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About CEEW
The Council on Energy, Environment and Water (http://ceew.in/) is one of South Asia’s leading not-for-
profit policy research institutions. CEEW addresses pressing global challenges through an integrated and 
internationally focused approach. It prides itself on the independence of its high quality research, develops 
partnerships with public and private institutions, and engages with wider public.
 
In 2016, CEEW was ranked the best in South Asia in two categories three years running (Global Go To 
Think Tank Index); among the top 100 out of 6846 think-tanks in nine categories. This included CEEW 
being featured on a prestigious list of ‘Best Managed Think Tanks’ and ‘Best Independent Think Tanks’. In 
2016, CEEW was also ranked 2nd in India, 4th outside Europe and North America, and 20th globally out 
of 240 think tanks as per the ICCG Climate Think Tank’s standardised rankings. In 2013 and 2014, CEEW 
was rated as India’s top climate change think-tank as per the ICCG standardised rankings.

In six years of operations, CEEW has engaged in more than 130 research projects, published well over 70 
peer-reviewed books, policy reports and papers, advised governments around the world over 260 times, 
engaged with industry to encourage investments in clean technologies and improve efficiency in resource 
use, promoted bilateral and multilateral initiatives between governments on more than 50 occasions, 
helped state governments with water and irrigation reforms, and organised more than 140 seminars and 
conferences.

CEEW’s major projects on energy policy include India’s largest energy access survey (ACCESS); the first 
independent assessment of India’s solar mission; the Clean Energy Access Network (CLEAN) of hundreds 
of decentralised clean energy firms; India’s green industrial policy; the $125 million India-U.S. Joint Clean 
Energy R&D Centers; developing the strategy for and supporting activities related to the International 
Solar Alliance; modelling long-term energy scenarios; energy subsidies reform; decentralised energy in 
India; energy storage technologies; India’s 2030 renewable energy roadmap; solar roadmap for Indian 
Railways; clean energy subsidies (for the Rio+20 Summit); and renewable energy jobs, finance and skills.

CEEW’s major projects on climate, environment and resource security include advising and contributing 
to climate negotiations (COP-21) in Paris; assessing global climate risks; assessing India’s adaptation 
gap; low-carbon rural development; environmental clearances; modelling HFC emissions; business case 
for phasing down HFCs; assessing India’s critical mineral resources; geoengineering governance; climate 
finance; nuclear power and low-carbon pathways; electric rail transport; monitoring air quality; business 
case for energy efficiency and emissions reductions; India’s first report on global governance, submitted 
to the National Security Adviser; foreign policy implications for resource security; India’s power sector 
reforms; resource nexus, and strategic industries and technologies for India’s National Security Advisory 
Board; Maharashtra-Guangdong partnership on sustainability; and building Sustainable Cities. 

CEEW’s major projects on water governance and security include the 584-page National Water Resources 
Framework Study for India’s 12th Five Year Plan; irrigation reform for Bihar; Swachh Bharat; supporting 
India’s National Water Mission; collective action for water security; mapping India’s traditional water 
bodies; modelling water-energy nexus; circular economy of water; and multi-stakeholder initiatives for 
urban water management.
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Executive Summary 

Hydrofluorocarbons (HFCs) are often used as substitutes for ozone-depleting substances (ODSs) in 
various sectors, including refrigeration, air-conditioning, aerosols, fire extinguishers, and foam blowing. 
In addition, HFC-23 is generated as a by-product of chlorodifluoromethane (HCFC-22) production for 
feedstock use in industry and for emissive use. HFCs are the fastest-growing group of greenhouse gases 
in much of the world, increasing at a rate of 10–15 percent per year. At present, India is following the 
Hydrochlorofluorocarbon Phaseout Management Plan (HPMP) as part of its international commitment 
under the Montreal Protocol to mitigate consumption of ODSs. This transition is almost complete in non-
Article 5 parties (primarily developed countries). However, the phase-out of hydrochlorofluorocarbons 
(HCFCs) has largely resulted in a transition towards hydrofluorocarbons (HFCs), which are potent 
greenhouse gases. In India, the majority of refrigeration and air-conditioning systems produced and 
marketed currently use HCFC-22. The impending transition away from HCFCs would in all probability 
lead to the higher consumption and emission of HFCs in India.

If India moves towards HFCs across sectors, there will be a significant increase in the emissions of HFCs. 
However, the pace and magnitude of these emissions, as well as the economy-wide mitigation cost of 
mitigating potential HFC emissions, are not well understood. The Council on Energy, Environment and 
Water (CEEW) along with the International Institute for Applied Systems Analysis (IIASA) has initiated 
joint research to address this research gap. The study is aimed at understanding the following questions:

a. What will be the global warming impact of high-GWP HFC emissions from the refrigeration 
(commercial, domestic, industrial, transport), air-conditioning (stationary and mobile), and industrial 
(aerosols, foams, solvents, etc.) sectors in India under the reference scenario?

b. What is the maximum feasible reduction possible across HFC emission sectors based on the advanced 
control technologies/options (ACT) available globally and what is the cost-optimal strategy for the 
same? Can India leapfrog high-GWP HFCs immediately?

c. What are the implications of a global agreement on HFCs as per the proposed Montreal Protocol 
amendments?

The first phase of the research focused on developing the current legislation or reference scenario for 
understanding the magnitude of HFC emissions across sectors until 2050 (Chaturvedi et al., 2015)1 using 
the integrated assessment modelling framework of Global Change Assessment Model (GCAM). This second 
phase of the research focuses on the next set of questions. This study presents estimates of current and 
future HFC emissions in India along with their technical mitigation potential and associated costs for the 
period 2010 to 2050. The analysis uses the Greenhouse Gas and Air Pollution Interactions and Synergies 
(GAINS) model framework developed by IIASA to estimate emissions, mitigation potentials, and costs for 
all major sources of HFC emissions for 23 states/regions, as shown in Appendix I, which are aggregated 
to produce national estimates. The intellectual approach adopted for understanding the mitigation costs 
for the HFC phase-down is grounded in the methodology used in climate-policy research. As per this 
approach, emission mitigation potential is estimated in reference to a ‘business-as-usual’ scenario, and 
economy-wide mitigation costs are calculated corresponding to the economy-wide mitigation potential 
under each alternative policy scenario. The cost-calculation methodology is different from the way in which 
costs are calculated under the Multilateral Fund (MLF) of the Montreal Protocol. The objective of MLF 
is to support industries in Article 5 parties (primarily developing countries) for transitioning away from 

1  Available at hƩp://ceew.in/pdf/ceew-indias-long-term-hydrofluorocarbon-emissions-29-may-15.pdf 
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high-GWP HFCs. Given this objective, MLF compensates for the loss of profit (or the incremental cost) for 
industries or companies that will be impacted by a phase-down. The approach taken by this study, on the 
other hand, estimates the economy-wide costs of a transition, irrespective of who within the economy will 
bear this cost.  

For each region, ten emission-source sectors with mitigation potentials and costs were identified for 
HFCs. HCFC/HFC emissions are estimated at 10 Mt CO2eq in 2010 with an expected increase to about 
503 Mt CO2eq in 2050. The growth is estimated to be caused mainly by the increase in HFC emissions 
from refrigeration and air-conditioning applications. Further, the increase in HFC, in turn, represents the 
combined effect of the replacement of HCFCs with HFCs in accordance with the revised Montreal Protocol 
and the expected increase in demand for refrigeration and air-conditioning.

Figure 1: Sectoral development of baseline HCFC/HFC emissions 2010–2050

There are extensive opportunities to reduce HFC emissions by up to 98 percent primarily through 
replacement with existing alternative low-GWP substances. The results indicate that approximately 
37 percent of the mitigation potential is attainable at zero cost, while nearly 90 percent reduction is 
attainable at a cost of less than 20 €/t CO2eq due to the low cost of alternative refrigerants (particularly 
in case of HCs) as compared to HFCs. The mitigation potential is high and inexpensive for the residential 
air-conditioning, industrial refrigeration, and foam sectors due to the availability of less expensive 
alternatives (HCs, NH3, HFC-152a, etc.) as compared to HFCs. For commercial air-conditioning, domestic 
refrigerators, and commercial refrigeration, the mitigation potential is high and relatively inexpensive as 
compared to mobile air-conditioning.

Executive 
Summary
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Figure 2: Marginal mitigation cost curve for maximum technical reduction of HFC emissions in India in 2030 by 
sector

In the current legislation or baseline scenario for India, cumulative HFC emissions are estimated at 6.8 Gt 
CO2eq2 in the period  2015 to 2050. The maximum technically feasible mitigation potential is estimated at 
6.4 Gt CO2eq for the same period. At present, proposals have been submitted by North America (NA), the 
European Union (EU), Small Island Developing States (SIDS), and India to amend the Montreal Protocol to 
substantially reduce growth in HFC use. The scenario analysis indicates that approximately 6.1 Gt CO2eq 
cumulative HFC emissions reduction is possible following the NA, EU, and SIDS proposals in the period 
2015 to 2050. The reduction in cumulative emissions is less for the Indian proposal (4.2 Gt CO2eq) because 
of the later start of the controls for developing countries than in the other proposals. 

In this study, we have incorporated the incremental cost of transitioning to low-GWP or natural 
alternatives and cost implications of energy efficiency as well. However, the transaction costs, e.g., for the 
special training of technicians and for the installation of new safety routines when these are needed, are not 
considered in this study. The mitigation potential attainable at a zero or negative marginal cost is expected 
to be cost-effective and therefore to occur spontaneously when policy measures  are taken to address the 
initial transaction costs mentioned above. As different sectors will face different costs, we present both 
positive and negative costs separately for different proposals.  

Due to the different freeze-in years and baselines, the cumulative costs (undiscounted) in different HFC 
phase-down scenarios are estimated at nearly 33–34 billion Euro (2015 prices) in the NA, EU, and SIDS 
proposals, that is approximately 0.02 percent of India’s expected cumulative GDP in the period 2015 to 
2050. At the same time, there are significant cost savings (53 billion Euro) primarily in the residential air-
conditioning sector due to the lower cost of the alternative refrigerant (HC-290) as well as higher energy 
efficiency.

2  This number is slightly higher compared to Chaturvedi et al. (2015) as this study also includes HFC emissions from industrial refrigeraƟon and 
HCFC-22 producƟon for feedstock applicaƟons. 
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Table 1: Cumulative mitigation potential and costs in different HFC phase-down scenarios between 2015 and 2050 

HFC phase-down 
proposals

Cumulative 
mitigation potential

(Gt CO2eq)

Foregone cumulative 
mitigation
(Gt CO2eq)

Cumulative cost
(Billion Euro)

Cumulative savings
(Billion Euro)

Annual emissions in 
2050 (Mt CO2eq)

NA proposal 6.14 0.25 33.24 -53.23 2.0

EU proposal 6.14 0.24 33.50 -53.28 2.4

SIDS proposal 6.16 0.22 34.03 -53.28 1.4

Indian proposal 4.23 2.16 11.59 -48.88 18.9

Intermediate proposal 6.11 0.28 32.60 -53.66 2.4

Note: - Costs are cumulative undiscounted costs and in terms of 2015 prices

-The maximum technically feasible mitigation potential is estimated at 6.4 Gt CO2eq for the period 2015–2050.

It is useful to note that both the mitigation potential and the cost for the EU and NA proposals are similar. 
This can be explained by comparing the base year and the final phase-down target year for Article 5 parties 
in both the proposals. The NA proposal has an earlier baseline of average 2011–13 values as compared to 
the baseline of 2015–16 for the EU proposal, and both proposals target 15 percent of the respective values 
in the final target phase-down year. But the target year for the final phase-down is later in the NA proposal 
(2046) compared to that in the EU proposal (2040). The respective freeze years are 2021 and 2019 for 
the NA and EU proposals. Thus, the NA proposal has a lower baseline, but gives a longer time period for 
phasing down HFC emissions as compared to the EU proposal. Given that there is little change in Indian 
HFC emissions between 2011 and 2016, the overall mitigation potential and cost come out to be similar in 
both the proposals.

The cumulative mitigation cost of the Indian proposal is nearly one-third (11.6 billion Euro) as compared 
to that of other proposals due to the later start of the controls for Article 5 parties as compared to other 
proposals. The lower cost also reflects the lower mitigation to be undertaken under the Indian proposal. 
The fact that the Indian proposal is able to achieve two-thirds of the mitigation as compared to the other 
proposals at one-third of the cost shows that different sectors face different costs of transition and that 
there is an upward-sloping marginal abatement cost curve across sectors. HFC emission mitigation as per 
the Indian proposal relates to the initial part of the marginal abatement cost curve, and as mitigation is 
pushed further and further beyond this point, the marginal cost rises rapidly. At the same time, there are 
significant cost savings (49 billion Euro) in the Indian proposal as well, primarily in the residential air-
conditioning sector, due to the reasons mentioned earlier. 

Figure 3: Cumulative mitigation potential, foregone cumulative emissions, and cumulative costs3 and saving under 
different HFC phase-down scenarios in the period 2015 to 2050

3 Economy-wide costs, as calculated in the study, offer a different view on costs esƟmated by the MulƟlateral Fund of the Montreal Protocol, which 
addresses the issue of the loss of profits as well as the incremental cost of conversion at the company level.

Executive 
Summary
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There are significant opportunities to reduce HFC consumption and emissions in India if the technical 
and financial challenges (e.g. flammability and safety, patents, performance in high ambient conditions) 
to the adoption of alternatives available for various sectors are overcome. The results indicate that more 
than a third of the mitigation potential is attainable at zero or below zero marginal cost primarily due to 
inexpensive low-GWP alternatives and energy-efficiency benefits. Tracking energy-efficiency opportunities 
is in India’s self-interest, and appropriate domestic policies can help achieve and accelerate the transition 
to low-GWP alternatives. Therefore, adequate domestic policy measures are required to increase 
incentives and to adopt regulations for more energy-efficient appliances in the phase-out of HCFCs and 
the phase-down of HFCs. At the sectoral level, applications using HFCs (except HFC-134a which is 
primarily used in mobile air-conditioners and domestic refrigerators) are currently still at an early stage 
in India. Further, low-GWP (i.e. HC-290 in residential air conditioning) or zero-GWP (i.e. ammonia in 
industrial refrigeration) substitutes or technologies are already commercially available for several HFC-
consuming sectors. However, as in other Article 5 parties, there are currently no domestic regulations for 
phasing down HFCs in India, unlike the case of  national regulations in Japan and the United States and 
regional regulations in the EU (i.e. F-gas regulation EC 217/2014, MAC Directive 2006/40/EC, etc.) to 
limit the use of high-GWP HFCs. Thus, concerted efforts are needed at the policy front to promote low-
GWP alternatives by developing and implementing appropriate regulations (leakage control, improved 
components, end-of-life recollection, sectoral bans on high-GWP refrigerants, etc.). These efforts, of 
course, have to be supported by an agreement at the international level that seeks to achieve HFC 
consumption and production phase-down at the global level and that ensures that  technical and financial 
support mechanisms are in place. It may be noted that our results are contingent on the best available 
information on the availability and cost of low-GWP alternatives currently being discussed. Therefore, if 
new alternatives emerge for different sectors with different technical (i.e. removal efficiency, GWP, etc.) 
or cost characteristics as compared to the currently discussed alternatives, our quantified results and key 
insights may change significantly.

