of the satisficing decision- 
making process in a simple organization under multiple objectives. 
The role of aspiration levels or reference objective levels is 
stressed and a conceptual model of this behavior is presented. 

A specification or rather modification of the mathematical 
concept of a value (utility) function that describes the satis- 
ficing behavior is given; the modified value function, called 
the achievement scalarizing function, should not be only order 
preserving but also order approximating in a certain sense. It 
is shown that the notions of reference objective levels and 
achievement scalarizing functions form a mathematical basis not 
only for satisficing decision making but also for Pareto optimi- 
zation; this basis is an alternative to or even stronger than 
the approaches based on weighting coefficients or typical value 
functions. This mathematical basis, which can also be considered 
as a generalization of the goal programming approach in multi- 
objective optimization, results in pragmatic approaches to many 
problems of multiobjective analysis, including the problem of 
interactive assessment of solutions to economic models for 
policy analysis and planning purposes. 



A MATHEMATICAL BASIS FOR SATISFICING 
DECISION MAKING 

Andrzej P. Wierzbicki 

INTRODUCTION 

This paper is aimed at providing a mathematical background 

for satisficing decision making. It is assumed that the reader 

is well-acquainted both with the methodological reflection leading 

to the idea of satisficing decision making (March and Simon 1958, 

Boulding 1955) as with the state of the art of optimizing deci- 

sion making and multiattribute decision analysis as representd, 

for example, by Bell et al. (1977), Charnes and Cooper (1961), 

Cohn and Marks (1975), Fishburn (1970), Haimes et al. (1975), 

Keeney and Raiffa (1 976) , and Nash (1 950) , and that he has also 
encountered some of the vexing problems in the applications of 

this highly developed theory. It is worthwhile, however, to 

reflect briefly on some of the main points in the discussion 

between the optimizing versus satisficing approaches to decision 

making. 

The basic questions in applications of multiattribute deci- 

sion analysis or multiobjective. optimization may take various 

forms (see, e.g., Ackoff 1979, Dreyfus and Dreyfus 1976, Wierzbicki 

1979) but can be summarized as follows: 



-- Is the maximization of a value (utility) function an 

adequate model for typical decision--making processes? If the 

rationality of a decision is restricted by various external or 

institutional aspects, how do ue best model the decision-making 

process mathematical Z y  ? 

The development of the classic apparatus of multicriteria 

optimization, preference relations, utility, and value theory, 

beginning with Pareto in 1896 and culminating with Debreu in 1959, 

was strongly related to economic theory. However, economic theory 

is concerned with averages of thousands of decisions and the in- 

dividual consumer in this theory is a mathematical construction 

which has averaged out externalities, institutional dependencies 

and other whims of the individual. More recent developments of 

this theory take into account persistent externalities by intro- 

ducing additional constraints and examining the restricted ra- 

tionality of decision making--see Arrow (1974). 

On the other hand, most individual decisions are made in some 

organizational structures. Even when shopping in a supermarket, 

an individual consumer often has a list of items to buy, composed 

with the help of his family, and his own rationality of choice 

is partly restricted by this list. When buying some new equip- 

ment, a manufacturer is restricted by various environmental and 

safety standards. Expressing such externalities by additional 

constraints to utility maximization is certainly possible, though 

not necessarily the best way to account for them. Not all of 

them have the hard character of a mathematical inequality; some 

might be overcome by ingenuity or trade-offs in other resources 

and should, therefore, beexpressed by softer mathematical tools. 

These tools have not been fully developed yet and the existing 

utility and value theory does not fully explain how decisions 

are made in organizational structures. 

This fact has been recognized by many economic theorists-- 

Boulding (1  955) , March and Simon (1 958) , and others. An alter- 

native satisficing approach to decision making has been developed: 

decisions in organizations are made to satisfy certain aspiration 

levels, not to maximize a utility or value functkon. Much metho- 

dological reflection and analysis support this approach. However, 



the problems of a mathematical description of the satisficing 

approach and its relations to optimizing approaches have not been 

investigated in more detail. 

More recently, further interest in decision analysis has 

been stimulated by system analytic problems which encompass 

economic, technological, sociological, and environmental objec- 

tives and constraints. When aggregating such goals, utility or 

value functions do not usually have a straightforward objective 

meaning but reflect rather subjective preferences of a decision 

maker or a group of experts. Although there have been attempts 

to apply a satisficing approach in systems analysis, most of 

the detailed studies (Bell et al. 1977, Fishburn 1970, Keeney 

and Raiffa 1976) on decision analysis were related strongly to 

preferences and utility theory. Identification methods have been 

developed for individual and group preferences described by 

utility and value functions; statistical approaches have been 

considered to take into account uncertainty and risks; and 

interactive procedures have been devised in order to involve 

a decision maker more directly into the decision process based 

on learning about his preferences. There have also been many 

successful applications of this highly developed theory, par- 

ticularly if the compared alternatives are given explicitly, 

their number is not too large, and the difficulty of the problem 

is related to comparing various sociological, environmental and 

economic consequences of the alternatives; a psychometric experi- 

ment performed on a group of experts helps them to better under- 

stand their own preferences. 

However, it has been realized that while evaluating given 

alternatives is an important task, an even more important problem 

in systems analysis is generating alternatives. For example, 

the mathematical models used in economic and sociological plan- 

ning describe implicitly an infinite number of alternatives and 

their consequences, and the problem is how to generate a re- 

stricted number of explicit alternatives with the help of these 

models in a region of interest of the decision maker or a group 

of them. This problem is related to the satisficing rather than 

the optimizing approach to decision making, and many researchers 



in multiobjective optimization have realized the need of an 

appropriate mathematical formulation. Sakluvadze (1971, 1374), 

Yu and Leitmann, and others considered the use of utopia points 

representing some unattainable aspiration levels as reference 

points for generating alternatives. Charnes and Cooper (1961), 

Dyer (1972), Kornbluth (1973), Ignizio (1978) and others developed 

goal programming--the use of variable bounds on objective levels 

in the process of multicriteria optimization. Yet these and re- 

lated works have not had the impact they deserve for several 

reasons. 

First, although many partial results have been obtained, 

a mathematical basis for satisficing decisions and their rela- 

tion to optimal decisions has not been fully developed. Thus, 

the approaches based on the use of reference objectives--that 

is, any desirable aspiration levels for objectives--were looked 

upon as somewhat less scientific, 'ad hoc' approaches. It was 

not clear whether it is possible to develop a consistent, basic 

theory of multiobjective optimization and decision making starting 

with the use of reference objectives rather than with weighting 

coefficients or value (utility) functions. In other words, the 

necessary and sufficient conditions, existence conditions, rela- 

tions to preference orderings, etc., had to be formulated in terms 

of reference objectives. Some more abstract aspects of this 

question have been analyzed in earlier works of the author 

(Wierzbicki 1975, 1977a, 1977b, 1978, 1979); a synthesis of 

relevant results is presented in this paper. 

