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Purpose of this chapter: Provides an overview of broad types 

of scenarios for addressing the various policy and decision-

making contexts introduced in Chapter 2; and critically reviews 

major sources of scenarios of indirect drivers and approaches 

to modelling resulting changes in direct drivers that can, in 

turn, serve as inputs to modelling impacts on biodiversity and 

ecosystems (covered in Chapter 4). 

Target audience: A broader, less technical audience for the 

overview of scenario types; but a more technical audience for 

the treatment of particular scenario and modelling approaches.  

 
  

Key findings 
 

Expert-based and participatory methodological approaches to scenario development represent 

different sets of tools with respective advantages and disadvantages (3.2.1). Expert-based approaches 

are ideal during assessments in which empirical data can provide a solution and formal modelling is 

necessary. Expert-based methodologies are also appropriate for developing scenarios and models of 

indirect drivers, particularly as the temporal and spatial scales as well as uncertainties increase. 

Participatory approaches are ideal when dialogue among local stakeholders is key to successful 

assessment outcomes as well as when local and indigenous expertise can supplement scientific 

knowledge at the spatial scale under consideration. Local ecological knowledge is valuable when 

assessing drivers at local spatial scales as a complement to other expert-based methodologies, 

particularly within the context of assessment resource and time constraints.  

 

Choice of the type of scenario – exploratory or intervention – is highly contingent on the policy cycle 

decision-making context (3.2.2). Exploratory scenarios are most often utilised during the initial problem 

identification stages to allow for the projection of multiple possible futures as well as the identification 

of relevant stakeholders and problem specificities. While also employed in direct driver scenarios 

(scenarios of drivers), exploratory scenarios are particularly pertinent to investigating scenarios of 

potential indirect drivers. Intervention scenarios and techniques such as backcasting for target-seeking 

scenarios are more useful in later stages of the policy cycle where there is a consensus on the desired 

goals and the focus is on potential pathways to such goals. Ex-ante (policy screening) and ex-post 

(retrospective policy evaluation) assessments are mutually reinforcing and complementary approaches 

in the policy cycle, and scenarios are very useful tools supporting these assessments. 

No single model of drivers of change in biodiversity and ecosystem services can capture all dynamics 

at a high level of detail (3.2.3). The coupling or integration of models has become an important tool to 

integrate different scales and dimensions. Treatment of the spatial and temporal scales at which drivers 

operate as well as their interactions is crucial for the construction of consistent and comprehensive 

scenarios on biodiversity and ecosystem services. Complex models can coexist with and be 

complemented by more stylised and simplified models. Stylised models can be useful to identify simple 

tipping and reference points.  

Indirect and direct drivers interact on various spatial, temporal and sectoral scales, producing 

synergies and feedbacks that need to be taken into consideration. Failure to consider such dynamics 
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can potentially render scenario analysis incomplete, inconsistent or inaccurate (3.3, 3.4). Prominent 

indirect drivers exhibit significant interlinkages among themselves as well as with direct drivers of 

biodiversity and ecosystem change. Due to the nature of sociocultural phenomena, certain indirect 

drivers and their interlinkages are particularly difficult to explicitly formally model, yet need to be 

represented in scenarios of indirect drivers (3.3). As with indirect drivers, direct drivers also display 

considerable interlinkages and feedbacks, with significant potential for cascading effects on biodiversity 

and ecosystems (3.4). 

Existing scenarios can serve as useful points of departure but are not likely to be appropriate in terms 

of temporal, spatial and sectoral scales and may not contain sufficiently detailed storylines to be 

useful for the construction of Intergovernmental Platform on Biodiversity and Ecosystem Services 

(IPBES) driver scenarios (3.5). Scenarios need to be specifically tailored to the context of the biodiversity 

and ecosystem services studies. In many cases, the environmental scales (e.g. habitats, biomes) may be 

more relevant for IPBES driver scenarios than institutional scales (e.g. administrative, municipal, 

provincial, country). Existing scenarios can be useful for the information they contain, but typically 

provide limited insight if applied without proper adaptation to the decision context of a particular 

biodiversity and ecosystem study. 

 

 

Key recommendations 

 

IPBES is encouraged to adopt tailored driver scenario methodologies reflecting the requirements of a 

biodiversity and ecosystem services-specific decision-making context (3.2). Participatory modelling 

approaches are ideal in situations where local stakeholder involvement and collective governance are 

key to developing planning pathways, while expert-based approaches are best utilised when formal 

modelling methods and more rigorous quantitative analyses are required. Exploratory scenarios are best 

utilised in the initial policy cycle phases to elucidate potential futures of indirect and direct drivers. 

Intervention scenarios, in particular target-seeking scenarios, are advantageous later in the policy cycle 

to formulate more concrete planning pathways for achieving goals associated with direct drivers. 

Indigenous and local knowledge is crucial for understanding the nature of the various drivers and the 

richness of their interactions in specific contexts. 

 

IPBES is encouraged to invest in the development of and capacity building for the modelling of drivers 

(3.3, 3.4). The IPBES Task Force on Knowledge, Information and Data and the follow-up activities of the 

scenarios and modelling deliverable are encouraged to facilitate the improvement of tools to integrate 

across scales. In order to broaden the capacity to create and use these tools, the Task Force on Capacity 

Building would benefit from a specific focus on making these tools more freely available and on training 

programmes. Spatially nested modelling approaches of indirect and direct drivers would be ideally 

employed to construct globally-consistent national/local driver analysis. Driver scenarios need to 

address all relevant drivers of biodiversity and ecosystem services and connect short-term phenomena 

with long-term trends. 