In terms of policy insights and actions, our analysis proposes two key action points as immediate 
steps. The first is the creation of a dedicated institutional structure for supporting R&D for low-GWP 
alternatives for different sectors and applications, particularly HC-290 for the room air-conditioning 
sector. Room air-conditioning is expected to be a high-growth sector, and currently there is only one 
low-GWP solution for this sector—HC-290. However, some sections of Indian industry are sceptical 
about the applicability of this refrigerant under all conditions, and have expressed concerns about 
safety. Our analysis shows that there is a huge opportunity for saving electricity through the adoption 
of this refrigerant. Strategic R&D is the only way that India can harness this opportunity during the 
transition. Second, Indian stakeholders need a better understanding of the cost of HFO-1234yf (which is 
being offered as a technically viable solution for the mobile air-conditioning sector) and also the extent 
to which this cost can decline even in the long term. The current price of this refrigerant in the Indian 
market is 20 times that of HFC-134a, the most widely used refrigerant at present. This price will drop 
significantly in the long run with economies of scale. Still some Indian experts believe that the long-
run price could be seven to eight times higher than HFC-134a due to application patents as well as the 
chemistry of this molecule. Our analysis is based on this assumption. An in-depth analysis is required 
to understand the ways in which this potential cost could be reduced. If such an analysis finds that 
the potential long-term cost will not be seven or eight times, but only three times, then the estimated 
economic burden could be reduced by 15-20 percent (as the cost of the additional heat exchanger is also 
a part of the additional cost). Decline in heat exchanger related cost will further reduce the economic 
burden. There would still be an economic burden on the country due to the transition, which could 
be justified as the cost the country is willing to bear for mitigating global warming due to HFCs. It is 
important to understand this issue and find ways and strategies to minimise the potential economic 
burden.
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The numbers emerging from our analysis are not set in stone and could change as our understanding of the 
underlying information changes. The two key points mentioned above highlight the strategies required for 
maximising the potential economic savings and for minimising the potential costs. A better understanding 
of both the issues will place India in a more confident position to evaluate the trade-offs of the HFC phase-
down and to take appropriate decisions to address the twin objectives of safeguarding national priorities 
and of assuming the mantle of global environmental leadership. 
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1. Introduction

The contribution to global warming of ever-increasing emissions of greenhouse gases (GHGs) from various 
sources threatens to lead to catastrophic climate changes. The need for mitigation policies for addressing 
global climate change concerns is an important item on the agenda of current international discourse. 
The proposed policies range from supply-side fuel-switching options, to demand-side management, 
to technology interventions related to geoengineering strategies. However, a large part of the action 
happening on the emission-mitigation front is focused on mitigating carbon dioxide (CO2). Non-CO2 
gases (CH4, N2O, HFC, PFCs, and SF6) accounted for 24 percent of total GHG emissions in 2010 (IPCC, 
2014). The importance of Non-CO2 gases will keep growing as low-cost carbon-mitigation options start 
getting exhausted (Höglund-Isaksson et al., 2012). One such critically important category of gases is 
hydrofluorocarbons (HFCs). 

HFCs are potent GHGs and are expected to contribute significantly to global warming by 2050 (Velders 
et al., 2009; Gschrey et al., 2011; UNEP, 2011; Velders et al., 2014). At present, emissions of HFCs are 
increasing at a rate of 10–15 percent per year (Velders et al., 2012). If the current mix of HFCs remains 
unchanged, increasing demand could result in HFC emissions of up to 8.8 gigatonnes (Gt) carbon dioxide 
equivalent (CO2eq) per year by 2050 (UNEP, 2015a). This could jeopardize the substantial climate benefits 
achieved through the Montreal Protocol, which has averted GHG emissions equivalent to more than 135 
Gt of carbon dioxide (UNEP, 2012). The key underlying activity drivers for increased usage of HFCs is 
their use as refrigerants in refrigeration and air-conditioners and in industrial processes as solvents and 
foaming agents, coupled with the phase-out of ODS under the Montreal Protocol. Although safe for the 
ozone layer, the continued emissions of HFCs—primarily as alternatives to ODS and also from the by-
product emissions of HFC-23 from the continued production of hydrochlorofluorocarbon (HCFC)—will 
have an immediate and significant effect on the Earth’s climate system. It is projected that HFC emissions, 
without further controls, could partially negate the climate benefits achieved under the Montreal Protocol 
(USEPA, 2014). Table 1 presents the use of HFC at the sectoral level as an alternative to ODS. 

Table 1. Alternatives options (HFCs) at sectoral level for ODS

Sector CFCs/HCFCs HFCs

Aerosol CFC-11/CFC-12 HFC-134a, HFC-152a

Commercial refrigeration HCFC-22 HFC-404A, HFC-134a, HFC-410A

Domestic refrigerator CFC-12 HFC-134a

Fire-extinguisher Halon 1211/Halon 1301 HFC-236fa, HFC-227ea, HFC-23 

Foam HCFC-141b, HCFC-142b HFC-245fa, HFC-134a, HFC-152a, HFC-365mfc

Ground source heat pump HCFC-22 HFC-410A

Industrial refrigeration HCFC-22 HFC-134a, HFC-404A, HFC-23 

Solvents CFC-113 HFC-43-10mee, HFC-365mfc, HFC-245fa, HFC-c447ef

Mobile air-conditioning CFC-12 HFC-134a

Stationary air-conditioning* HCFC-22 HFC-404A, HFC-410A, HFC-134a

Transport refrigeration HCFC-22 HFC-134a, HFC-404A, HFC-507, HFC-410A 

*Air-conditioning in residential and commercial sectors
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India is the world’s fourth largest carbon dioxide emitter, behind China, the United States, and the 
European Union. The proposed high-impact policies for GHG emission mitigation are primarily on the 
supply side and focus either on expanding the share of renewable energy or on increasing the reliance 
on nuclear energy as per Intended Nationally Determined Contributions (INDCs) submitted by the 
Indian government to the United Nations Framework Convention on Climate Change (UNFCCC) in 
Bonn in October 2015 (GoI, 2015). All the energy supply-side strategies are by their nature focused 
on carbon dioxide, rather than HFCs, which are emitted mainly in the end-use sectors (i.e. residential, 
commercial, transport, and industry). With more and more people buying room air conditioners (ACs) 
and air-conditioned vehicles, the rate of HFC emissions will further increase in the absence of any focused 
abatement policies. Approximately 1.9 million residential AC units were sold in 2010 with an average 
capacity of 5.07 kW, and the stock for the same year amounts to 9.2 million units (Phadke et al., 2010). 
The Indian Refrigeration and Air-conditioning Manufacturers’ Association (RAMA) reports a 20 percent 
annual growth rate for the past decade, with 30 percent growth likely for the next five years. Given the 
continued strong increase in demand, the release of HFCs is expected to increase manifold until 2050 
(Akpinar-Ferrand and Singh, 2010). 

The majority of refrigeration and air-conditioning systems produced and marketed in India today use 
HCFC-22, which is an ODS scheduled for phase-out under the MP. The current HCFC schedule for Article 
5 parties requires a freeze in consumption by January 2013 at the 2009–10 average and the cutting of 
national consumption (domestic HCFC production, plus imports and minus exports) by 10 percent by 
2015, 35 percent by 2020, 67.5 percent by 2025, and 97.5 percent by 2030, with consumption after 2030 
restricted to the servicing of refrigeration and air-conditioning equipment (UNEP, 2007). By 2040, HCFC 
production and consumption of refrigerants will completely cease. Most Indian companies have reported 
that they are planning to change from the HCFC-22 refrigerant to HFC-410A or R-410A (a blend of 
HFC-125 and HFC-32), which has a global warming potential (GWP) of 2088 (IPCC, 2007). Substitution 
of HCFC-22 by HFCs (e.g., R-410A or HFC-134a) with high GWP will significantly increase the overall 
contribution of HFCs to India’s national GHG emissions. 

Low-GWP (with zero ODP) or cleaner alternatives for HFCs are already available in the market, although 
with limited penetration due to a variety of reasons (Höglund-Isaksson et al., 2013). Quick action to 
address the issue of high-GWP HFCs would also catalyse gains in energy efficiency in refrigeration and 
air-conditioning systems (Carvalho et al., 2014; Borgford-Parnell et al., 2015), thereby reducing electricity 
use and associated CO2 emissions (Chaturvedi and Sharma, 2015), consistent with past transitions under 
the Montreal Protocol, along with emissions of the HFCs themselves. Therefore, policies and cost-effective 
strategies for mitigation of HFCs are important issues for deliberation for India. At present, India is in 
the early stages of phasing out HCFCs as per the revised Montreal Protocol (MoEF, 2013). Due to the 
significantly high GWP of conventional alternatives like HFCs, it is critically important to understand the 
growth in HFC emissions if no actions are taken to replace these in  different activities, and to find the 
potential and associated costs for HFC reduction in different sectors. This is the broader research objective 
of our study. In this study, we model alternative scenarios to understand the implications of alternative 
future global and domestic actions on the HFC front for Indian emissions and industry. 

The report is set out as follows: Section 2 presents the GAINS methodology for emission estimation and 
costs. HFC emissions by sector in the reference and maximum technically feasible reduction (MTFR) 
scenarios are presented in Section 3. Section 4 presents the mitigation cost curves for the MTFR of HFC 
emissions in India. Alternative policy scenarios based on the several Montreal Protocol amendment 
proposals for HFC phase-down are analysed in Section 5. Section 6 highlights uncertainties associated 
with key assumptions and inputs parameters (leakage rates, costs, etc.), and discusses the sensitivity of the 
baseline, freeze-in, and phase-down schedules of the HFC phase-down proposals. Conclusions and policy 
implications are discussed in Section 7. 

Introduction
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2. Methodology

2.1 HFC emissions in GAINS

2.1.1 General emission estimation methodology 

The methodology adopted for the estimation of current and future GHG emissions and the available 
potential for emission controls follows the standard GAINS methodology (Amann et al., 2008; Purohit et 
al., 2010; Amann et al., 2011) with some modifications specific to the F-gases (HFC, PFCs, and SF6). To 
accommodate the wide spread in GHG warming potentials for different HFCs, the emission factors are 
converted to CO2 equivalents by multiplying with the respective GWPs. Emissions of each pollutant p are 
calculated as the product of the activity levels, the “uncontrolled” emission factor in the absence of any 
emission control measures, the efficiency of emission control measures, and the application rate of such 
measures:

E E A ef GWP eff Xi p
j k f

i j f t
j k f

i j k i j t p t i j,
, ,

, , ,
, ,

, , , , , ,= = −( )∑ ∑ 1 ff t,      (1)                     

where i, j, t, and f respectively represent the country, sector, abatement technology, and fuel; Ei,p represents 
the emissions of the specific pollutant p in country i; A represents the activity in a given sector; ef 
represents the uncontrolled emission factor; GWPp is the global warming potential of pollutant p; effk,p is 
the reduction efficiency of abatement option k; and X is the actual implementation rate of the considered 
abatement. 

If no emission controls are applied, the abatement efficiency equals zero (effk,p = 0) and the application rate 
is one (X = 1). In that case, the emission calculation is reduced to the simple multiplication of the activity 
rate by the “uncontrolled” emission factor. For projecting emissions into the future, the “uncontrolled” 
emission factor is assumed to be constant over time, but activity levels may change as a result of exogenous 
autonomous developments. For example, more cars using mobile air conditioning or an increase in 
residential air-conditioners will result in higher activity levels of the specific source category. Declines 
in emissions due to targeted emission control measures are reflected in the GAINS model through the 
actual implementation rate “X” of the considered option. Cases where there is clear evidence that average 
emission factors change over time due to autonomous (policy-independent) developments (e.g., increased 
volumes of refrigerant used per refrigerator) are represented in the GAINS model as transitions to different 
source categories with different uncontrolled emission factors.

2.1.2 Activity data 

The estimation of HFC emissions in the GAINS model differs from the estimation of other air pollutants 
in that the activity data is related to the demand for HFCs, which in an intermediate step has been derived 
from primary activity drivers like population, GDP, number of vehicles, and value added in industry or 
the commercial sector. The GAINS model relies on externally provided projections of primary drivers. For 
the particular analysis presented in this report, the primary drivers for India until 2050 are taken from the 
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integrated assessment modelling framework of GCAM,4 the Indian Institute of Management Ahmedabad 
(IIMA) version (Shukla and Chaturvedi, 2012; Shukla and Chaturvedi, 2013; Chaturvedi et al., 2014; 
Chaturvedi and Sharma, 2015). Further details on modelling  are available in Chaturvedi et al. (2015).

A particular characteristic of a large fraction of HFC emissions is that they result both from the release of 
HFC during the lifetime of appliances (e.g., leakage from refrigerators and air-conditioners) as well as from 
their scrapping at the end of life. The former emissions are referred to as “emissions banked in equipment” 
and the latter are referred to as “emissions from scrapped equipment”, i.e. end-of-life emissions. These two 
types of emission sources are represented as different activity sources in the GAINS model. However, in 
the representation of the marginal mitigation cost curve, the two sources are joined because the identified 
mitigation options address both sources simultaneously.  