Second, although many researchers realized the relations 

between satisficing decision making and such approaches as goal 

programming (see, e.g., Ignizio 1978), some basic methodological 

questions have not been sufficiently analyzed: What c a n  b e  

l o g i c a l l y  assumed a b o u t  t h e  d e c i s i o n - m a k i n g  p r o c e s s  i n  a  s i m p l e  

o r g a n i z a t i o n ,  whose preferences in this organization should be 

mathematically modelled? What is the relation between satisficing 

decision making and utility or value maximization, etc.? The 

main p rupose  o f  t h i s  paper  i s  t o  p r e s e n t  an  a n a l y s i s  o f  s u c h  

m e t h o d o l o g i c a l  q u e s t i o n s  t o g e t h e r  w i t h  r e s u l t i n g  m a t h e m a t i c a l  

d e v e  l opmen t .  



A METHODOLOGICAL HYPOTHESIS 

The following hypothesis describes a conceptual model for 

the decision making process in a simple organization. The organi- 

zation consists of a top decision maker or a group of them aggre- 

gated here for simplicity in a single unit and called t h e  b o s s ,  

and of technical or professional staff, again aggregated here in 

a single unit and called t h e  s t a f f .  The b o s s  formulates a deci- 

sion problem for the staff, asking them to prepare one or several 

plans of action to attain certain goals; he f o r m u l a t e s  t h e  g o a l s  

i n  t e r m s  o f  a s p i r a t i o n  l e v e l s  f o r  s e v e r a l  o b j e c t i v e s .  The s t a f f  

examines possible actions in detail, checks attainability of 

aspiration levels and proposes  d e t a i l e d  p l a n s  o f  a c t i o n .  The boss 

can either accept a proposed plan and decide to execute it, or 

change his requirements and let the staff prepare new plans. 

It is necessary now to make several idealizing assumptions 

that specify additionally some aspects of the decision making 

process and result in a relatively simple mathematical model of 

the organization. 

First, i t  i s  assumed t h a t  t h e  g o a l s  o f  t h e  a c t i o n  a r e  c l e a r l y  

and c o m p l e t e l y  p r e c e i v e d .  In other words, the boss and the staff 

must have the same objectives in mind, including those which 

might be more important for the staff but less so for the boss, 

and have a common understanding about what it means to improve 

each of the objectives. This does not mean that the boss and 

the staff should have the same preferences on various objectives; 

they need not agree on details, only on principles. Additionally, 

it might be required that the boss specifies aspiration levels 

for all objectives, even for those not so important for him. In 

particular, resources (budget, time, etc.) allocated by the boss 

for the planned action might be usefully treated also as objectives 

rather than as constraints, and the allocated levels of resources 

become then aspiration levels. 

Mathematically, this assumption means that the boss and the 

staff have the same space of objectives and the same notion of a 

natural inequality in this space (the same partial preordering or 

quasiorder of the space) but not necessarily the same preference 



structure (not the same complete- preordering). The aspiration 

levels given by the boss form a reference point in the objective 

space. To simplify the discussion, it might be agreed that all 

objectives are improved if their levels are enlarged, which corre- 

sponds to Pareto maximization or to the natural partial ordering 

generated by the natural positive cone in the objective space; 

however, morecomplicated situations can be also analyzed. 

Second, i t  i s  assumed t h a t  t h e  b o s s  i s  c o n s i s t e n t .  This 

means that he cannot prefer plans in which one of the objectives 

has deteriorated, all others belng the same. Mathematlcalxy, it 

means that his preference mapping (complete preordering) is 

strictly monotonic in the sense of the natural inequality in 

objective space (preserves the partial preordering of the space). 

Besides this requirement, his preferences might be arbitrary. 

Third, i t  i s  assumed t h a t  t h e  s t a f f  i s  d e d i c a t e d  and e f f i -  

c i e n t .  Dedication of the staff means the same as the consistency 

of the boss: the preferences of the staff must increase as the 

objectives of the planned action improve, although the detailed 

pattern of these preferences might be different than those of the 

boss. Efficiency means something more: the staff actually maxi- 

mizes the preferences and proposes only nondominated plans, that 

is, such that no single objective can be improved without dete- 

riorating others (the ther 'nondominated' is preferred here to 

the term 'Pareto optimal', which has a more specific meaning, 

or 'efficient' plans, which implies economic efficiency, while 

various objectives might also have noneconomic interpretation). 

Mathematically, this assumption means that the staff preference 

mapping not only strictly preserves the partial preordering of 

the objective space, but also is maximized during the preparation 

of plans. 

Fourth, i t  i s  assumed t h a t  t h e  s t a f f  t a k e s  s e r i o u s l y  t h e  

a s p i r a t i o n  l e v e l s  and s t r i v e s  t o  a t t a i n  t h e m .  This assumption 

is crucial for describing the satisficing behavior in the organi- 

zation and the limited rationality of choice of the staff. To 

better understand what restrictions result from this assumption, 

consider three possible types of outcomes of the work of the 

staff. 



I f  t h e  a s p i r a t i o n  l e v e l s  g iven by t h e  boss  a r e  a t t a i n a b l e  

w i th  some s u r p l u s ,  t h e  s t a f f  i s  f r e e  t o  u se  i t s  own p re fe rences  

t o  choose t h e  proposed p lan ;  bu t  t h e  freedom i s  r e s t r i c t e d  t o  

t h e  s u r p l u s  above t h e  a s p i r a t i o n  l e v e l s .  The s t a f f  should no t  

bo ther  t h e  boss wi th  t o o  many ques t ions  about  how t o  a l l o c a t e  

t h e  s u r p l u s ;  one o r  s e v e r a l  d e t a i l e d  p l a n s  should be p re sen ted  

f o r  t h e  boss '  approva l ,  and a l l  p l a n s  should be nondominated 

according t o  t h e  t h i r d  assumption. 

I f  t h e  a s p i r a t i o n  l e v e l s  a r e  n o t  a t t a i n a b l e ,  t h e  s t a f f  must 

choose p l a n s  which have r e s u l t s  t h a t  match t h e s e  l e v e l s  a s  

c l o s e l y  a s  p o s s i b l e .  The sense  of c lo senes s  i s  l e f t  f o r  t h e  

s t a f f  t o  dec ide ;  aga in  t hey  should no t  bo ther  t h e  boss  t o o  much. 

The s t a f f  cou ld  a l s o  propose s e v e r a l  p l a n s  corresponding t o  

t o  t h e  a s p i r a t i o n  l e v e l s ,  a l l  p l a n s  being nondominated according 

t o  t h e  t h i r d  assumption.  

The s i m p l e s t  b u t  most important  c a s e  i s  when t h e  a s p i r a t i o n  

l e v e l s  a r e  j u s t  a t t a i n a b l e  wi thout  any s u r p l u s ,  t h a t  i s ,  non- 

dominated by any o t h e r  a t t a i n a b l e  outcomes. Here t h e  s t a f f  r a -  

t i o n a l i t y  i s  most s e v e r e l y  r e s t r i c t e d :  a s  impl ied by t h e  f o u r t h  

assumption,  t h e  s t a f f  must propose a t  l e a s t  one p l a n  wi th  outcomes 

t h a t  p r e c i s e l y  match t h e  boss '  wishes ,  a l though  some a l t e r n a t i v e  

p l a n s  might be proposed a s  w e l l .  Since it i s  t h e  boss '  peroga- 

t i v e  t o  choose and accep t  p l a n s  o r  t o  ask f o r  p r e p a r a t i o n  of 

new p lans  w i th  a l t e r e d  a s p i r a t i o n  l e v e l s ,  t h e  f o u r t h  assump- 

t i o n  r e a l l y  imp l i e s  t h a t  he f u l l y  c o n t r o l s  t h e  o r g a n i z a t i o n ,  no 

ma t t e r  what o t h e r  p r o p e r t i e s  t h e  p re fe rences  of t h e  s t a f f  have. 

A mathematical  d e s c r i p t i o n  of t h e  f o u r t h  assumption must 

be chosen t o  r e f l e c t  t h i s  p a r t i c u l a r  r e s t r i c t i o n  of t h e  s t a f f  

r a t i o n a l i t y  t h a t  g i v e s  f u l l  c o n t r o l  t o  t h e  boss .  I t  w i l l  be 

shown l a t e r  i n  more mathematical  d e t a i l  t h a t  t h e  f o u r t h  assump- 

t i o n  can be r ep re sen ted  by t h e  fo l lowing  axiom o f  o r d e r  a p p r o x i -  

m a t i o n :  t h e  s e t  o f  o b j e c t i v e  ou tcomes  p r e f e r r e d  by t h e  s t a f f  

t o  t h e  a s p i r a t i o n  l e v e l s  g i v e n  by t h e  b o s s  mus t  c l o s e l y  a p p r o x i -  

mate  t h e  s e t  o f  ou tcomes  t h a t  a r e  b e t t e r  t h a n  t h e  a s p i r a t i o n  

l e v e l s  i n  t h e  n a t u r a l  i n e q u a l i t y  s e n s e  ( i n  t h e  p a r t i a l  p r eo rde r ing  

s e n s e ) .  I n  o t h e r  words, t h e  p re fe rence  o r d e r i n g  of t h e  s t a f f  



relative to the given aspiration levels must closely approximate 

the natural partial preordering, common to the boss and the staff. 

An interpretation of this axiom is perfectly straightforward: 

in order not to come into conflict with their own and the boss' 

preferences around the aspiration levels, the perfect staff 

should keep to the agreed principles of what is naturally better, 

not to guess or bargain about what might be marginally better. 

Clearly, all the above assumptions describe a type of idea2 

organization, which does not occur in practice. Staff members 

do bargain with their bosses, bosses are not necessarily con- 

sistent in their decisions, etc. However, the above model of 

an ideal organization might serve as a starting point for intro- 

ducing further aspects and deviations from the ideal model. 

It might also be argued that this model is too ideal to 

describe satisficing decision making in organizations: a main 

logical reason for accepting satisficing decisions is that there 

is usually no time to really optimize them,and the assumption of 

efficiency of the staff might therefore be challenged. However, 

the time allocated for the staff to prepare the plan might be 

taken into account to define conditional efficiency. Moreover, 

the staff is not required to optimize a global value function 

for the entire organization; this task is reserved for the boss, 

and he can really do so by changing aspiration levels if he 

wishes. The assumption of efficiency means only that the staff 

would not propose dominated plans of action, with outcomes that 

can be clearly improved. 

The main purpose of the analysis of such an ideal organization 

is to define a class of functions which would describe the pre- 

ferences of the staff under its limited rationality of choice. 

These are, in a sense, modified value functions. However, these 

functions must express both the utility of achieving the aspira- 

tion levels with some surplus or the disutility of not achieving 

these levels. Noreover, these functions must reflect the speci- 

fic order approximation axiom implied by the fourth assumption. 

Therefore, these functions depend explicitly and nonlinearly on 

the assumed aspiration levels. Following the tradition of goal 



progamrning and reference point optimization (see Ignizio 1978, 

Wierzbicki 1977a) these functions will be called achievement 

scaZarizing functions. As it will be shown later, main axiomatic 

requirements defining such a class of functions are order preser- 

vation and order approximation properties. There are several 

reasons for studying this class of functions. 

First, although the boss can control the ideal organization 

no matter what particular achievement scalarizing function char- 

acterizes the staff--provided the basic axioms for this function 

are fulfilled--the shape of this function might influence the 

easiness of interaction between the boss and the staff. This 

subject requires further theoretical and experimental studies; 

in this paper, only several examples of such functions are de- 

scribed. 

Second, the notion of the ideal organization can be also 

used as a blueprint for devising interactive systems composed 

of a model user (an economist, a system analyst, a decision 

maker) interpreted as the boss and of a model (of econometric, 

system analytic, etc., nature) augmented with an achievement 

scalarizing function and an optimization procedure, interpreted 

as the staff. In a preparatory stage, it is necessary to define 

the model outputs that are interesting for the user, the sense 

of a natural inequality in the space of outputs, and also the 

model inputs (parameters, scenarios, etc.) that might be changed 

in optimization; moreover an achievement scalarizing function 

and an optimization procedure that maximizes this function are 

chosen. Then the user simply specifies desirable model outputs 

as aspiration levels; the system responds whether these outputs 

are attainable or not and proposes one or several alternatives 

of outputs, close to the desired in the nonattainable case, 

better than the desired in the attainable (with surplus) case, 

and matched to the desired in the just attainable case. By 

changing his requirements, the user can obtain various alterna- 

tives from the model. Such a system might be advantageous to 

interactive use of planning models, for including human judge- 

ment in formal modelling, even for devising hierarchical struc- 

tures of models with various degrees of aggregation (when the 



upper-level model is interpreted as the boss) and in many other 

modelling situations traditionally approached by trial and error 

procedures. 