2.1.3 Emission factors

HFC emissions from different sectors are calculated using an emission factors approach where general 
assumptions are used for determining leakage rates at different stages of HFC use and at the disposal stage 
at the end of life of appliance and equipment. To the extent available, source-specific emission factors are 
taken from published literature (IPCC/TEAP, 2005; Gschrey et al., 2011; Schwarz et al., 2011; IPCC, 2007) 
and complemented by information from industry experts (Chaturvedi et al., 2015). Emission factors are 
sector specific, with GWPs being determined on the basis of the sector-specific shares of the different types 
of commonly used HFCs and their respective GWPs. Table 2 presents sector-specific GWPs used in GAINS 
for India, expressed in CO2 equivalents over 100 years as presented in the IPCC’s Fourth Assessment 
Report (AR4) (IPCC, 2007). For a more comprehensive description of calculation methods, references, and 
sources of uncertainty, see Chaturvedi et al. (2015).

Table 2. Sector-specific global warming potentials (GWPs) used in GAINS

Sector Type of refrigerant GWP (100 year)

Aerosol* HFC-134a 1,430

Commercial air-conditioning* HFC-410A (50% HFC-32, 50% HFC-125) 1,870

Commercial refrigeration HFC-134a/HFC-404A (44% HFC-125, 
4% HFC-134a, 52% HFC-143a)

2,226

Domestic refrigeration HFC-134a 1,430

Industrial refrigeration HFC-134a (62%)/ HFC-404A (37%)/ HFC-23 (1%) 2,486

Mobile air conditioning** HFC-134a 1,430

Refrigerated transport HFC-410A (50% HFC-32, 50% HFC-125) 2,088

Transport refrigeration HFC-134a (80%)/ HFC-404A/ HFC-507 (18%)/ HFC-410A (2%) 1,902

Foam+ HFC-134a (50%), HFC-152a (50%) 777

Solvents HFC-43–10mee (51.2%), HFC-365mfc (48.8%) 1,227

Other HFC HFC-134a 1,,430

HCFC-22 production++ HFC-23 22,800

*Stationary air-conditioning includes both commercial and residential air-conditioning; **Mobile air-conditioning includes buses, 
cars, light- and heavy-duty trucks. and rail air-conditioning; +Foam includes both one-component foams and other foams; ++HCFC-
22 production for both emissive and feedstock use.

Source: (IPCC/TEAP, 2005; IPCC, 2007; Gschrey et al., 2011; Schwarz et al., 2011; Chaturvedi et al., 2015).

4 The Global Change Assessment Model (GCAM), developed by the Pacific Northwest National Laboratory (PNNL), is a global integrated assess-
ment model with parƟcular emphasis on the representaƟon of human earth systems, including interacƟons between the global economic, energy, 
agricultural, land use, and technology systems.

Methodology
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2.2 HFC control and cost estimation in GAINS

2.2.1 Technically feasible HFC control options

In the reference scenario, it is assumed that the current level of control reflects the incentives offered by 
existing legislation to control HFC emissions and that no further control will be adopted in the future 
unless further policy incentives are implemented. The reference scenario is therefore also referred to as the 
Current Legislation Emissions (CLE) scenario, and it is assumed for India that the current level of control 
will remain fixed in the future irrespective of the costs of implementing further emission reductions. Any 
additional mitigation potential is referred to as the Maximum Technically Feasible Reduction (MFR) 
scenario. 

The mitigation potential assessed here encompasses reductions in emissions through the application of 
technologies that are currently commercially available and implemented, at least to a limited extent. 
Appendix II summarizes mitigation options for HFC emissions in the GAINS model. These fall into four 
broad categories:

a) Good practice: This encompasses a package of measures including improved components, leak 
prevention during use and refill, maintenance, and end-of-life recovery and recollection of refrigerants.

b) Switching to low-GWP HFCs: HFCs currently in use have relatively long atmospheric lifetimes—15 
years on average—which makes GWPs relatively high, ranging from 1,430 to 14,800 times that of CO2 
over 100 years (IPCC, 2007). Alternative HFCs offer shorter lifetimes and considerably lower GWPs, 
e.g., HFC-152a has a GWP of 124 (IPCC, 2007). 

c) Switching to new refrigerants: In recent years, alternative substances with very short lifetimes of less 
than a few months have been developed and marketed, e.g., HFO-1234ze with a GWP of 6 for use in 
aerosols and foam products and HFO-1234yf with a GWP of 4 for mobile ACs.

d) Other non-HFC substances with low or zero GWP: Commercial examples include hydrocarbons (e.g. 
propane, isobutane, propylene, and pentane), carbon dioxide (CO2), ammonia (NH3), dimethyl ether 
(DME), and a diversity of other substances used in foam products, refrigeration, air-conditioning, and 
fire-protection systems. 

2.2.2 Mitigation cost per activity unit

Mitigation costs are measured as the additional cost involved in reducing emissions relative to the current 
level of control as specified in the reference scenario. For example, the cost of substituting the current use of 
a high-GWP for a low-GWP refrigerant is measured as the difference in price between the two substances 
and any other costs involved, e.g., necessary equipment modifications. The options for controlling HFC 
emissions are primarily switches to alternative substances or the adoption of good practices. The relative 
efficiency in removing GHG emissions of the alternative substances is reflected in the relative GWPs of 
the substances. As these are assumed to be fixed, we do not assume significant improvements in these 
removal efficiencies over time. What could be expected in the future is a decline in  the cost of some of 
the alternative substances, e.g., the cost of the newly developed HFO substances for coolants. The current 
costs of these substances are, however, highly uncertain, and we base our assumption of the long-term cost 
on the best estimate available from industry experts. Hence, technological development in the mitigation 
of HFCs under the GAINS model is only reflected in terms of switches to more effective technologies over 
time, while costs and removal efficiencies for given technologies remain constant.   

HFC mitigation costs per unit of activity  in the GAINS model are calculated as the sum of investment 
costs, non-energy operation and maintenance (O&M) costs, and energy-related costs (or savings). In this 
particular analysis, a social interest rate of 4 percent is assumed. The unit cost of technology m in country i 
and year t is defined as: 
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                                                                   (2)

Where      is the annualized investment cost for technology m in country i and with an 
interest rate r and a technology lifetime of T years, Mim is the non-energy-related annual O&M cost for 
technology m, Eim is the change in demand for electricity, and 

electr
itp is the electricity price in country i in 

year t. The price of electricity in India is assumed to increase from 0.07 to 0.1 Euro/kWh between 2010 
and 2050 (CEA, 2015). 

The intellectual approach adopted for understanding mitigation costs for the HFC phase-down is grounded 
in the methodology used in climate-policy research. As per this approach, emission mitigation potential is 
estimated in reference to a ‘business-as-usual’ scenario, and economy-wide mitigation costs are calculated 
corresponding to the economy-wide mitigation potential under each alternative policy scenario. The cost-
calculation methodology is different from the way costs are calculated under the MLF of the Montreal 
Protocol. The objective of MLF is to support industries in developing countries (Article 5 parties) in 
transitioning away from high-GWP HFCs. Given this objective, MLF estimates the loss of profit (or the 
incremental cost) for industries/companies that will be impacted by a phase-down. The approach taken by 
this study, on the other hand, estimates the economy-wide costs of a transition, irrespective of who within 
the economy will bear this cost.  
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3. HFC emissions by sector and 
projections

In compliance with the Montreal Protocol, many sectors that formerly used the highly ODS 
chlorofluorocarbons (CFCs) changed rapidly to applications employing HCFCs with lower ozone-depleting 
effects or HFCs with no ozone-depleting effects. Later amendments to the Montreal Protocol require a 
complete phase-out of all ODS, including HCFCs. In the GAINS model, 13 different sources of HFC or 
HCFC emissions have been identified, whereof seven are related to refrigeration and air conditioning. 
Table 3 presents the sub-sectors distinguished in the GAINS model for HFC or HCFC emissions. Emissions 
from refrigeration and air-conditioning sources are split on the basis of emissions from leakage from 
equipment in use and emissions from scrapping of the equipment at the end-of-life. In addition, for each 
emission source, the fraction of HCFC to HFC in use is identified and modelled following the phase-out 
schedule of HCFCs in the latest revision of the Montreal Protocol (UNEP, 2007) and the HCFC Phase-
out Management Plan (HPMP) of the Ministry of Environment, Forest and Climate Change (MoEFCC), 
Government of India (MoEF, 2013). It may be noted that under the Montreal Protocol programme in 
India, the fire-extinguisher sector phased out the use of CFCs. The conversion technologies used were 
FM200, ABC powder, CO2, etc. Thus, there is no residual use of HCFCs and HFCs in the fire-extinguisher 
sector (MoEF, 2009). Information on the number of ground source heat pumps installed in the country is 
not available, and therefore GSHP is not included in this analysis. 

Table 3. Sub-sectors distinguished in GAINS for HFC emissions

GAINS sectors Description

AERO Aerosols

CAC_B Commercial air conditioning using water chilling, emissions banked in equipment

CAC_S Commercial air conditioning using water chilling, emissions from scrapped equipment

COMM_B Commercial refrigeration, emissions banked in equipment

COMM_S Commercial refrigeration, emissions from scrapped equipment

DOM_S Domestic small hermetic refrigerators, emissions from scrapped equipment

FEXT_B* Fire extinguishers, emissions banked in equipment

FEXT_S* Fire extinguishers, emissions from scrapped equipment

GSHP_B** Ground source heat pumps, emissions banked in equipment

GSHP_S** Ground source heat pumps, emissions from scrapped equipment

HCFC22_E HCFC-22 production for emissive use

HCFC22_F HCFC-22 production for feedstock use

IND_B Industrial refrigeration, including food and agricultural, emissions banked in equipment

IND_S Industrial refrigeration, including food and agricultural, emissions from scrapped equipment

SOLV_PEM Solvents

TRA_RD_HDB_B Mobile air conditioning in buses, emissions banked in equipment

TRA_RD_HDB_S Mobile air conditioning in buses, emissions from scrapped equipment

TRA_RD_HDT_B Mobile air conditioning in heavy-duty trucks, emissions banked in equipment

TRA_RD_HDT_S Mobile air conditioning in heavy-duty trucks, emissions from scrapped equipment
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GAINS sectors Description

TRA_RD_LD4C_B Mobile air conditioning in cars, emissions banked in equipment

TRA_RD_LD4C_S Mobile air conditioning in cars, emissions from scrapped equipment

TRA_RD_LD4T_B Mobile air conditioning in light-duty trucks, emissions banked in equipment

TRA_RD_LD4T_S Mobile air conditioning in light-duty trucks, emissions from scrapped equipment

OC Polyurethane one-component foam

OF Other foam

RAC_B Residential air conditioning using water chilling, emissions banked in equipment

RAC_S Residential air conditioning using water chilling, emissions from scrapped equipment

RAILAC_B Rail air conditioning using water chilling, emissions banked in equipment

RAILAC_S Rail air conditioning using water chilling, emissions from scrapped equipment

TRA_REFB Refrigerated transport, emissions banked in equipment

TRA_REFS Refrigerated transport, emissions from scrapped equipment

*Not relevant for India.
**Not included in this analysis.

For a more comprehensive description of HCFC/HFC consumption at the sectoral level, leakage rates, and 
data sources, see Chaturvedi et al. (2015).

3.1 HFC emissions control under CDM regime

The GAINS model distinguishes between several abatement options to reduce HFC emissions from 
anthropogenic sources. The removal efficiencies, costs, and application potentials of these abatement 
options were determined based on the data available in the literature (Tohka, 2005; Schwarz et al., 2011; 
Höglund-Isaksson et al., 2013). HFC emissions in the current legislation or reference scenario take the 
effects of already implemented control measures into account. So far, India does not have any specific 
control policies for HFC emissions. However, several studies discuss the impact of the Clean Development 
Mechanism (CDM) projects on global HFC-23 emissions through HCFC-22 production (Miller et al., 
2010; Montzka et al., 2010; Miller and Kuijpers, 2011; Schneider, 2011). 

The CDM of the Kyoto Protocol allowed developed countries (referred to as Annex-I countries) to use 
credits from GHG abatement projects in developing countries (referred to as non-Annex-I countries). 
The destruction of HFC-23 from HCFC-22 production accounts for 19 of the 23 HFC projects. This has 
become the most important project type under the CDM, with an expected deliverance volume of 473 
million certified emission reductions (CERs) in the period up to 2012 and approximately 1.1 billion CERs 
by 2020 (Fenhann, 2015). These CER volumes correspond to about a fifth of the emission reductions 
expected from all CDM projects in this period. Eleven out of the 19 registered projects are located in 
China, five in India, and one each in South Korea, Argentina, and Mexico. Figure 1 presents the country-
based distribution of the average annual CERs from HFC-23 projects registered by the CDM Executive 
Board in the first commitment period. As shown, India is expected to receive 16 percent of the CERs from 
these projects. 

HFC emissions by 
sector and projections
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Figure 1: Expected annual CERs from registered HFC-23 projects 

Source: Fenhann (2015).

In the reference scenario, we assume that the current impact of CDM on emissions from HCFC-22 
production in India will remain at the current level of 100 percent control  in the future as well. In the 
foam sector, three projects on avoidance of HFC-134a emissions in rigid polyurethane foam (PUF) from 
Uttarakhand,5 Tamil Nadu,6 and Maharashtra7 are registered by the CDM Executive Board until October 
2015 (Fenhann, 2015). Also, for foams, the current level of control is assumed to be frozen in the future in 
the reference scenario. 

3.2 Projection of HFC emissions by sector 

Figure 2 presents the sectoral development of baseline HCFC/HFC emissions in the period 2010 to 2050. 
Baseline HFC emissions are estimated to increase from 10 Mt CO2eq (including HCFC emissions) in 2010 
to 503 Mt CO2eq (HFC emissions only) in 2050. The growth is caused mainly by the increase in HFC 
emissions from refrigeration and air conditioning applications, as shown in Figure 2. The increase in HFC, 
in turn, represents the combined effect of the replacement of HCFCs with HFCs in accordance with the 
revised Montreal Protocol and the expected increase in demand for refrigeration and air conditioning. 