Third, a detailed study of the ideal organization might 

serve as a starting point for various extensions: hierarchical 

organizations when the boss is himself part of a staff of a 

higher-level manager; negotiations of aspiration levels between 

groups of decision makers; inclusion of additional objectives 

by the staff; uncertainty either in the boss' requirements or 

in the staff's responses, etc. 

Finally, observe that the above hypothesis on the decision 

making process in a simple, idealized organization serves several 

purposes. By applying notions of modified utility and value 

maximization when describing satisficing decision making, it pro- 

vides for a bridge between these theories. On the other hand, 

sihce the boss might optimize a global value function for the entire 

organization but is not necessarily required to do so, the above 

hypothesis changes the traditional sense of optimization. If 

the aspiration levels represent the intuition, experience, and 

judgement of the boss, not formalized into a value function, 

then the optimization in this model of an organization is rep- 

resented by the efficient work of the staff, generating alter- 

natives that are in a sense best relative to the boss' wishes. 

However, these wishes are not interpreted as hard inequality 

cosntraints; if they are not attainable, then some alternatives 

that are close to them might be found. Thus, t h e  above  h y p o t h -  

e s i s  a l s o  d e s c r i b e s  a  method o f  s o f t  i n c l u s i o n  o f  human j udge -  

ment  i n  o p t i m i z a t i o n  p r o c e d u r e s .  

MATHEMATICAL FOUNDATIONS 

To represent the above hypothesis mathematically, a modi- 

fication of the value or utility function concept is needed; 

the modified functions are called achievement scalarizing func- 

t ions. 

Let Eo C E be a set of admissible decisions or alternatives 

to be evaluated. Let G be a (linear topological) space of 



o b j e c t i v e s  o r  per formance  i n d i c e s  o r  outcomes. L e t  a  mapping 

Q:EO + G be g i v e n ,  d e f i n i n g  n u m e r i c a l l y  t h e  consequences  o f  e a c h  

a l t e r n a t i v e .  Denote by Q o  = Q ( E O )  t h e  se t  of a t t a i n a b l e  o b j e c -  

t i v e s .  L e t  a  n a t u r a l  i n e q u a l i t y ,  t h a t  i s ,  a  p a r t i a l  p r e o r d e r i n g  

i n  G be  g i v e n ;  t o  s i m p l i f y  t h e  p r e s e n t a t i o n ,  assume t h a t  t h e  

p r e o r d e r i n g  i s  t r a n s i t i v e  and can  be  e x p r e s s e d  by a  p o s i t i v e  

cone  (any c l o s e d ,  convey,  p r o p e r  cone)  D $ G:  

A co r respond ing  s t r o n g  p a r t i a l  p r e o r d e r i n g  i s  

0 

I f  t h e  cone D h a s  a  nonempty i n t e r i o r  D ,  it i s  p o s s i b l e  a l s o  

t o  i n t r o d u c e  a  s t r i c t  p a r t i a l  p r e o r d e r i n g :  

Suppose t h a t  w e  maximize a l l  o b j e c t i v e s  ( g a i n s ,  e t c . ) .  A gener -  

a l i z e d  P a r e t o  (nondominated)  o b j e c t i v e  i s  a  D-maximal e l e m e n t  

o f  Q*: 

A s l i g h t l y  weaker n o t i o n ,  a d m i t t i n g  a  few more t h a n  o n l y  non- 

dominated p o i n t s  i s  t h a t  of  weak D-maximal e l e m e n t s :  

0 

4 E Q, i s  weakly D-maximal - Q0 n (4  + D )  = 0 . ( 5 )  

For a  normed s p a c e  G I  w e  c a n  d e f i n e  a l s o  a  s t r o n g e r  n o t i o n  of 

D -maximal e l e m e n t s ,  a d m i t t i n g  a  few less t h a n  a l l  nondominated 
& 

p o i n t s :  

where D E  i s  an & - c o n i c a l  neighborhood of D:  



An a c h i e v e m e n t  s c a l a r i z i n g  f u n c t i o n  (shortly, a s c a l a r i z i n g  

f u n c t i o n )  is a function s:G + R , with argument q - q where 
q = Q(x) E QO is an attainable objective (x E E is an admissible 0 
decision) and q E G is an a r b i t r a r y  reference objective ( a s p i r a -  

t i o n  l e v e l ,  n o t  c o n s t r a i n e d  to Q nor otherwise); G is assumed 
0 

to be a normed space. A scalarizing function is defined, more- 

over, by the following requirements: 

a )  it should be s t r i c t l y  o r d e r - p r e s e r v i n g  in q :  

or, if possible, s t r o n g l y  o r d e r - p r e s e r v i n g  

where, clearly, strong order preservation implies strict order 

preservation; 

. b )  it should be o r d e r  r e p r e s e n t i n g  

or, at least, o r d e r  a p p r o s i m a t i n g  for some small E > 0, 

where, clearly, order representation implies order approximation; 

C )  if q E Q - D, then the maximization of s(q - q) over 0 
q E Qo should represent a concept of either allocation or maxi- 

- 
mization of the surplus q - q E D; if q $ Qo - D, then the maxi- 

- 
mization of s(q - q) over q E Qo should represent a concept of 

distance minimization between q and the D-maximal set 
A 

Qo = {$  E QO: Qo ($ + 6) = 0 1 .  



Observe that requirements 1 and 5 are axiomatic, although 

though formulated alternatively: it is easy to show that (9) 

and (10) cannot be satisfied simultaneously, hence we require 

either (8) and (10) or (9) and (11). Requirement -" is 

descriptive and partly follows from a and b .  

Requirement a results directly in a sufficient condition 

of Pareto-zaximality. In fact, the following well-known lemma 

holds (Debreu 1959, see also Da Cunha and Polak 1967, Wierzbicki 

1977a) : 

LEMIrIA 1. I f  s  i s  s t r o n g l y  o r d e r  p r e s e r v i n g  t h e n  i t s  maximal  

p o i n t s  i n  q  E Q o  a r e  D-maximal: 

- 
$ = argmax s(q - q) * Q ~  n ( 4  - 6) = 0 . 

qEQ0 

Y f  s  i s  s t r i c t l y  o r d e r  p r e s e r v i n g ,  t h e n  i t s  maximal  p o i n t s  a r e  

w e a k l y  D-maximal. 

Requirement b  results in a necessary condition of Pareto- 

maximality, much stronger than the known conditions based on 

weighting coefficients. The following lemma was given first 

in Wierzbicki (1977a), in a less general formulation: 

LEMMA 2. I f  s  i s  b o t h  o r d e r  p r e s e r v i n g  ( q l  L q 2  * s ( q l - g )  - > 
- - 

s i q 2 - q )  f o r  any  q l ,  q 2 ,  q )  and o r d e r  r e p r e s e n t i n g  and i f  q = 6 
i s  ( w e a k l y )  D-maximal,  t h e n  t h e  maximum o f  s  o v e r  q  E Q i s  

0 
a t t a i n e d  a t  7 = 4 and i s  e q u a l  t o  z e r o  

Qo 17 (6  + 6) = % * $  E A r g m a x  s(q - $) ; max s(q - $1 = 0. 
qEQ0 +Q0 

I f  s  i s  o r d e r  p r e s e r v i n g  and o r d e r  a p p r o x i m a t i n g  f o r  a  g i v e n  

E > 0  and i f  = @ i s  D -max imal ,  t h e n  t h e  maximum o f  s  o v e r  
E 

Q o  i s  a l s o  a t t a i n e d  a t  7 = @ and i s  e q u a l  t o  z e r o ,  s o  t h a t  1 1 3 )  

h o l d s  w i t h  b s u b s t i t u t e d  by 5,. 
The proof of Lemma 2 for an order approximating function s 

is as follows. Suppose max s (q-$) ; 
s€Qo 

then there is such 



- - 
- q E Qo that s (6-6) > s ($-$I = 0.  In other words, q E SO - - 

{q E G: s (q-6) > 0). Clearly, So C $ + DE by the assumption of 
order approximation. However, G $ 4 + (DE n -DE) , since 
6 E $ + ( D ~  n -D€) = ($+D€) ($-D€) would imply s(G-$) = 0 

by the assumption of order preservation. Thus, GE$ + 6 and 
E 

E Qo, which contradicts the assumption that Q0 n ($+DE) is 
empty. The modification of the proof for an order representing 

function s is obvious. Clearly, a strictly or strongly order 

preserving function is order preserving, hence the assumptions 

of Lemma 2 are satisfied for all achievement scalarizing func- 

t ions. 

Observe that Lemma 2 is a necessary condition for D-maxi- 

mality (or DE-maximality) even for  nonconvex s e t s  Q the 
0 ; 

geometrical interpretation of this condition is that of separation 

of sets Qo and $ + 6 at $ by a cone So, see Figure 1. 

Observe also that it is really requirement b that distin- 

guishes mathematically a scalarizing function from a value func- 

tion; the latter is usually supposed to satisfy requirement a. 

We conclude that, with the help of requirements a and b and the 

resulting Lemmas 1 and 2, even stronger fundamental theoretical 

results on multiobjective optimization are obtained than the known 

results based on weighting coefficients; thus, the reference 

objectives are not only an equivalent, but an even stronger 

theoretical tool than weighting coefficients. Lemma 2 can be 

used, for example, for checking the attainability and Pareto- 

optimality of a given q € G. If an order representing and order 

preserving function s(q-q) is maximized, and q is not attainable, 
then max s(~-G) <0; if q is attainable and weakly pareto-optimal, 

qEQ0 

then max s (q-q) = 0; if q is attainable but not weakly Pareto- 
qEQ0 

optimal, then max s (q-q) > 0. This cannot be achieved when using 
qEQ0 

weighting coefficients or typical value or utility functions. 



- - - 2 Figure 1. The separation of Qo and a + D = q + R+ by 
- 2 

SO = q + R+E. 

However, every order preserving function--a value or 

utility function or a scalarizing function--defines at its 
h 

maximal points $ the corresponding weighting coefficients A, 

if it is differentiable 

where the norm used in ( 1 4 )  is the norm of the dual space G* to 

the objective space, D* is the dual cone to D and < -  , - >  denotes 

the duality relation. If G = R", then it is typically assumed 

that weighting coefficients sum up to one, which implies the 

sum of absolute values norm in ( 1 4 )  and the maximum no,m for 

the objective space. If s is only subdifferentiable, any of 
h 

its subgradients at 4 can be used to define X similarly as in 
( 1 4 ) .  



There are two important corollaries to Lemmas 1 and 2. 

COROLLARY 1. Suppose  a  s c a l a r i z i n g  f u n c t i o n  s  i s  s t r i c t l y  

o r  s t r o n g l y  o r d e r  p r e s e r v i n g  and u p p e r  s e m i c o n t i n u o u s  i n  a  t o p o -  
- 

l ogy  i n  G. Suppose  t h e r e  i s  q  E G s u c h  t h a t  t h e  s e t  ( > D )  n Q O  

i s  compact i n  t h e  same t o p o l o g y .  Then t h e r e  e x i s t  ( p o s s i b l y  

w e a k l y )  D-maximal p o i n t s  o f  s e t  Q O .  

The proof of the corollary is immediate: the Weierstrass' 

theorem implies the existence of a maximum point $ of s(q-q) in 

the set (G+D) 17 Q O .  By Lemma 1 ,  this point is a (possibly weak- 

ly) D-maximal point of (;+D) n Q o .  It is easy to check that it 

is also a (possibly weakly) D-maximal point of Q o .  

The following corollary establishes the fact that the boss 

can fully control the organization if the staff preferences are 

described by an achievement scalarizing function. 

COROLLARY 2. Suppose  a  s c a l a r i z i n g  f u n c t i o n  s  i s  o r d e r  

p r e s e r v i n g  and o r d e r  r e p r e s e n t i n g .  D e f i n e  t h e  mapping 
A A - 
$: G -+ G o  = I $  E g o :  Q~ n ($+a) = @ I  by $ ( q )  = a r g  min ll$-gll 
f o r  $ E Arg max s ( ~ - 7 ) .  Then t h e  mapping i s  o n t o .  I f  a  s e a -  

qEQo 
Z a r i z i n g  f u n c t i o n  s  i s  o r d e r  p r e s e r v i n g  and o r d e r  a p p r o x i m a t i n g  

A A A 

and t h e  mapping $ i s  d e f i n e d  s i m i l a r l y  b u t  w i t h  $: G ' Q O E  - - - 
= { $  E Q O :  Q O  1-1 (a+DEl = @ I ,  t h e n  t h e  mapping i s  a  l s o  o n t o .  