5  Avoidance of HFC-134a emissions in rigid polyurethane foam manufacturing by Acme Tele Power Ltd. (ATPL).
6  Avoidance of GHG emissions in rigid polyurethane foam manufacturing by LIL.
7  Avoidance of HFC-134a emissions in rigid polyurethane foam.
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 Figure 2: Sectoral development of baseline HCFC/HFC emissions, 2010–2050

In India, the stock of domestic refrigerators is predicted to grow from 48.5 million units in 2010 to 83 
million units in 2020, and to 353 million units in 2050, as per CEEW estimates, whereas the stock of ACs 
is predicted to grow at a much faster pace. The stock of stationary ACs will increase from 2.6 million units 
in 2005 to 38 million units in 2020, and further to 445 million units in 2050 (Chaturvedi et al., 2015). 
The stock of ACs in the high-income groups is expected to be larger than the stock of refrigerators in the 
residential sector in India, which is most likely and is supported by what is already an observed trend in 
terms of household behaviour. A given high-income household is likely to own only one fridge, but can 
own two or even three ACs for cooling separate rooms. Accordingly, an exponential increase is expected in 
stationary air-conditioning for the residential and commercial sector in the period  2010 to 2050. 

Figure 3 presents HFC emissions in 2050 by sector for the reference (or CLE) scenario. In 2050, stationary 
(residential and commercial) air-conditioning is expected to contribute over 63 percent HFC emissions, 
followed by mobile air-conditioning (15.5 percent) in buses, cars, light- and heavy-duty trucks, and air-
conditioned coaches in railways. In 2050, the share of commercial refrigeration is expected to be 15.1 
percent of total HFC emissions, followed by foam (2.5 percent) and other sectors (3.6 percent), including 
industrial/transport refrigeration, aerosols, solvents, etc. 

Figure 3: HFC emissions in 2050 by sector for GAINS model domain in the reference scenario

HFC emissions by 
sector and projections
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3.3 Maximum technically feasible reduction (MTFR) by sector 

There are extensive opportunities for ensuring reductions in HCFC/HFC emissions through existing 
alternative technologies or through replacement of substances with low-GWP alternatives. Information on 
potential options to reduce HFCs is presented in Table 4, which indicates alternatives that are currently 
used on a commercial scale and are considered in the GAINS model for assessing the mitigation potential. 
The maximum technical mitigation potential is depicted by the dashed line in Figure 2. In 2050, the 
technical mitigation potential is predicted to be over 98 percent of reference (or CLE) emissions. 

Table 4. Low-GWP options at sectoral level 

Sector Alternative low-GWP refrigerants

Aerosol HFO-1234ze, HFC-152a, Propane (HC-290)

Commercial refrigeration Propane, Isobutane (R-600a), R-1270, CO2 (R-744)

Domestic refrigerators Propane, Isobutane, HFC-1234yf 

Fire-extinguisher FK-5-1-12, FM200, CO
2
, ABC powder

Foam CO2, Propane, HFC-152a, HFC-1234ze

Ground source heat pumps CO2, Propane

Industrial refrigeration NH
3
 (R-717), CO2

Solvents* Iso-paraffin/siloxane (KC-6)

Mobile air-conditioning HFO-1234yf, CO2, HFC-152a 

Commercial air-conditioning Propane, Propylene (R-1270), CO2

Residential air-conditioning Propane, Propylene, CO2

Transport refrigeration Propane, Propylene, CO2

GAINS considers a “ban” on HFC-based solvents as a control option.

India and other countries have raised concerns about the existence of HFC alternatives. These concerns 
include managing flammability risks associated with some alternatives, finding alternatives that work 
adequately at high ambient temperatures, and finding alternatives that can be used safely  in densely packed 
urban environments such as India’s megacities, New Delhi and Mumbai. While  no single technology 
solution is available, technical experts involved in the Montreal Protocol discussions assert that a basket 
of alternatives exists for different applications. Some of these options are available today and others are on 
the horizon for becoming commercially available in the near future (UNEP/TEAP, 2014). 

The maximum technical mitigation potential is presented against the reference (CLE) scenario for India, 
and is depicted by the dashed line in Figure 2. Figure 4 indicates the distribution of emissions across 
the regions and the changes between the CLE and MFR scenarios. Note that the total amount of HFCs 
emissions in the MFR case is very much lower than in the CLE case.



12

Figure 4: Share of different sectors in total emissions in CLE (left panel) and MFR (right panel) scenarios in 2030

In the near term, abatement opportunities in refrigeration and air-conditioning are partially limited 
because many of the abatement options identified apply only to newly manufactured equipment and are 
thus limited by the turnover rate of the stock of coolant currently stored in existing refrigeration and air-
conditioning equipment. Table 5 presents HFC emissions and technical mitigation potentials in 2050. The 
maximum technical mitigation potential is depicted by the dashed line in Figure 2. In 2050, the technical 
mitigation potential will exceed 98 percent of reference (CLE) emissions, hence reducing the expected 
emissions by over 497 Mt CO2-eq. in 2050. Major uncertainties affecting the above results are present 
in the emission factors and activity pathways, as well as in the estimates about the future penetration of 
mitigation technology, e.g., the use of low-GWP substances in mobile and stationary ACs and refrigerators 
is uncertain. There is also a general lack of data on reported emissions to verify model emission estimates.

Table 5. Summary results: HFC emissions and technical mitigation potentials in India

Sector Reference scenario emissions (Mt CO2eq.) Remaining emissions after 
MTFR in 2050 (Mt CO2eq.)

2020 2030 2040 2050

Aerosols 0.1 0.4 0.8 1.4 0.00

Commercial air-conditioning 5.2 31.2 76.3 140.6 0.08

Commercial refrigeration 6.6 18.2 40.5 76.1 0.03

Domestic refrigeration 0.2 0.3 0.5 0.7 0.00

Foam 1.8 3.6 6.9 12.7 0.05

HCFC-22 production 0.8 1.7 3.3 6.1 6.09

Industrial refrigeration 1.5 3.9 3.9 3.9 0.00

Mobile air conditioning 10.4 24.2 45.5 77.7 0.22

Refrigerated transport 0.1 0.2 0.5 0.8 0.00

Rail air-conditioning 0.1 0.2 0.2 0.3 0.00

Residential air-conditioning 6.9 39.0 90.8 178.4 0.09

Solvents 0.5 1.4 2.8 5.2 0.00

Total 34.2 124.3 272.0 503.8 6.56

Note: HCFC-22 production is for meeting feedstock requirements.

HFC emissions by 
sector and projections
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4. Cost curves

The relation between emission control costs and the associated emission control potentials can be displayed 
in the form of cost functions. Starting from the defined unit costs, the marginal cost is calculated for each 
mitigation option. When there are several mitigation options available for one sector, the option with 
the lowest unit cost per tonne CO2eq removed is assumed to be adopted first before moving on to more 
expensive options. For example, control of HFCs from air-conditioning and refrigeration is assumed 
to start from the application of  good-practice measures like leakage control and end-of-life recycling 
before moving on to the replacement of coolants with alternative fluids, as this latter step is usually (but 
not always) more expensive. The GAINS model distinguishes several abatement options to reduce HFC 
emissions (Appendix II). The respective removal efficiencies, costs, and application potentials of these 
abatement options were determined based on data found in the available literature (Harnisch and Schwarz, 
2003; Tohka, 2005; Schwarz et al., 2011; Höglund-Isaksson et al., 2012; Höglund-Isaksson et al., 2013; 
Purohit and Höglund-Isaksson, forthcoming). To verify the relevance of the cost information available in 
the literature to Indian circumstances, efforts have been made under this project to gather country- specific 
information from India on the costs of alternative options. Appendix III presents the market price of 
alternative refrigerants in the Indian market.

HC (HC-290)-based ACs have been available in the Indian market for the last few years and offer an 
opportunity to switch to low-GWP alternatives that are both low cost and more efficient than many 
of the HFC-based systems currently in use. Indian AC manufacturers Godrej & Boyce report sales of 
over 100,000 AC units using HC-290 refrigerant in 2013–14 (NRDC et al., 2013). For example, there 
is no difference in the market price of HFC-based AC (when 100 percent -410A is used in “single room 
split”) and HC-based AC (when 100 percent HC-290 is used in “single room split”) as per the cost-
related information provided by the industry (Appendix III). Therefore, the incremental investment cost 
of switching from R-410A-based AC to HC-290-based AC will be zero. Moreover, the market price of 
HC-290 as compared to R-410A is less than half in Europe (Schwarz et al., 2011) and significantly lower 
in India as well. Therefore, the refilling cost of a room AC system using HC-290 will be lower assuming 
that there is no change in the cost of manpower. As compared to R-410A, HFC-32 can improve energy 
efficiency by 5–10 percent depending on the model (Daikin, 2016). In this study, we have assumed a 6 
percent efficiency gain for both HC-290 based system and HC-32 based system, relative to HFC-410A 
based system. Therefore, the HC-290-based single room split AC is  a low-cost alternative to the R-410A-
based AC. 

In addition, it is observed that the market price of HFC-32 (GWP100 = 650)-based AC is approximately 10 
percent lower to those of R-410A- and HC-290-based ACs. Moreover, the lower market price of HFC-32 
as compared to R-410A and efficiency-improvement measures make the HFC-32-based system a low-cost 
option. Although the GWP is high in the case of HFC-32-based AC as compared to the HC-290-based 
system, consumers may still go in for the HFC-32-based system because of its somewhat lower investment 
cost and slightly higher efficiency. Therefore, there might be scope here for introducing climate-policy 
intervention to make HC-based alternatives more attractive to consumers. 

Evidence concerning costs for mobile air conditioners from the B-COOL (2011) project funded by the 
EU Sixth Framework Program suggests that the cost of a CO2-based AC system is between 1.5 to 2 times 
the cost of a HFC-134a system. Moreover, CO2-based systems show slightly higher fuel consumption at a 
higher thermal load (35 °C) as compared to the HFC-134a system. This is in contrast to the fuel (diesel/
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gasoline) savings claimed by some CO2 promoters (e.g., www.r744.com). As a compromise, we do not 
assume any effect on energy consumption when switching to a CO2-based system in mobile ACs in this 
analysis. 

The primary alternatives to HFC-134a as a propellant in medical dose inhalers are dry powder inhalers 
(DPI) or HFC-152a, which has a GWP100 of about 124. The relative cost of these options is similar to the 
cost of medical dose inhalers (MDIs) in developed countries (UNEP/TEAP 2010). However, for medical 
reasons, MDIs are still preferred in severe cases. For severe cases, where high pressure is essential, there is 
the option of replacing HFC-134a with HFO-1234ze (GWP100 of 6), which, according to the manufacturer 
Honeywell, is already available for use as a propellant for aerosols. 

Figure 5 shows the estimated marginal mitigation cost curve for Indian HFC emissions in the period 2020 
to 2050 when moving from the reference (CLE) scenario to the MFR scenario. The mitigation potential is 
extended over time primarily due to the expected increase in the reference scenario emissions. As shown, at 
a zero or negative marginal cost, 37 percent of the mitigation potential in 2050 is expected to be attainable, 
while 53 percent is expected to be attainable at a marginal cost between zero and 20 €/t CO2eq, 7 percent 
at a marginal cost between 20 and 50 €/t CO2eq, and the removal of the last 3 percent is expected to come 
at a high cost exceeding a marginal cost of 50 €/t CO2eq (Figure 5).

Figure 5: Marginal mitigation cost curve for maximum technical reduction of HFC emissions in India in 2020, 2030, 
2040, and 2050.

Figure 6 shows the marginal mitigation cost curves by sector in the year 2030. The mitigation potential 
is high and is inexpensive for the residential air-conditioning, industrial refrigeration, and aerosol/
foam sectors due to the availability of less expensive alternatives (HCs, NH3, HFC-152a, etc.) to HFCs 
and the high removal efficiency of alternative refrigerants (i.e. in case of room ACs). For commercial 
air-conditioning, commercial and transport refrigeration, etc., the mitigation potential is high and is 
relatively inexpensive as compared to mobile air-conditioning. For mobile ACs, good-practice options to 
control leakage and end-of-life recollection schemes are relatively inexpensive at below 10 €/t CO2eq. The 

Cost 
curves
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reduction potential of the good-practice options is exhausted first before moving on to the more expensive 
options of replacing the use of HFCs with HFO-1234yf and pressurised CO2.  

Figure 6: Marginal mitigation cost curve for maximum technical reduction of HFC emissions in India in 2030 by 
sector.
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5. Alternative policy scenarios for 
HFC phase-down

At the international level, there is growing recognition that HFCs can be controlled most effectively  
through the phase-down of their production and consumption under the Montreal Protocol as a 
complement to controls on emissions under the Kyoto Protocol (Zaelke and Borgford-Parnell, 2015). The 
projected growth and the expanded use of HFCs under the current status quo may make them the most 
potent and high-impact GHGs. So, there is concern that if they are not controlled, climate change will  
increase significantly  over time. The United States, Canada, and Mexico together submitted a proposal 
in April 2015 to phase-down the production and consumption of HFCs under the Montreal Protocol 
(UNEP, 2015b). In addition to the North American proposal, the European Union (UNEP, 2015c), India 
(UNEP, 2015d), and a group of Small Island Developing States (SIDS) of the Pacific region (UNEP, 
2015e) submitted their own proposals in 2015 to amend the Montreal Protocol to address the issue of 
HFC emissions. In each proposal, the annual production and consumption of HFCs in Article 5 and non-
Article 5 parties are reduced following phase-down schedules relative to specified base levels. The base 
level and HFC phase-down schedules for Article 5 and non-Article 5 parties  as per the 2015 Montreal 
Protocol amendment proposals (UNEP, 2015b–e) are presented in Appendix IV (UNEP, 2015b–e). All of 
the proposed amendments to the Montreal Protocol provide a flexible phase-down with financial and 
technological assistance through the MLF to address the needs of different countries.

The North American (NA) proposed amendment was submitted by Canada, Mexico, and the United 
States. It lists 19 HFC chemicals as substances to be controlled and provides access to the MLF to cover 
incremental costs. Article 5 parties receive a two-year grace period, and the phase-out schedule is different 
for Non-Article 5 parties and Article 5 parties, as shown in Appendix IV. It is estimated to avoid 60–75 Gt 
CO2eq of global GHG emissions by 2050 (Velders et al., 2015).

The European Union proposed amendment was submitted by the 28 member states of the EU. It addresses 
19 HFCs, split up into five groups, allows access to the MLF for incremental costs, puts forward a phase-
down schedule for Non-Article 5 parties, and outlines a freeze in consumption for Article 5 parties in the 
short term. In the EU proposal, there are different controls for HFC production and consumption in Article 
5 parties, as shown in Appendix IV. Global cumulative benefits of the HFC consumption freeze and a 
production reduction in Article 5 parties, as well as the phase-down of both production and consumption 
in non-Article 5 parties, amount to a reduction of 79 Gt CO2eq by 2050 (UNEP, 2015c).

The Small Island Developing States (SIDS) amendment was submitted by Kiribati, the Marshall Islands, 
Mauritius, the Federated States of Micronesia, Palau, the Philippines, Samoa, and the Solomon Islands. 
It addresses 22 specific HFCs and HFOs as controlled substances, allows access to the MLF for the fully 
agreed upon incremental costs, provides for a three-year grace period, and delineates a different phase-out 
schedule for Non-Article 5 parties and Article 5 parties. It could result in the reduction of 60–73 Gt CO2eq 
global GHG emissions for the 2015–2050 period (Velders et al., 2015).

The Indian proposed amendment addresses 19 HFC substances divided into four groups. It controls HFCs 
starting in 2016 for Non-Article 5 parties and starting in 2031 for Article 5 parties, thereby allowing 
Article 5 parties a 15-year grace period. It proposes MLF support for full conversion costs for Article 5 
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parties. Where the other proposals call for covering the agreed incremental costs (the approach currently 
used under the Montreal Protocol), India proposes including the MLF payment for full conversion costs. 
India’s proposal would avoid an estimated 25–36 Gt CO2eq global GHG emissions by 2050, as per Velders 
et al. (2015).

The African Group non-paper was submitted by 54 African countries. It addresses 21 HFC substances 
divided into two groups and provides access to the MLF on an unconditional basis for Article 5 parties. 
While it does not outline specific schedules or timeframes, it does indicate that controls, freezes, baselines, 
and grace periods should be determined by the available technology and should be guided by the principle 
of common but differentiated responsibilities.

The base level is different for Article 5 and non-Article 5 parties among all the amendment proposals, 
as shown in Appendix IV. For both non-Article 5 and Article 5 parties, the base level is defined by a 
combination of both HFC and HCFC use, while for non-Article 5 parties this implies that the level is 
primarily determined by the historical use of HFC (Appendix IV). The phase-down (in CO2eq) in HFC 
consumption (and production) in each proposal can be achieved through a wide range of strategies. The 
strategy assumed in this analysis is to reduce high-GWP HFCs in a cost-effective manner, as discussed in 
Section 4. Although not considered in this analysis, other possible phase-down strategies include reducing 
high-GWP HFC use equally in all sectors (Velders et al., 2015) or following the same consumption phase-
down, but first targeting certain HFCs, such as HFC-143a (GWP100 = 4,470) as per IPCC/AR4, that have 
longer atmospheric lifetimes than the most commonly used HFCs. 

Figure 7 presents India’s HFC emissions in the CLE (i.e., current legislation or baseline) scenario in 
comparison with the MTFR scenario (left panel) and the alternative policy scenarios (right panel) as 
outlined by the different amendment proposals to the Montreal Protocol. We have used the emission 
baseline instead of the consumption baseline in this study to assess the mitigation potential and the 
associated costs in different amendment proposals. For developing countries, the phase-down schedules 
are not fully specified in the EU and Indian proposals; therefore, some intermediate reduction steps are 
assumed in the present analysis (Appendix IV). It may be noted that HFC emissions in the GAINS model 
are modelled in each five-year interval. Therefore, the HFC phase-down has been adjusted accordingly. 
The HFC reduction steps (actual and adjusted for the GAINS model) for Article 5 parties are presented in 
Appendix V. As expected, HFC emissions are phased out significantly in the NA, SIDS, and EU proposals 
by 2030 as compared to the Indian proposal in which the HFC consumption and production freeze is 
proposed in 2030–31. 

Figure 7: HFC emissions in MTFR (left panel) and HFC phase-down (right panel) scenarios for India
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5.1 The North American, European, and SIDS Proposals

Figure 8 presents the mitigation potential and costs for India under the North American (NA) proposal. 
Mitigation potential is estimated at 114 Mt CO2eq for 2030 and at 482 Mt CO2eq for 2050. It may be 
noted that mitigation above the marginal abatement cost of 200 Euro per tonne CO2eq is not considered in 
this analysis. There is a large mitigation potential in stationary air-conditioning, followed by the mobile air-
conditioning and commercial refrigeration sector. The cumulative mitigation for the period 2015 to 2050 
as per the NA proposal is estimated at 6.14 Gt CO2eq. There are several negative-cost options available 
for switching from HFCs to alternative refrigerants. The highest cost-saving potential is estimated for 
residential ACs and the foam sector due to the price differential in current HFCs and HCs as alternative 
options.

Figure 8: Mitigation potential and costs under the North American proposal

In the EU proposal, there are different controls for HFC production and consumption in developing 
countries. It is mentioned that the intermediate reduction steps are to be determined by 2020 for both 
production and consumption in developing countries. In this study, we have assessed the mitigation 
potential and costs under the EU proposal for consumption (Appendix IV). The EU production proposal 
targets 15 percent of baseline production in 2040. In view of uncertainty about the reductions steps, we 
have assumed that by 2040 HFC consumption will be 15 percent of the baseline consumption.

Figure 9 presents the estimated mitigation potential and costs under the European Union (EU) proposal. 
The mitigation potential is estimated at 115 Mt CO2eq in 2030 and at 482 Mt CO2eq in 2050, whereas the 
cumulative mitigation potential for the period 2015 to 2050 as per the EU proposal is estimated at 6.14 Gt 
CO2eq approximately, equivalent to the mitigation potential estimated using the NA proposal at a marginal 
abetment cost of <200 Euro.  

Alternative policy scenarios 
for HFC phase-down
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Figure 9: Mitigation potential and costs under the EU proposal

It is useful to note that both the mitigation potential and the cost for the EU and NA proposals are similar. 
This can be explained by comparing the base year and the final phase-down target year for Article 5 
parties in both the proposals. The NA proposal has an earlier baseline of the average 2011–13 values as 
compared to the baseline of 2015–16 for the EU proposal, and both proposals target 15 percent of the 
respective values in the final target phase-down year. But the target year for the final phase-down is later in 
the NA proposal (2046) compared to that in the EU proposal (2040). The freeze years for the NA and EU 
proposals are 2021 and 2019 respectively. Thus, the NA proposal has a lower baseline, but gives a longer 
time period for phasing down HFC emissions as compared to the EU proposal. Give that there was little 
change in Indian HFC emissions between 2011 and 2016, the overall mitigation potential and costs come 
out to be similar in both the proposals.   

Figure 10 presents the estimated mitigation potential and costs under the SIDS proposal. The mitigation 
potential is estimated at 118 Mt CO2eq in 2030 and at 482 Mt CO2eq in 2045, whereas the cumulative 
mitigation potential for the period 2015 to 2050 as per the SIDS proposal is estimated at 6.16 Gt CO2eq 
approximately, equivalent to the mitigation potential estimated using the NA and EU proposals at a 
marginal abetment cost of <200 Euro. 

Figure 10: Mitigation potential and costs under the SIDS proposal
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5.2 The Indian Proposal

Figure 11 presents the mitigation potential and costs under the Indian proposal. The mitigation potential 
is estimated at 173 Mt CO2eq in 2040 and at 482 Mt CO2eq in 2050, whereas the cumulative mitigation 
potential for the period 2015 to 2050 as per the Indian proposal is estimated at 4.2 Gt CO2eq at a marginal 
abetment cost of <200 Euro. 

Figure 11: Mitigation potential and costs under the Indian proposal

The cumulative mitigation cost in the Indian proposal is almost 12 Bn Euros, which is much less compared 
to the other proposals. This is because mitigating each additional unit of HFCs is more expensive than 
mitigating the last unit due to the rising marginal abatement cost. However, the cumulative mitigation 
achieved in the Indian proposal is also lower. This inherently reflects the trade-off faced by policy makers, 
More mitigation is more costly, and the additional economic burden is imperative for achieving higher 
environmental benefit.

5.3 An Intermediate Proposal

It is observed that the grace period (beyond the beginning of the non-Article 5 control period) is five years 
in the NA proposal and seven years in the SIDS proposal, whereas the Indian proposal provides for a 15-
year grace period. Therefore, in this study, we have analysed an intermediate policy proposal with a grace 
period of seven years. In this scenario, we assume that the freeze year for Article 5 countries is 2025, while 
the base year is the same as in the NA proposal. Keeping the base year the same as in the NA proposal 
while shifting the freeze year closer to the one in the Indian proposal tests the sensitivity of emission 
mitigation to both the base year and the freeze year. Figure 12 presents the mitigation potential and costs 
under the so-called intermediate policy proposal in which the mitigation potential is estimated at 116 
Mt CO2eq in 2030 and at 482 Mt CO2eq in 2050, whereas the cumulative mitigation potential for the 
period 2015 to 2050 as per an intermediate policy proposal is estimated at 6.1 Gt CO2eq approximately, 
equivalent to the mitigation potential estimated using the NA, EU, and SIDS proposals at a marginal 
abatement cost of <200 Euro. This result shows that for the analysed time frames, an earlier base year has 
a larger effect on mitigation than the freeze year. Even if Indian emissions keep growing up to 2025, these 
have to be mitigated rapidly post 2025 to achieve the mitigation target of 15 percent of the base year value 
by 2050. 

Alternative policy scenarios 
for HFC phase-down
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Figure 12: Mitigation potential and costs under an intermediate policy proposal

Figure 13 presents the cumulative HFC emissions and mitigation potential under different HFC phase-
down scenarios in the period 2015 to 2050 at a marginal abetment cost of <200 Euro. The cumulative 
mitigation potential for India in the period 2015 to 2050 is estimated at ≥6 Gt CO2eq in the NA, EU, 
and SIDS proposals, whereas it is estimated at 4.2 Gt CO2eq in the Indian proposal. The reduction in 
cumulative emissions is less in the Indian proposal because of the later start of the controls for Article 5 
parties as compared to those in other proposals. The cumulative mitigation potential in an intermediate 
proposal is also close to 6.1 Gt CO2eq, which is approximately equivalent to the mitigation potential 
achieved through the NA, EU, and SIDS proposals due to the early base year, even if it comes with a seven-
year grace period.

Figure 13: Cumulative mitigation potential, foregone cumulative emissions, and cumulative costs and saving 
under different HFC phase-down scenarios in the period 2015 to 2050

The mitigation potential that is attainable at a zero or negative marginal cost (see Section 4) is expected to 
be cost-effective. It is worth mentioning that while additional policy efforts are not assumed for negative-
cost measures, such measures can provide key policy signals that can accelerate the transition to low-
GWP or not-in-kind HFC alternatives. As different sectors will face different costs, we present both the 
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positive and negative costs separately for the different proposals. The cumulative sum of the additional 
costs (undiscounted, in 2015 prices) in different HFC phase-down scenarios is also presented in Figure 13. 
The cumulative sum of the additional costs in different HFC phase-down scenarios is estimated at nearly 
33–34 billion Euro in the NA, EU, SIDS, and intermediate proposals due to the different freeze-in years 
and baselines, as shown in Appendix IV. Table 6 presents the cumulative mitigation potential and costs in 
different HFC phase-down scenarios between 2015 and 2050. HFC phase-down (cumulative) costs are 
estimated at nearly 0.02 percent of India’s expected cumulative GDP in the period  2015 to 2050 following 
the NA, EU, and SIDS proposals. At the same time, there are significant cost savings (53 billion Euro) 
primarily in the residential air-conditioning sector due to the lower cost of the alternative refrigerant (HC-
290) as well as higher energy efficiency.

Table 6. Cumulative mitigation potential and costs in different HFC phase-down scenarios between 2015 and 2050 

HFC phase-down proposals Cumulative 
mitigation 
potential

(Gt CO2eq)

Foregone 
cumulative 
mitigation
(Gt CO2eq)

Cumulative cost
(Billion Euro)

Cumulative 
savings

(Billion Euro)

Annual emissions 
in 2050 

(Mt CO2eq)

NA proposal 6.14 0.25 33.24 -53.23 2.0

EU proposal 6.14 0.24 33.50 -53.28 2.4

SIDS proposal 6.16 0.22 34.03 -53.28 1.4

Indian proposal 4.23 2.16 11.59 -48.88 18.9

Intermediate proposal 6.11 0.28 32.60 -53.66 2.4

Note: - Costs are cumulative undiscounted costs and in terms of 2015 prices

-The maximum technically feasible mitigation potential is estimated at 6.4 Gt CO2eq for the period 2015–2050.

The cumulative mitigation cost of the Indian proposal is nearly one-third (11.6 billion Euro) as compared 
to those of the global proposals due to the later start of the controls for Article 5 parties as compared to 
those in the other proposals. The lower cost also reflects the lower mitigation undertaken under the Indian 
proposal. At the same time, there are significant cost savings (49 billion Euro) in the Indian proposal as 
well, primarily in the residential air-conditioning sector, due to the reasons mentioned earlier. 

Alternative policy scenarios 
for HFC phase-down
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6. Uncertainty analysis

Our analysis is based on a range of assumptions regarding socio-economic growth, technical parameters, 
and HFC mitigation policy. It is critical to understand the range of uncertainties concerning our estimates. 
We discuss the following four kinds of uncertainties and describe how our results could change because of 
these factors.

6.1 Parametric uncertainties

There are two key variables that are defining and critical in terms of their impact on the estimates of HFC 
emissions—economic growth and leakage rates. The parametric uncertainties related to both these variables 
were tested in Chaturvedi et al. (2015). The average growth rate between 2010 and 2050 under the 
reference scenario was assumed to be 6.9 percent. Under the low-growth scenario, this was lowered to 5.5 
percent. Compared to a total of approximately 503 Mt-CO2eq HFC emissions in 2050 under the reference 
scenario, HFC emissions under the low-growth scenario are estimated to be 324 Mt-CO2eq in 2050, 35 
percent lower than the estimate under the reference scenario.

We tested higher and lower leakage rates across sectors compared to the leakage rate under the reference 
scenario. We found that in 2050, HFC emissions are likely to increase by 29 percent in the high-leakage 
rate scenario, and to decrease by 39 percent in the low-leakage rate scenario relative to the HFC emissions 
in the reference scenario.