The proof is also immediate: it is necessary to show that 

for every $ E Go or $ E S O E  there exists a q E G such that 
A - A 

$(q) = 6. Lemma 2 implies that it is sufficient to choose q = q 
A 

to obtain $ ($1 = 3. This immediate result has, however, impor- 

tant interpretation: any d e s i r e d  nondominated  and a t t a i n a b l e  
A A 

p o i n t  $ E Q o  o r ,  a t  l e a s t ,  E Q O E  can  be  o b t a i n e d  by  moving  t h e  

r e f e r e n c e  p o i n t  ( a s p i r a t i o n  l e v e l )  7 o n l y ,  no  m a t t e r  what t h e  

o t h e r  p r o p e r t i e s  o f  t h e  a c h i e v e m e n t  s c a l a r i z i n g  f u n c t i o n  a r e  

( w h i c h  p a r t i c u l a r  n o t i o n s  o f  d i s t a n c e  m i n i m i z a t i o n  o r  s u r p l u s  

a l l o c a t i o n  have  b e e n  assumed i n  t h i s  f u n c t i o n ) .  

A further conclusion that can be derived from Corollary 2 

and from the possibility of determining marginal a p o s t e r i o r i  
A 

information X as given by equation (14) is that the boss or 



A - 
decision maker can change q in such a way that = $(q) finally 

converges to a maximum point of his own value or utility func- 

tion--under some assumptions concerning the reasonability of his 

strategy in changing see Wierzbicki 1979a. 

Consider finally another interpretation of an achievement 

scalarizing function s(q-q): let it represent a value function 

of a consumer under various externalities expressed by q and 
let these externalities have a probability distribution p($. 

After averaging over these externalities, the consumer value or 

utility function can be obtained by: 

This function is order preserving, since it is a generalized 

convex combination of order preserving functions. This repre- 

sents another possible link between value optimization and satis- 

ficing decision making. 

EXAMPLES OF ACHIEVEMENT SCALARIZING FUNCTIONS 

To show that the above theory is applicable for satisficing 

decision making and multiobjective optimization problems, we must 

first present some examples of functions satisfying the axiomatic 

requirements a and b as well as the descriptive requirement c. 

Assume that G = R", D = R:. Let a utility (value) function 

u(q) be defined for q E R:; assume the utility function is non- 
+ negative, u (q) > 0 for q E R:, zero on the boundary of Rnf - 

n 
u(q) = 0 for q E aR+, and strictly order preserving (not neces- 

n 
sarily strongly, since this is impossible for q E aR+). Now 

suppose a threshold q E Rn is defined, and the origin of the 
space shifted to the threshold; therefore, the utility function 

n 
u(q-5) is defined only for q E 5 + R+. To define, additionally, 

the function for q + R:, one can choose the following ex- 

pression: 



- 
where ( * )  denotes the positive part of a vector, I /  (q-q)+ll = 

4- - ' + dist(q,q+Rn), and p > 0 is a penalty coefficient.   he function 

s(q-q) has here two interpretations. 

First, it is an e x t e n d e d  ( b e y o n d )  t h r e s h o l d  u t i l i t y  f u n c t i o n :  

it might describe the behavior of an average consumer both above 

and below a threshold q of subsistence. Above the threshold, 

the average consumer maximizes his utility u; below the threshold, 

his disutility corresponds to a distance from satisfying all 

basic needs. 

Second, it is an achievement scalarizing function. It is 

clearly strictly order preserving: any norm in Rn is strictly 

order-preserving for positive components (not strongly, if the 

maximum norm is used). It is also order representing: 

n SO d=f { q ~ ~ n : s  (q-9) - > 01 = c + R , since u ( (q-q) +) might be 

positive only for q E q + Rn (if any component of the vector 
q - q is negative or zero, then the corresponding component 

n 
of the vector (4-9) + is zero, and u ( (q-c) +)  = 0 for (q-q) + E aR+) . 
It also expresses a notion of surplus allocation resulting from 

- 
utility maximization if q - q E R:, and a notion of distance 

- 
minimization, if q - q $ R:. In fact, Arg  mi^ 1 1  q-ql/ CArg max s (q-q) , 

+Qo qEQo 
if Q, - R:. 

Various norms in Rn and various utility functions can be 

used to define a specific form of (16) (see Wierzbicki 1979b). 

One of the most useful is the following convex, piecewise linear 

function: 

i -i n i -i s(q-q) = min(p min (q -q ) , 1 (q -q 1 )  ; p 2 ( 17.) 
1 <i<n i=l 

where upper indices denote vector components. The maximization 

of this function is equivalent to the following linear programming 

problem (provided the set Eo of admissible decisions x is de- 

scribed by linear inequalities and all objective functions 

qi = Q. (x) are also linear) 
1 



maximize y, q E Qo = Q(EO) , Y E Yo (4-9) - - 

After solving this problem, the weighting coefficients can 

be a posteriori determined from the dual program. 

Another class of achievement scalarizing functions are 

penalty scalarizing funntions. Their construction is based 
n 

upon simple reasoning: if q E q + R+, we maximize a norm or 
- 

a component of q - q; if q $ q + R:, we penalize for the dis- 
n 

tance between q and q + R+. An example of this class is the 

following function 

which is strictly order preserving (strongly for all norms in 

Rn but for the maximum norm) and order approximating with 

E > l / p  (see CJierzbicki 1978). This function expresses also a - 
specific notion of distance minimization, if q $ q + R: : if 
- n q '+ Qo - R+E and Arg max s (q-q) C Go€, then Arg miAn 1 1  q-ql 1 C 

sEQo qEQO 

Arg max s(q-q). However, Arg max s(q-q) is not always contained 
qEQo +Qo A 

, , 

in Go€, although it is always contained in (weak) Qo, since the 
n function s (q-q) is R:-order preserving, not R+€-order' preserving. 

Depending on the norm chosen, this function possesses various 

further properties (see Wierzbicki 1979a, 1979b). 

Another example is the penalty function resulting from a 
I 

maximization of the component q under (soft) constraints 

This function has been frequently used in various approaches 

to scanning the Pareto set in multiobjective optimization; 

however, it is less known that this function is (strictly or 



strong-ly, depending on the norm) order preserving for p > 0 

and order-approximating with E > l/p. Thus, any maximal point 

of this function, not necessarily satisfying the constraints, 

is a Pareto-maximal point, and any E-Pareto-maximal point 
- 
q = is maximal for this function. 