6.2 Policy-induced uncertainty related to baseline and freeze years

Determining the baseline and freeze years is the most contentious issue in international negotiations on 
climate change. The NA, EU, and SIDS submissions propose early baseline and freeze years for Article 5 
countries, as shown in Appendix IV, while the Indian submission proposes an average consumption of the 
2028–30 as the baseline and 2031 as the freeze year. Thus, the proposals on the table already span a wide 
range. Our estimates of the mitigation potential and cost under the different proposals are hence not just 
estimates of the mitigation potential of different amendment proposals, but also of the uncertainty range 
due to the varying baseline and freeze years proposed. In addition to the proposals on the table, we also 
test an intermediate scenario, detailed in Section 5, where we test the sensitivity related to the freeze year by 
varying the freeze year and keeping the baseline as in the NA proposal. We find that if the baseline is based 
on a historical year, it does not matter much in terms of mitigation if we push the freeze year to a later 
date. Based on this one sensitivity test, we can say (although not strongly) that the impact of the baseline 
year on emission mitigation is more significant as compared to the freeze year. For drawing stronger 
conclusions, we will need to test different combinations of the baseline year and the freeze year. The freeze 
year is, however, important from the point of view of providing a strong policy signal to the market, to 
chemical producers, and to equipment manufacturers of the need to adjust their plans accordingly to meet 
the phase-down targets. 

6.3 Uncertainty due to phase-down schedule

The NA and the SIDS proposals include a phase-down schedule for Article 5 countries. But the Indian and 
the EU proposals do not include a pre-specified phase-down schedule. The mitigation potential and cost for 
both these sets of proposals are based on an assumed phase-down schedule as specified in Appendix V. We 
also tested the sensitivity of our results to this assumption by modelling an alternative phase-down schedule 
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for the Indian proposal. The details and mitigation results for the two phase-down schedule scenarios are 
given in Table 7.

Table 7. Sensitivity analysis using different phase-down schedules for the Indian proposal

Year HFC phase-down steps Annual Mitigation potential 
(Mt CO2eq)

Annual Mitigation cost 
(Million Euro)

Existing New Existing New Existing New

2035 100% 80% 60.9 84.2 0.0 36.9

2040 80% 60% 172.7 198.2 138.5 258.8

2045 40% 40% 322.2 322.2 683.7 683.7

2050 15% 15% 482.4 482.4 2,492.2 2,492.2

Note: - Costs are annual undiscounted costs and in terms of 2015 prices

Cumulative mitigation is estimated at 4.2 Gt CO2eq in the existing schedule and at 4.5 Gt CO2eq using the 
new HFC phase-down schedule. Similarly, cumulative mitigation cost is estimated at 11.6 billion Euro in the 
existing schedule and at 12.4 billion Euro using the new HFC phase-down schedule. As is evident from Table 
7, our estimates of the mitigation potential are not sensitive to the assumption related to the phase-down 
schedule. As cost is closely aligned with the mitigation potential, the cost estimates are also not sensitive to the 
phase-down schedule. 

6.4 Uncertainty related to refrigerant characteristics, refrigerant cost 
and system cost

Our results are contingent on the choice of refrigerants for different sectors, which is governed by the best 
available understanding of the feasibility of different alternatives available in different sectors. The alternatives 
that have been chosen are listed in the section on methodology and data. Two important points need to be 
highlighted here. 

The first is related to the negative costs in the residential sector. The negative costs are due to the uptake of 
HC-290 for residential ACs. HC-290 is already being sold in the Indian and Chinese markets; nevertheless, 
other manufacturers have expressed concerns related to its flammability. This refrigerant, being a natural 
refrigerant, is cheaper as compared to R-410A, which is the refrigerant in the reference scenario. Also, it 
is highly energy efficient (Schwarz et al., 2011). Because of its higher energy efficiency and lower cost, the 
transition towards this refrigerant leads to significant savings for the residential AC sector. This result will hold 
if the residential AC market in India  shifts to HC-290 in a big way. However, if there is another refrigerant 
that is low GWP, but is not as cost- effective (this is a high probability if it is a HFO) and not as energy 
efficient, the saving potential during the transformation in this sector could decline or go away altogether.

The second point is the mirror image of the first point. The current alternative for the mobile air-conditioning 
sector, which is most widely discussed in all forums, is HFO-1234yf. Given our current understanding and 
the way in which  markets are shifting, this alternative appears to be the most feasible choice. However, the 
current cost of this refrigerant in India is 20 times the cost of HFC-134a, the refrigerant used in the reference 
scenario. Some Indian experts believe that the long-run price could be seven to eight times higher than 
HFC-134a due to application patents as well as the chemistry of this molecule. Our analysis is based on this 
assumption. Also, due to the expected lower energy efficiency of this refrigerant in Indian ambient conditions, 
additional expenditure will need to be incurred on modifying the heat exchanger unless the cooling system 
of the vehicle is redesigned. There will be additional plant and system level cost too which we have included. 
The high cost of transition across all proposals is largely due to the transition in the MAC sector. If in the 
future the cost of HFO-1234yf declines drastically, or there is an alternative refrigerant that satisfies all the 
technical criteria, yet is not as expensive as HFO-1234yf, the transition cost for this sector could come down 
significantly. Given the current understanding, however, such an alternative is not yet visible on the horizon. 
Updated information on system level cost could also change our numbers.    

Uncertainty 
analysis
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7. Conclusions and policy 
implications

This study presents estimates of current and future HFC emissions in India along with their technical 
mitigation potential and associated costs for the period 2010 to 2050. In the reference scenario, the use 
and emissions of HFCs grow rapidly in the coming decades. Initial results under the GAINS model indicate 
that in the reference scenario, which assumes no further adoption of legislative or voluntary incentives to 
control emissions than those currently in place, Indian HFC emissions are expected to grow by a factor 
of fifty between 2010 (10 Mt CO2eq) and 2050 (503 Mt CO2eq). In particular, a sharp increase in HFC 
emissions from air conditioning and refrigeration is expected. This will, in turn, be driven by a combined 
effect of the replacement of HCFCs with HFCs in accordance with the revised Montreal Protocol and an 
expected increase in demand for cooling services provided by refrigeration and air-conditioning appliances.

There are extensive opportunities to avoid potential HFC emissions by up to 98 percent primarily through 
replacement with existing alternative low-GWP substances. The results indicate that 37 percent of the 
mitigation potential in 2050 is expected to be attainable below 0 €/t CO2eq, while 53 percent is expected 
to be attainable at a marginal cost between zero and 20 €/t CO2eq. This is due to recently improved 
technology that allows for the use of low-cost alternative refrigerants (particularly in case of HCs) as 
replacement for HFCs. Hence, the mitigation potential is large and inexpensive, and is applicable to the 
residential air-conditioning, industrial refrigeration, and foam sectors, where a variety of inexpensive 
alternatives to HFCs (e.g., HCs, NH3, and HFC-152a) are available. For commercial air-conditioning 
and refrigeration, the mitigation potential is high and relatively inexpensive as compared to mobile air-
conditioning.

In the current legislation scenario, cumulative HFC emissions are estimated at 6.8 Gt CO2eq in the period 
2015 to 2050. The maximum technically feasible mitigation potential is estimated at 6.4 Gt CO2eq for 
the same period. The objective of several existing national, regional, and global regulations is to limit the 
growth in future HFC use and emissions. At present, proposals have been submitted by North America 
(NA), the European Union (EU), the Small Island Developing (SID) regions, and India to amend the 
Montreal Protocol to substantially reduce growth in HFC use. Through the development of scenario 
projections for each of the proposed amendments to the Montreal Protocol, we estimate, by sector, the 
impact on long-term HFC emissions in India under the different amendments and in comparison with 
the existing regulations. For the scenario analysis, this study uses emissions instead of consumption to 
assess the mitigation costs. The scenario analysis indicates that a reduction of about 6.14–6.16 Gt CO2eq 
cumulative HFC emissions is expected under the NA, EU, and SIDS proposals in the period 2015 to 
2050. The reduction in cumulative emissions is less under the Indian proposal (nearly 4.2 Gt CO2eq) 
because of the later start of the controls for developing countries than in the other three proposals. The 
cumulative mitigation cost of the Indian proposal is nearly one-third (11.6 billion Euro) as compared to 
global proposals (33–34 billion Euro) due to the later start of the controls for Article 5 parties as compared 
to other proposals. It may be noted that our results are contingent on the best available information 
on the availability and cost of low-GWP alternatives currently being discussed. Therefore, if new 
alternatives emerge for different sectors with different technical (i.e. removal efficiency, GWP, etc.) or cost 
characteristics as compared to the currently discussed alternatives, our quantified results and key insights 
may change significantly.
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In terms of policy insights and actions, our analysis proposes two key action points as immediate steps. The 
first is the creation of a dedicated institutional structure for supporting R&D for low-GWP alternatives 
for different sectors and applications, particularly HC-290 for the room air-conditioning sector. Room 
air-conditioning is expected to be a high-growth sector, and currently there is only one low-GWP solution 
for this sector—HC-290. However, some sections of  Indian industry are sceptical about the applicability 
of this refrigerant under all conditions, and have expressed concerns about safety. Our analysis shows that 
there is a huge opportunity for saving electricity through the adoption of this refrigerant. Strategic R&D 
is the only way that India can harness this opportunity during the transition. Second, Indian stakeholders 
need a better understanding of the cost of HFO-1234yf (which is being offered as a technically viable 
solution for the mobile air-conditioning sector) and the  extent to which  this cost can decline even in the 
long term. The current price of this refrigerant in the Indian market is 20 times that of HFC-134a, the 
refrigerant that is most widely used at present. This price should drop significantly in the long run. Still 
Indian experts believe that even in the long run, the price could be seven or eight times as much due to 
application patents as well as the chemistry of this molecule. Our analysis is based on this assumption. An 
in-depth analysis is required to understand the ways in which this potential cost could be reduced. If such 
an analysis finds that the potential long-term cost will not be seven to eight times, but only three times, 
then the estimated economic burden could be reduced by 15–20 percent (as the cost of the additional heat 
exchanger is also a big part of the additional cost). There would still be an additional economic burden. It 
is important to understand this and to find ways and strategies to minimise this burden.

The numbers emerging from our analysis are not set in stone and could change as our understanding of 
the underlying information changes. The two key points mentioned above highlight the strategies that 
are required to maximise the potential economic savings and to minimise the potential costs. A better 
understanding of both the issues will enable Indian policy makers to evaluate the trade-offs of the HFC 
phase-down and design measures to pursue domestic economic and social priorities as well as global 
environmental leadership.  

The following additional policy implications can be drawn for India based on this study:

 The HFC phase-down in most sectors is likely to be a cost-effective way of complying with climate-
policy targets as it affects a small number of sectors and has only  moderate costs. In addition, 
switching to some cooling and insulation technologies without refrigerants (‘not-in-kind’ alternatives) 
can reduce not only HFCs, but also cut CO2 emissions from energy consumption. Some of the 
mitigation potential in several sectors (i.e. in stationary air-conditioning, industrial refrigeration, etc.) is 
expected to come at a zero or negative marginal cost (i.e., at a marginal profit), which is an opportunity 
for India to take appropriate action. 

 There are extensive opportunities to reduce HFC consumption and emissions in India. The results 
indicate that more than a third of the mitigation potential is attainable at zero or below zero marginal 
cost primarily due to inexpensive low-GWP alternatives and energy-efficiency benefits. Tracking energy-
efficiency opportunities is in India’s self-interest, and the adoption of appropriate domestic policies 
can help achieve and accelerate the transition to low-GWP and not-in-kind alternatives. Therefore, 
adequate domestic policy measures are required to increase incentives and to ensure the adoption of 
regulations for more energy-efficient appliances in the phase-out of HCFCs and the phase-down of 
HFCs.

 At the sectoral level, applications using HFCs (except HFC-134a used primarily in mobile ACs and 
domestic refrigerators) are currently still at an early stage in India. Further, in many consuming sectors, 
low-GWP or zero-GWP substitutes and technologies are already commercially available. However, 
there are currently no domestic regulations on HFCs in India. In the absence of regulations on HFC 
use, India should focus on good practices like leakage control, adoption of improved components, and 
end-of-life recollection. India’s amendment proposal already signals its intent to phase-down high-GWP 
HFCs in the long run.   
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 As we are interested in estimating the costs of the additional policy efforts needed to attain the required 
emission-reduction targets, we present negative and positive abatement costs separately. Due to the 
different freeze-in years and baselines, the cumulative costs in different HFC phase-down scenarios 
are estimated at nearly 33–34 billion Euro in the NA, EU, SIDS, and intermediate proposals, that is, 
approximately 0.02 percent of India’s expected cumulative GDP from 2015 to 2050. At the same time, 
there are significant cost savings (53 billion Euro) primarily in the residential air-conditioning sector 
due to the lower cost of the alternative refrigerant (HC-290) as well as higher energy efficiency.

 The cumulative mitigation cost of the Indian proposal is nearly one-third (11.6 billion Euro) as 
compared to those of the global proposals due to the later start of the controls for Article 5 parties as 
compared to those of the other proposals. The lower cost also reflects the lower mitigation undertaken 
under the Indian proposal. At the same time, there are significant cost savings (49 billion Euro) under 
the Indian proposal as well, primarily in the residential air-conditioning sector, due to the reasons 
mentioned earlier. 

 A phase-down of HFCs is likely to be a cost-effective option for India if it is to contribute to the global 
climate target that limits temperature increase to 2 °C above pre-industrial levels. As the world’s fourth 
largest GHG emitter, India’s active participation in the phase-down of HFCs will help to meet its 
current pledge to improve the emissions intensity of its GDP by 33 to 35 percent by 2030 below 2005 
levels in a cost-effective manner. However, the cost-effectiveness here needs to be understood in the 
context of competing GHG-mitigation options like solar energy and energy efficiency. This is an area 
for future research.

 HFCs are the low-hanging fruit in tackling climate change. Amending the Montreal Protocol provides 
developing countries like India  proven tools and support mechanisms  that work within an already 
established and functioning framework. In the end, the issue of HFCs  must be addressed effectively 
and meaningfully if we are to move forward on climate change. 
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Appendix I
GAINS India – regions*

*ANPR: Andhra Pradesh (including Telangana); ASSA: Assam, BIHA: Bihar; CHHA: Chhattisgarh; 
DELH: Delhi; GOA: Goa; GUJA: Gujarat; HARY: Haryana; HIPRL: Himachal Pradesh; WHIM: 
Jammu and Kashmir; JHAR: Jharkhand; KARN: Karnataka; KERA: Kerala (including Lakshadweep); 
MAPR: Madhya Pradesh; MAHA: Maharashtra (including Daman and Diu, Dadra and Nagar 
Haveli); EHIM: including Arunachal Pradesh, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim, 
Tripura; ORIS: Odisha; PUNJ: Punjab; RAJA: Rajasthan; TAMI: Tamil Nadu (including Andaman 
and Nicobar Islands, Pondicherry); UTPR: Uttar Pradesh; UTAN: Uttarakhand; BENG: West Bengal
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Appendix II
Mitigation options for HFC emissions considered in the GAINS model

Sector description Technology description

Aerosols Alternative hydrocarbon propellant (i.e. propane (HC-290), iso-butane (HC-600a), 
n-propane, etc.)

Alternative propellant (i.e. HFC-152a)

Alternative propellant (e.g. HFO-1234ze)

Commercial air conditioning, emissions 
banked in equipment

Good practice: leakage control, improved components

Alternative hydrocarbon refrigerant (i.e. propane, iso-butane, propene (HC-1270), etc.)

Alternative technology: pressurised CO2

Alternative low-GWP HFCs (e.g. HFC-152a) 

Alternative low-GWP refrigerant (i.e. HFO-1234yf)

Commercial air conditioning, emissions 
from scrapped equipment

Good practice: end-of-life recollection

Alternative hydrocarbon refrigerant (i.e. propane, iso-butane, propene, etc.)

Alternative technology: pressurised CO2

Alternative low-GWP HFCs (e.g. HFC-152a) 

Alternative low-GWP refrigerant (i.e. HFO-1234yf)

Commercial refrigeration, emissions 
banked in equipment

Good practice: leakage control, improved components

Alternative hydrocarbon refrigerants (i.e. propane, iso-butane, propene, etc.) 

Alternative low-GWP HFCs (e.g. HFC-152a)

Alternative technology: pressurised CO2

Commercial refrigeration, emissions from 
scrapped equipment

Good practice: end-of-life recollection

Alternative hydrocarbon refrigerants (i.e. propane, iso-butane, propene, etc.)

Alternative low-GWP HFCs (e.g. HFC-152a)

Alternative technology: pressurised CO2

Domestic small hermetic refrigerators, 
emissions from scrapped equipment

Good practice: end-of-life recollection

Alternative hydrocarbon refrigerant (i.e. iso-butane)

Fire extinguishers, emissions banked in 
equipment

Good practice: leakage control, improved components

Alternative agent: Fluoro-ketone (FK-5-1-12)

Fire extinguishers, emissions from 
scrapped equipment

Good practice: end-of-life recollection

Alternative agent: Fluoro-ketone (FK-5-1-12)

Ground source heat pumps, emissions 
banked in equipment

Good practice: leakage control, improved components

Alternative hydrocarbon refrigerants (i.e. propane (HC-290), propene (HC-1270), etc.)

Alternative technology: pressurised CO2

Alternative low-GWP HFCs (e.g. HFC-152a)

Ground source heat pumps, emissions 
from scrapped equipment

Good practice: end-of-life recollection

Alternative hydrocarbon refrigerants (i.e. propane (HC-290), propene (HC-1270), etc.)

Alternative technology: pressurised CO2

Alternative low-GWP HFCs (e.g. HFC-152a)

HCFC-22 production for emissive use Post combustion of HFC-23

HCFC-22 production for feedstock use Post combustion of HFC-23



35Scenario analysis for HFC emissions in India: 
Mitigation potential and costs

Sector description Technology description

Industrial refrigeration (including food and 
agricultural sectors), emissions banked in 
equipment

Good practice: leakage control, improved components

Alternative refrigerant: propane (HC-290)

Alternative low-GWP HFCs (e.g. HFC-152a)

Alternative refrigerant: ammonia (NH3)

Alternative technology: pressurised CO2

Industrial refrigeration (including food 
and agricultural sectors), emissions from 
scrapped equipment

Good practice: end-of-life recollection

Alternative refrigerant: propane (HC-290)

Alternative low-GWP HFCs (e.g. HFC-152a)

Alternative refrigerant: ammonia (NH3)

Alternative technology: pressurised CO2

Mobile AC in buses, emissions banked in 
equipment

Good practice: leakage control, improved components

Alternative refrigerant: HFO-1234yf

Alternative technology: pressurised CO2

Mobile AC in buses, emissions from 
scrapped equipment

Good practice: end-of-life recollection

Alternative refrigerant: HFO-1234yf

Alternative technology: pressurised CO2

Mobile AC in heavy-duty trucks, 
emissions banked in equipment

Good practice: end-of-life recollection

Alternative refrigerant: HFO-1234yf

Alternative technology: pressurised CO2

Mobile AC in heavy-duty trucks, 
emissions from scrapped equipment

Good practice: end-of-life recollection

Alternative refrigerant: HFO-1234yf

Alternative technology: pressurised CO2

Mobile AC in cars, emissions banked in 
equipment

Good practice: leakage control, improved components

Alternative refrigerant: HFO-1234yf

Alternative technology: pressurised CO2

Mobile AC in cars, emissions from 
scrapped equipment

Good practice: end-of-life recollection

Alternative refrigerant: HFO-1234yf

Alternative technology: pressurised CO2

Mobile AC in light-duty trucks, emissions 
banked in equipment

Good practice: leakage control, improved components

Alternative refrigerant: HFO-1234yf

Alternative technology: pressurised CO2

Mobile AC in light-duty trucks, emissions 
from scrapped equipment

Good practice: end-of-life recollection

Alternative refrigerant: HFO-1234yf

Alternative technology: pressurised CO2

One-component foams Alternative hydrocarbon blowing agents (i.e. Iso-butane (HC-600a), Iso-pentane, 
n-pentane, etc.)

Alternative technology: pressurised CO2

Alternative blowing agent: HFO-1234ze 

Alternative low-GWP HFCs (e. g. HFC-152a) 

Other foams Alternative hydrocarbon blowing agents (i.e. Iso-butane (HC-600a), Iso-pentane, 
n-pentane, etc.)

Alternative technology: pressurised CO2

Alternative blowing agent: HFO-1234ze 

Alternative low-GWP HFCs (e.g. HFC-152a) 

Other HFC use Alternative low-GWP HFCs (e.g. HFC-152a) 
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Sector description Technology description

Refrigerated transport, emissions banked 
in equipment

Good practice: leakage control, improved components

Alternative hydrocarbon refrigerant: propane (HC-290), propene (HC-1270)

Alternative technology: pressurised CO2

Alternative low-GWP HFCs (e.g. HFC-152a)

Refrigerated transport, emissions from 
scrapped equipment

Good practice: end-of-life recollection

Alternative hydrocarbon refrigerant: propane (HC-290), propene (HC-1270)

Alternative technology: pressurised CO2

Alternative low-GWP HFCs (e.g. HFC-152a)

Residential air conditioning, emissions 
banked in equipment

Good practice: leakage control, improved components

Alternative hydrocarbon refrigerant (i.e. propane (HC-290), iso-butane (HC-600a), 
propene (HC-1270), etc.) 

Alternative technology: pressurised CO2

Alternative low-GWP HFCs (e.g. HFC-152a)

Alternative low-GWP refrigerant (i.e. HFO-1234yf)

Residential air conditioning, emissions 
from scrapped equipment

Good practice: end-of-life recollection

Alternative hydrocarbon refrigerant (i.e. propane (HC-290), iso-butane (HC-600a), 
propene (HC-1270), etc.) 

Alternative technology: pressurised CO2

Alternative low-GWP HFCs (e.g. HFC-152a)

Alternative low-GWP refrigerant (i.e. HFO-1234yf)

Solvents Ban of use
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Appendix III
Market price of current and alternative refrigerants

To avoid use and to reduce emissions of both hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons 
(HCFCs), a variety of climate-friendly, energy-efficient, safe, and proven alternatives are available today. 
However, leapfrogging away from HCFCs/HFCs to low-GWP or natural alternatives will entail costs. In 
the last few years, several low-GWP alternatives have become available, offering developing countries an 
opportunity to transition directly from HCFCs to cost-effective, low-GWP alternatives. For example, low-
GWP alternatives to HCFCs/HFCs are economically viable for room ACs in India. The Indian market has 
some of the leading players in the transition to low-GWP refrigerants in ACs, with Daikin establishing its 
first developing-country HFC-32 factory in India (capacity 1 million units) and reporting sales of 150,000 
such units. Similarly, Godrej & Boyce are leading the way in the manufacturing of HC-290 ACs in India, 
reporting sales of 100,000 units since 2013 (NRDC et al., 2013).

Table A.1 presents the market prices of current and alternative refrigerants as assumed in our study, 
which have also been verified through interaction with industry experts. The long-term price of HFC-32 is 
assumed to be the same as that of R-410A based on inputs from Daikin India. The R-410A price is based 
on inputs from ISHRAE and other industry experts. Further, the HFC-404A or R-404A prices are assumed 
to be the same as those for R-410A, and this assumption is consistent with the findings of the UNEP/
TEAP (2012) report. The market prices for HFC-134a and HC-600a have been verified with information 
from Whirlpool India. The market prices of various hydrocarbon (HC) coolants differ marginally, and the 
HC-290 price is assumed to be the same as that for HC-600a. Carbon dioxide (CO2) and ammonia (NH3) 
prices are taken from the UNEP/TEAP (2012) report and have also been verified through interaction with 
industry experts. HFO-1234yf prices are calculated based on inputs from Subros India, Tata Motors, and 
ISHRAE, which suggest that the price could be anywhere between six and ten times the price of HFC-
134a. The HFO-1234ze price is taken from the UNEP/TEAP (2012) report and is also verified through 
interaction with industry experts.  

Table A.1: Market price of current and alternative refrigerants

Refrigerant Market price  (Euro*/kg) Reference

HFC-32, R-410A, HFC-404A 7.1 Inputs received from Daikin India, ISHRAE, and other industry 
experts; UNEP/TEAP (2012)

HC-290, HC-600a 6.0 Inputs received from Whirlpool India and other industry experts

HFC-134a 5.2

NH3 1.6 UNEP/TEAP (2012)

CO2 1.6

HFO-1234ze 40.0

HFO-1234yf 41.7 Inputs received from Tata Motors, Subros India, ISHRAE, and 
corroborated with US-EPA (2013). 

*1€ = R70

Note: This table gives the refrigerant cost, which is only a part of the total incremental cost. The total incremental cost including 

system cost is what matters for our analysis.

In this study, refrigerant prices mentioned in Table A.1 are adjusted for equipment/appliance charge rates 
and form a component of the refrigerant cost (initial refrigerant charge at the factory) of the control 
options. Based on comparisons of HFC-32 and R-410A room air-conditioner models from Daikin 
brochures, the hardware cost of the HFC-32-based AC is 9 percent lower than that of the R-410A-based 
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room AC. The investment cost for the propane (HC-290)-based room AC is higher than that of the existing 
HCFC-22 unit, but is assumed to be the same as that of the R-410A reference unit. It is assumed that the 
cost of safety provisions in the HC-290 unit is offset by the lower material requirements compared to 
R-410A and hence results in zero incremental investment cost (Table A.2). 

Table A.2. Market price and O&M cost of room air-conditioners in Indian market 

Refrigerant Lifetime of 
equipment (years)

Investment cost 
(€/activity)

Annual O&M 
cost8 (€/activity)

Electricity use 
(%)

Baseline (R-410A*) 10 637.6 10.4

Alternative low-GWP HFCs (i.e. HFC-32) 582.09 7.5 -6%10

Alternative hydrocarbon (i.e. HC-290) 637.6 4.6

*Currently in use for room ACs in Indian market. 8910

Efficiency gains are considered to be 6 percent for the HFC-32 unit. In the absence of testing results, over 
a complete range of ambient temperatures in India, or any industry inputs, efficiency gains from HC-290 
are considered the same as that from HFC-32, i.e. 6 percent. The refrigerant refill cost forms a part of the 
O&M cost of control technologies and is based on operational leakages. Hence, the servicing demand 
of end-use equipment then depends on the number of recharges that will be required over the lifetime of 
the equipment (Chaturvedi et al., 2015). HC or HC mixes utilised in the domestic refrigerator industry 
contribute 3–4 percent of the incremental cost per domestic refrigerator unit, and energy requirements 
decrease by 1.5 percent in HC-based refrigerators. Contributions of refrigerant prices to fixed investment 
cost and O&M cost are calculated in a similar manner as described above for residential ACs. 