The penalty function (19) is easily generalized for the 

case when G is a Hilbert space--for example, the space of time 

trajectories of solutions of a time-continuous dynamic economic 

model. The corresponding formula is 

* 
s(q-G) = IIq-Gll-p~l(G-q)~ I 1  1 (21) 

D* where ( 0 )  denotes the operation of projection on the dual cone 

D* = { q * ~ ~ * :  <q*,qL~, vq ED) (see Wierzbicki and Kurcyusz 1977). * 
This function is strongly order preserving, if p> O  and DCD - , and 
order approximating with E - < l/p (see Wierzbicki 1977a). 

Thus, we have many possible forms of scalarizing functions, 

some of them (17), (20) being rather simple and easily applicable. 

Consider now in more detail the dependence of a maximal point 

$ of a scalarizing function s(q-q) on various factors: on the 

reference objective q, on the choice of norm, on the choice of 
penalty coefficient p, on the concept of surplus allocation or 

the utility used in extended threshold utility functions. All 

these factors influence the maximal point $. However, as it was 

explained in the previous section, the influence of the reference 

objective q is of primary importance, and the influence of other 
factors can be considered as secondary. If a mathematical 

model is used for aiding the decision making process, other 

factors can be specified by an optimization specialist: he can 

choose the norm in correspondence to the nature of the mathe- 

matical model (for example, if the model is linear, he might 

choose the maximum or the sum of absolute values norm; if the 

model is nonlinear, he might prefer the Euclidean norm); he can 

choose the penalty coefficient p to obtain a problem which is 

not too badly conditioned, but with reasonable violations of 

soft constraints; he can make his own guesses how to allocate 



- n 
a possible surplus q - q E R+, etc. These decisions are impor- 

tant for the optimization expert in the sense of computational 

efficiency; however, they are clearly not essential for the 

decision maker who can choose any 4 E 6 (or, at least, any 
A 0 

$ E Q ~ ~ )  by specifying and changing his wishes q. 

AN INTERACTIVE TECHNIQUE OF SATISFICING DECISION MAKING VIA 
MULTIOBJECTIVE OPTIMIZATION 

Consider now a practical interactive procedure for choosing 

a Pareto-maximal point, where the actual decisions are made 

by a decision maker and the mathematical model of a given 

problem and the optimization techniques serve only as a tool 

to help him to recognize quickly a relevant part of the Pareto- 

maximal set. This procedure can be interpreted as a technique 

for satisficing decision making with the help of a mathematical 

model. 

At the beginning, the decision maker is presented with all 

the information about the model of the problem he desires--for 

example, with the maximal and minimal levels of objective func- 

tions when maximized separately, and with the corresponding 

decisions. After that, he is asked to specify the vector of 

the desired levels for all objective functions, qo = 
-1 -n (qO,.. . , qO) E R" (only the finite-dimensional case is con- 

sidered here, although generalizations to the infinite-dimensional 

case are possible). 

For each desired reference objective vector q the mathe- i ' 
matical model and the optimization technique respond with: 

1) The Pareto-maximal attainable objective vector Qi, 

obtained through a maximization of a scalarizing function, and 

the corresponding weighting coefficients and decision variables; 

2) n other Pareto-maximal attainable objective vectors 

qi,,t j = 1 ,  ..., n, obtained through maximization of the 
scalarizing function with perturbed reference points: 



where di is the distance between the desired objective vector 
- 
qi and the attainable one Gi; e is the jth unit basis vector. 

j 
The advantage of the reference point perturbation (22) is that if 

the point qo is far from the Pareto set, the decision maker ob- 
tains a global description of the Pareto set by the points $ 

0 , j ' 
if q is close to the Pareto set, then Qi . describes finely the 

I 3  
Pareto set in a neighborhood of the desired point zit see Figure 2. 

The decision maker can now either choose one of the proposed 

alternatives, or modify his reference objective point to qi+,. 
There are various further refinements of this procedure. 

The modifications qi+l relative to Gi can be additionally con- 
strained to provide for the convergence of the procedure to a 

point that maximizes a utility or value function. The differences 
- 
qi+l - Gi can also be used to identify a utility or value function 
of the decision maker. These refinements, however, have only 

secondary importance for practical applications of the procedure 

since decision makers do use the satisficing approach and choose 

one of the generated alternatives soon. 

The distinction in the interpretation of a model solution 

as a reasonable altefnative responding to the wishes of the - 

decision maker rather than as a normative 'optimal'solution is a 

very important one. Models that generate only one 'best' solution 

cannot be easily used for decision aiding inorganizational struc- 

tures, while models that respond to the wishes of a decision 

maker by generating various alternatives and proposing detailed 

decisions corresponding to these alternatives can be easily 

incorporated in organizational structures at any level. 

This fact has been observed by researchers working on goal 

programming in multiobjective optimization, see Dyer (1972), 

Ignizio (1978) and Kornbluth (1973); however, the properties and 

possibilities of achievement scalarizing functions have not, been 

fully investigated in goal programming, where the questions of 

a priori defined weighting coefficients, of the use of a lexi- 

cographic order, etc., are still predominant. Thus, the inter- 

active procedure presented here can also be considered as a 

generalization of the goal programming approach. 



Figure 2. Interpretation of the interactive procedure. 

OTHER APPLICATIONAL FIELDS OF REFERENCE OBJECTIVE SCALARIZATION 

Scanning the Pareto set 

When building a multiobjective optimization model, the 

analyst must experiment with it znd, at least, attempt to scan 

the Pareto-set, that is, obtain a representation of it. Naturally, 

he should start by maximizing independently various objectives; 

after doing it, several methods of scanning the Pareto set can 

be applied, related to weighting coefficients, directional 

maximization, reference objectives, etc. Reference objectives 

with penalty scalarization result here in most robust and 

efficient techniques--see, e.g., Wierzbicki (1978), 

and Wierzbicki (1979). However, a scanning of the Pareto-set 

can be performed reasonably only when the number of objectives 

is small--say, not larger than three. For a larger number of 

objectives, an interactive technique as described in the 
preceeding section is much more reasonable. This applies par- 

ticularly if the number of objectives is very large--say, in 

trajectory optimization. 