8 It is assumed that there is no change in the labour cost of refilling the equipment with current and alternaƟve refrigerants in use.
9 Cost inputs provided by Daikin India.
10 6 percent efficiency gain for HFC-32-based single-split room air-condiƟoner as per Daikin India.
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Appendix IV
HFC phase-down schedules for Article 5 and non-Article 5 parties11

Key elements North American 
proposal

European Union 
proposal

Indian proposal Small Island 
Developing States 

(SIDS) proposal

African group non- 
paper

Listing of HFCs 19 HFCs in one 
annex divided into 
two groups

19 HFCs in one 
annex divided into 
two groups

19 HFCs in two 
annexes divided 
into five groups

22 HFCs (including 
three HFOs) in one 
annex divided into 
two groups

21 HFCs (including 
two HFOs) in one 
annex divided into 
two groups

Non-Article 5 Measures

Control period/
length

2019–2036 (17 
years)

2019–2034 (15 
years)

2016–2035 (19 
years)

2017–2033 (16 
years)

To be determined

Control measures 
for HFC production 
and consumption 
(% of baseline) 

2019 – 90%
2024 – 65%
2030 – 30%
2036 – 15%

2019 – 85%
2023 – 60%
2028 – 30%
2034 – 15%

2016 – 100%
2018 – 90%
2023 – 65%
2029 – 30%
2035 – 15%

2017 – 85%
2021 – 65%
2025 – 45%
2029 – 25%
2033 – 10%

To be determined11

Baseline 
(GWP–weighted)

100% of HFCs 
+ 75% of HCFC 
consumption 
and production 
(averaged from 
2011–2013)

100% of HFCs 
+ 45% of  HCFC 
consumption 
and production 
(averaged from 
2009–2012)

100% of HFCs 
averaged from 
2013–2015 + 25% 
of the 1989 HCFC 
base level for the 
HCFC phase-out 

100% of HFCs 
averaged from 
2011–2013 + 10% 
of 1989 HCFC base 
level for the HCFC 
phase-out

Baseline to be 
determined

Article 5 Measures

Grace period 
(beyond beginning 
of non-Article 5 
control period)

5 years None 15 years 7 years Grace period to be 
determined

Control period/
length

2021–2046 (25 
years)

2019–2040 (21 
years)

2031–2050 (19 
years)

2020–2040 (20 
years)

To be determined

Control measures 
for HFC production 
and consumption 
(% of baseline)

2021 – 100%
2026 – 80%
2032 – 40%
2046 – 15%

Consumption:
2019 – 100%
Production:
2019 – 100%
2040 – 15%
Further and 
intermediate steps 
agreed by 2020

2031 – 100%
2050 – 15%
National phase-
down steps are to 
be decided 5 years 
in advance for the 
next 5-year period

2020 – 85%
2025 – 65%
2030 – 45%
2035 – 25%
2040 – 10%

Schedule to be 
determined

Baseline (GWP– 
weighted)

100% of HFCs + 
50% of HCFCs 
consumption 
and production 
(averaged from 
2011–2013)

Production:
100% of HFCs 
+ 70% of HCFC 
(averaged from 
2009–2012)
Consumption:
Base level: 100% 
of HFCs + 100% of 
HCFCs (averaged 
from 2015–2016)

100% of HFCs 
averaged from 
2028–2030 + 32.5% 
of HCFC base 
level (2009–2010 
average) for the 
HCFC phase-out

100% of HFCs 
averaged from 
2015–2017 + 65% 
of HCFC base 
level (2009–2010 
average) for the 
HCFC phase-out

Baseline to be 
determined

Multilateral fund 
financing

Agreed incremental 
costs

Agreed incremental 
costs

Full conversion and 
where transitional 
technologies are 
deployed, second 
conversion costs 
starting at beginning 
of control period

Agreed full 
incremental costs 
starting in advance 
of control period

Sufficient, 
unconditional 
support

Sponsor’s estimate 
of HFC emissions 
reduction by 2050

90–112 billion 
metric tonnes 
CO2eq.

79 billion metric 
tonnes CO2eq.

Unspecified Unspecified Unspecified

11 Schedule to be determined based on TEAP study on technology availability, cost, safety, energy efficiency, and environmental consideraƟons.
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Key elements North American 
proposal

European Union 
proposal

Indian proposal Small Island 
Developing States 

(SIDS) proposal

African group non- 
paper

Impact on KP/
UNFCCC

Complementary, 
with continued HFC 
emissions reporting

Complementary, 
with continued HFC 
emissions reporting

Complementary, 
with continued HFC 
emissions reporting

Complementary, 
with continued HFC 
emissions reporting

Complementary

Import/export 
licensing

Yes Yes Yes Yes Unspecified

Relationship to 
HCFC phase-down

Does not alter 
HCFC schedule

Does not alter 
HCFC schedule

Does not alter 
HCFC schedule

Does not alter 
HCFC schedule

Unspecified

Further review 
and exceptional 
provisions

Technology 
reviews to evaluate 
availability of 
alternatives

No Continued use of 
transitional HFCs 
and HFC blends 
where low- [[GWP 
options do not yet 
exist

No Exceptional 
measures for 
countries with 
high ambient 
temperatures

Allocation of 
imported HFCs

Unspecified Importing party 
responsible for 
consumption

Unspecified Unspecified Unspecified

Controls HFC- 
23 by-product 
emissions

Yes Unspecified No, but proposes 
comprehensive 
R&D efforts to find 
feedstock and 
process agent uses 
and thus minimize 
emissions

Yes Unspecified

Bans HFCs trade 
with non-parties to 
the amendment

Yes Yes Yes Yes Unspecified

Source: UNEP, 2015a–d; Jaiswal et al. 2015. 
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Appendix V: 
HFC phase-down steps for Article 5 countries
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Appendix VI
Removal efficiency and cost parameters considered in the GAINS 
model

Lifeii time of
equipmii enmm tnn

Investmett nt Operation &
maintenn nance

years (million €) (milliomm n €/ye// ar)r
Altell rnative hydrhh ocarbon r propellant (i. e. propane (HC-290), iso-butauu ne (HC-600a), n-propane etc.) -99.79% n.a. 0 -2
Altell rnative propellant (i. e. HFC-152a) -91.33% n.a. 0 -1
Altell rnative propellant (e. g. HFO-1234ze) -99.58% n.a. 0 9.3
Good practice: leakagkk e contoo rott l, imprmm oved cod mponentsnn kt HFt C -30% n.a. 0 15.6
Altell rnative hydrhh ocarbon r refrigerant nn (i. e. propane, iso-butauu ne, propene (HC-1270), etc.) -99.75% 20 34.9 -1.9
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.95% 20 124.8 -1.4
Altell rnative low-GWP HFC’s (e. g. HFC-152a) -93.37% 20 138.3 -0.7
Altell rnative low GWP refrigei rant (i. e. HFO-1234yf) -99.80% 20 47.1 10.4
Good practice: end-nn of-life rff ecollection kt kk HFC -88% n.a. 0 16.7
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.95% n.a. 0 0.0
Good practice: leakagkk e contoo rott l, imprmm oved cod mponentsnn kt HFt C -67% 10 0 9.1
Altell rnative hydrhh ocarbon r refrigerantsnn (i. e. propane, iso-butauu ne, propene, etc.) -99.92% 10 913.5 -0.9
Altell rnative low-GWP HFC’s (e. g. HFC-152a) -94.43% 10 136.9 -12.7
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.96% 10 757.6 -0.7
Good practice: end-nn of-life rff ecollection kt kk HFC -80% n.a. 0 9.1
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.96% n.a. 0 0
Good practice: end-nn of-life rff ecollection kt kk HFC -80% n.a. 0 0.8
Altell rnative hydrhh ocarbon r refrigerant nn (i. e. iso-butauu ne) -99.79% 15 150 0

HCFC-22 production ii for emimm ssiii veii use Post combusm tion ii of HFf C-23 kt HFt C -0.95% 10 16.5 2.2
HCFC-22 production ii for feedff stock use Post cot mbusm tion ii of HFf C-23 -0.95% 10 16.5 2.2

Good practice: leakagkk e contoo rott l, imprmm oved cod mponentsnn kt HFt C -42% n.a. 0 1.1
Altell rnative low-GWP HFC’s (e. g. HFC-152a) -95.01% 15 136.9 -12.7
Altell rnative refrigerant:nn  ammomm niaii (NH3) -100% 15 468.1 -77.0
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.96% 15 133.6 0.0
Good practice: end-nn of-life rff ecollection kt kk HFC -88% n.a. 0 1.1
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.96% n.a. 0 0
Good practice: leakagkk e contoo rott l, imprmm oved cod mponentsnn kt HFt C -50% n.a. 0 1.9
Altell rnative refrigerant:nn  HFO-1234yf -99.72% 20 117.5 11.0
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.93% 20 863.0 -1.09
Good practice: end-nn of-life rff ecollection kt kk HFC -80% n.a. 0 17.4
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.93% n.a. 0 0
Good practice: end-nn of-life rff ecollection kt kk HFC -50% n.a. 0 1.9
Altell rnative refrigerant:nn  HFO-1234yf -99.72% 20 38.4 11.0
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.93% 20 114.5 -1.09
Good practice: end-nn of-life rff ecollection kt kk HFC -80% n.a. 0 17.4
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.93% n.a. 0 0
Good practice: leakagkk e contoo rott l, imprmm oved cod mponentsnn kt HFt C -50% n.a. 0 1.9
Altell rnative refrigerant:nn  HFO-1234yf -99.72% 12 199.8 9.1
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.93% 12 249.7 -5.9
Good practice: end-nn of-life rff ecollection kt kk HFC -80% n.a. 0 17.4
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.93% n.a. 0 0
Good practice: leakagkk e contoo rott l, imprmm oved cod mponentsnn kt HFt C -50% n.a. 0 1.9
Altell rnative refrigerant:nn  HFO-1234yf -99.72% 20 38.6 11.0
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.93% 20 126.9 -1.09
Good practice: end-nn of-life rff ecollection kt kk HFC -80% n.a. 0 17.4
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.93% n.a. 0 0
Altell rnative hydrhh ocarbon r blowll ing agentsnn (i. e. Iso-butauu ne (HC-600a), Iso-pentane, n-pentane, etc.) kt kk HFC -99.74% 15 1.7 0
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.91% 15 7 -1
Altell rnative blowll ing agent:nn  HFO-1234ze -99.47% 15 3.5 7
Altell rnative low-GWP HFC’s (e. g. HFC-152a) -89.13% 15 1.7 -3
Altell rnative hydrhh ocarbon r blowll ing agentsnn (i. e. Iso-butauu ne (HC-600a), Iso-pentane, n-pentane, etc.) kt kk HFC -99.74% 15 1.7 0
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.91% 15 7 -1
Altell rnative blowll ing agent:nn  HFO-1234ze -99.47% 15 3.5 7
Altell rnative low-GWP HFC’s (e. g. HFC-152a) -89.13% 15 1.7 -3

Othet r HFC use Altell rnative low-GWP HFC’s (e. g. HFC-152a) kt HFt C -91.33% n.a. 0 2
Good practice: leakagkk e contoo rott l, imprmm oved cod mponentsnn kt HFt C -20% n.a. 0 16.2
Altell rnative hydrhh ocarbon r refrigerant:nn Propane (HC-290), propene (HC-1270) -99.85% 15 1134.6 -8.3
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.95% 15 737.3 -5.6
Altell rnative low-GWP HFC’s (e. g. HFC-152a) -93.45% 15 136.9 -12.7
Good practice: end-nn of-life rff ecollection kt kk HFC -80% n.a. 0 16.2
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.95% n.a. 0.0 0.0
Good practice: leakagkk e contoo rott l, imprmm oved cod mponentsnn kt HFt C -30% n.a. 0.0 3.3
Altell rnative hydrhh ocarbon r refrigerant nn (i. e. propane (HC-290), iso-butauu ne (HC-600a), propene (HC-1270), etc.) -99.85% 10 0.0 -2.4
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.95% 10 116.8 17.9
Altell rnative low-GWP HFC’s (e. g. HFC-32) 66.25% 10 -108.6 -0.6
Altell rnative low GWP refrigei rant (i. e. HFO-1234yf) -99.80% 10 87.6 2.3
Good practice: end-nn of-life rff ecollection kt kk HFC -88% n.a. 0 33.3
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.95% n.a. 0 0

Solventsnn Ban of use kt HFt C -100% 0 0 1
Good practice: leakagkk e contoo rott l, imprmm oved cod mponentsnn kt HFt C -50% n.a. 0 1.9
Altell rnative refrigerant:nn  HFO-1234yf -99.72% 12 68.6 6.7
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.93% 12 2139.2 -1.46
Good practice: end-nn of-life rff ecollection kt kk HFC -80% n.a. 0 1.9
Altell rnative technohh logy: pressuriuu zeii d CO2 -99.93% n.a. 0 0

Aerosols

Industrial refrigei ration ii (incii luding ii foodff
and agrigg cuii ltu urtt al sectl ors), emimm ssiii onii s
banked in en quipmii enmm tnn

Industrial refrigei ration ii (incii luding ii foodff
and agrigg cuii ltu urtt al sectl ors), emimm ssiii onii s
Mobile air-cii onditiii oneii r in buses,
emimm ssiii onsii banked in en quipmii enmm tnn

Mobile air-cii onditiii oneii r in buses,
emimm ssiii onsii from scrapped equipmii enmm tnn

Commercial air ii conditiii onii ing, emimm ssiii onii s 
banked in en quipmii enmm tnn

Commercial air ii conditiii onii ing, emimm ssiii onii s 
from scrapped equipmii enmm tnn
Commercial refrigei ration,ii  emismm sionsii
banked in en quipmii enmm tnn

Commercial refrigei ration,ii  emismm sionsii
from scrapped equipmii enmm tnn
Domestic small hermetmm ic refrigerators,
emimm ssiii onsii from scrapped equipmii enmm tnn

Sector description Technology description Unit of
activiii ty

data

Removal 
efficiency

Cost parameters per unit of acf tiviii ty data

One componemm nt foams

Mobile air-cii onditiii oneii r in heavy vv dutyuu
trucrr ks, emimm ssiii onsii banked in eqn uiqq pmii enmm tnn

Mobile air-cii onditiii oneii r in heavy vv dutyuu
trucrr ks, emimm ssiii onsii from scrapped
Mobile air-cii onditiii oneii r in carn s,
emimm ssiii onsii banked in en quipmii enmm tnn

Mobile air-cii onditiii oneii r in carn s,
emimm ssiii onsii from scrapped equipmii enmm tnn
Mobile air-cii onditiii oneii r in lightgg dutyuu
trucrr ks, emimm ssiii onsii banked in eqn uiqq pmii enmm tnn

Mobile air-cii onditiii oneii r in lightgg dutyuu
trucrr ks, emimm ssiii onsii from scrapped

Railway aiy r-cii onditiii oneii rs, emimm ssiii onii s 
from scrapped equipmii enmm tnn

Othet r foams

Refrigei rated transport, emismm sionii s 
banked in en quipmii enmm tnn

Refrigei rated transport, emismm sionii s from 
scrapped equipmii enmm tnn
Resideii ntial air ii conditiii oniii ngii , emismm sionii s 
banked in en quipmii enmm tnn

Resideii ntial air ii conditiii oniii ngii , emismm sionii s 
from scrapped equipmii enmm tnn

Railway aiy r-cii onditiii oneii rs, emimm ssiii onii s 
banked in en quipmii enmm tnn

Note: The investment cost given in the table above includes refrigerant cost as well as physical system cost. For example, for the 
car air-conditioning sector, incremental cost of HFO-1234yf over HFC-134a (including refrigerant and system cost) has been 
assumed to be 80 Euros (Rs 5600) per car across the lifetime of a car. Given the average charge size of 400 grams for a car, this 
translates to 200 Euros/kg one time investment cost which is given in the table. The investment cost given here should not be read 
as the cost of refrigerant.
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