T r a i e c t o r y  o p t i m i z a t i o n  

In typical formulations of dynamic optimization, single 

or multiple objectives are obtained through a normative aggrega- 

tion of dynamic trajectories by integral functionals. However, 

experienced analysts, economist, and decision makers often 

evaluate intuitively entire trajectories, functions of time, 

better than aggregate integral indices. A decision maker, ex- 

perienced in evaluating trajectories, can easily state his re- 

quirements in terms of a r e f e r e n c e  t r a j e c t o r y  c(t), a scalar- 

or vector-valued function of time; it would be a quite impractical 

task, however, to identify his preference relation over the 

space of trajectories. Therefore, we should rather construct 

ad hoc a scalarizing functional, for example, of a form similar 
2 2 to (21) with G = L [O;TI and D =  EL [O;T] :q(t) > 0 a.e. on - 

[;TI 1 :  

If the time is discretized, then the sum replaces the 

integral; the problem becomes finite-dimensional, but it is 

still more convenient to think in terms of trajectories than 

in terms of separate objectives. This technique can be applied, 

for example, to any economic model in order to obtain feasible 

and (generalized) Pareto-optimal trajectories that are either 

close to or better than any given desired trajectories, see 

Figure 3. 

Since the trajectories of solutions to economic models are 

very often chosen judgementably from a set of possible trajectories, 

this technique can have wide applications and provide for a 

methodological tool of experimenting with such models. The 

concept of trajectory optimization via reference trajectories 

has been applied by Kallio et al. (1980) in a study of alternative 

policies for the Finnish forest industrial sector. 



nf\ation Rate 1 
t I Model Response 11 

Figure 3. Functions of time or trajectories as reference 
objectives. 

Semi-regularization of solutions of mathematical models 

Any model that possesses many solutions or quasisolutions 

can be Tikhonov-regularized (Tikhonov 1 9 7 5 )  by choosing a solu- 

tion that is the closest one to a given reference point. Achieve- 

ment scalarizing functions represent, in fact, a generalization 

of this idea: the principle of a semiregularization. Consider 
-t function (20) and suppose that cr = (qS, q ) , where qS denotes 

reference objective components which should be either kept close 

to, or if possible, exceeded, and qt denotes reference objective 
components which should be kept close to, independently from the 

t sign of qt - q . The following penalty scalarizing function 

is both order preserving and order approximating, if we consider 
1 the partial ordering defined by the cone D = { q ~ ~ n : q  > 0 , ~ ~ ' ~ > 0 ,  - - 

qt1j = 0 1 .  Therefore, we can use scalarizing functions also for 



o b j e c t i v e  components t h a t  shou ld  be  k e p t  c l o s e  t o  a  r e f e r e n c e  

l e v e l  from bo th  s i d e s ,  

CONCLUSIONS AND POSSIBLE EXTENSIONS 

The main i d e a  i n  c o n s t r u c t i n g  a  ma themat ica l  b a s i s  f o r  

s a t i s f i c i n g  d e c i s i o n  making is  t o  a c c e p t  t h e  wishes  of  t h e  de-  

c i s i o n  maker i n  t h e  form of a s p i r a t i o n  o r  r e f e r e n c e  o b j e c t i v e  

l e v e l s  a s  a  b a s i c  a  p r i o r i  i n f o r m a t i o n  and t h e n  t o  b u i l d  ach ieve-  

ment s c a l a r i z i n g  f u n c t i o n s  which n o t  o n l y  depend s t r o n g l y  on 

t h i s  a  p r i o r i  i n f o r m a t i o n  b u t  a l s o  e x p r e s s  t h e  r e s t r i c t e d  r a -  

t i o n a l i t y  o f  a  t e c h n i c a l  s t a f f  ( o r  a  ma themat ica l  model) h e l p i n g  

t h e  d e c i s i o n  maker by p r o p o s i n g  a t t a i n a b l e  a l t e r n a t i v e s  c o r r e -  

sponding i n  some s e n s e  t o  t h e  d e s i r e d  a s p i r a t i o n  l e v e l s .  T h i s  

r e s t r i c t e d  r a t i o n a l i t y  c a n  be e x p r e s s e d  a b s t r a c t l y  by i n t r o -  

d u c i n g  t h e  o r d e r  approx imat ion  p r o p e r t y  of  a n  achievement  

s c a l a r i z i n g  f u n c t i o n ,  b e s i d e s  t h e  n a t u r a l  p r o p e r t y  o f  o r d e r  

p r e s e r v a t i o n  which i s  common w i t h  t y p i c a l  v a l u e  f u n c t i o n s .  The 

o r d e r  approx imat ion  p r o p e r t y  r e s u l t s  a l s o  i n  a  n e c e s s a r y  condi-  

t i o n  o f  P a r e t o  o p t i m a l i t y ,  a p p l i c a b l e  f o r  nonconvex problems and 

s t r o n g e r  t h a n  o t h e r  known n e c e s s a r y  c o n d i t i o n s .  Thus, t h e  mathe- 

m a t i c a l  b a s i s  f o r  s a t i s f i c i n g  d e c i s i o n  making c o r r e s p o n d s  t o  a n  

a l t e r n a t i v e  b a s i c  approach t o  m u l t i o b j e c t i v e  o p t i m i z a t i o n ,  gen- 

e r a l i z i n g  g o a l  programming and u t o p i a  p o i n t  approaches .  T h i s  

b a s i s  i s  r e l a t e d  t o  some o t h e r  i m p o r t a n t  problems i n  t h e  method- 

o logy  of  model e v a l u a t i o n ,  such  a s  t h e  problem o f  t r a j e c t o r y  

o p t i m i z a t i o n  o r  t h e  problem o f  r e g u l a r i z a t i o n  of  s o l u t i o n s  of 

b a d l y  d e f i n e d  mathemat ica l  models.  However, t h i s  a b s t r a c t  b a s i s  

is  a l s o  e m i n e n t l y  p r a g m a t i c a l :  t h e  main i d e a  o f  r e spond ing  t o  

t h e  wishes  of  a  d e c i s i o n  maker r a t h e r  t h a n  t e l l i n g  him what h i s  

wishes  s h o u l d  be  r e s u l t s  i n  p r a c t i c a l  p r o c e d u r e s  f o r  i n t e r a c t i v e  

d e c i s i o n  making w i t h  i n s t i t u t i o n a l  i n t e r p r e t a t i o n s .  

Many f u r t h e r  p rob lems- - re la ted  t o  t h e  u s e  of  r e f e r e n c e  

o b j e c t i v e s  under  u n c e r t a i n t y ,  h i e r a r c h i c a l  s t r u c t u r e s  of  d e c i -  

s i o n  making, e t c . ,  a r e  s t i l l  t o  be  i n v e s t i g a t e d .  Much remains  

t o  be  done,  moreover,  i n  a  wider  t e s t i n g  of  a  r e f e r e n c e  o b j e c t i v e  

approach i n  many a p p l i c a t i o n  f i e l d s .  
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