IPBES deliverables dealing with scenarios and models, in particular author teams of the chapters on 

drivers of biodiversity and ecosystem change in IPBES regional assessments, are encouraged to 

carefully explore the interactions among indirect and direct drivers (3.3, 3.4). An improved 

understanding of potential driver synergies and feedbacks on the various spatial, temporal and sectoral 
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scales is essential to the construction of biodiversity and ecosystem services-specific scenarios and 

models. This analysis is particularly relevant for assessing the extent to which findings and conclusions 

on drivers at a specific scale may be relevant for extrapolation to other scales. 

IPBES is encouraged to develop new scenarios of indirect and direct drivers that provide added value 

compared to existing global environmental assessment scenarios such as the Intergovernmental Panel 

on Climate Change (IPCC) Shared Socio-economic Pathways (SSPs)/Representative Concentration 

Pathways (RCPs) and scenarios developed for the Millennium Ecosystem Assessment (MA) (3.5). While 

existing global scenarios can serve as reference points against which to benchmark specific IPBES driver 

scenarios, collaboration with other scenario development activities outside of IPBES (e.g. under the 

IPCC) is seen as highly beneficial. However, IPBES requires novel scenarios that address those direct and 

indirect drivers relevant to biodiversity and ecosystem services at spatial and temporal scales relevant to 

the underlying processes involved. Scenario development would benefit from reducing inconsistencies 

and fostering greater creativity within scenario storylines to capture the possible development 

directions of the multiple drivers underlying biodiversity and ecosystem services. 

 

 

3.1 Introduction 
 

Ecosystems and biodiversity have been influenced by natural drivers of change ever since the beginning 

of life on Earth. Until human activities began exerting considerable ecological impacts, ecosystems and 

biodiversity evolved under the influence of natural drivers such as changing climatic and lithospheric 

conditions. Drivers associated with human activities (anthropogenic drivers) have accelerated the rate of 

species extinction and significantly altered ecosystem properties to the extent that less than 25% of the 

remaining land surface remains ‘natural’ (Ellis, 2011). Some scientists have proposed naming this new 

geological epoch the Anthropocene, in which human activities in recent centuries have become the 

dominant drivers of change in the Earth’s atmosphere, lithosphere and biosphere (Crutzen, 2006). There 

is now growing evidence that local-scale forcings (e.g. land-use change) may lead to a threshold-induced 

state shift with significant implications for the Earth’s biosphere (Barnosky et al., 2012). 

 

Chapter 3 focuses on approaches to building scenarios and models of drivers, and therefore provides a 

link between the policy and decision-making context elaborated upon in Chapter 2 and the modelling of 

impacts of these drivers on biodiversity and ecosystems covered in Chapter 4 (see Figure 3.1) and, in 

turn, on nature’s benefits to people (including ecosystem services) and human well-being in Chapter 5. 

Chapter 3 builds on the discussion in Chapter 2 of policy and decision-making needs relating to different 

phases of the policy cycle, by providing an overview of methodologies for building scenarios and models 

of indirect and direct drivers to address these needs. The chapter begins with an examination of 

methodological approaches, including participatory and expert-based methods for developing scenarios, 

followed by a summary of scenario types employed in the field of environmental assessments and 

decision making. The uses and implications of several scenario approaches as well as ex-ante and ex-

post assessments are explored (see Section 3.2.2.3). Modelling methods and the linkages between 

models are presented, followed by detailed overviews of prominent scenarios and models of indirect 

and direct anthropogenic drivers. The chapter concludes with an examination of the research needs and 

gaps that need to be addressed as biodiversity and ecosystem services assessments progress.  
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3.1.1 Definition and classification of direct and indirect drivers 
Scenarios of change in drivers are a basic component of models projecting biodiversity and ecosystem 

change. 

Indirect drivers are drivers that operate diffusely by altering and influencing direct drivers as well as 
other indirect drivers (also referred to as ‘underlying causes’) (MA, 2005b; sCBD, 2014). 

Understanding the role of indirect drivers is vital to understanding biodiversity and ecosystem change at 

the direct driver level. Indeed, indirect drivers frequently have primacy within the causal framework 

linking drivers to biodiversity and ecosystem change. Indirect drivers considered in this assessment 

include economic, demographic, sociocultural, governance and institutional, and technological 

influences.  

Direct drivers (natural and anthropogenic) are drivers that unequivocally influence biodiversity and 
ecosystem processes (also referred to as ‘pressures’) (MA, 2005b; sCBD, 2014). 

Over a long enough time frame, the impacts of direct drivers of change in biodiversity and ecosystem 

services nearly always influence anthropogenic indirect drivers, thereby resulting in feedbacks between 

direct and indirect drivers (e.g. economic implications of climate change, overexploitation, and habitat 

modification on global fisheries (Sumaila et al., 2011). Furthermore, many direct drivers interact with 

other direct drivers, highlighting the complex interlinkages that need to be taken into consideration 

throughout assessment analyses. This chapter specifically examines the following direct drivers: land-

use change, climate change and pollution, natural resource use and exploitation, and invasive species. 

Indirect drivers also contribute to anthropogenic assets in the form of infrastructure, knowledge, 

technology and financial assets. Anthropogenic assets result from the interaction between society and 

nature and contribute to human well-being, although their relative importance is context-specific.  

Drivers are not to be viewed as separate, static influences, but rather considered as dynamic factors 
interacting with and within each other. Indirect drivers frequently strongly interact, giving rise to 
complex emerging properties on various spatial and temporal scales. 

 

3.1.2 Chapter overview  
As elaborated upon in Chapter 2, stages of the policy cycle range from agenda setting to policy 

implementation and eventual review. The policy cycle serves as a framework to facilitate effective 

decision making by taking into consideration a comprehensive analysis of the problem, followed by 

policy design, implementation, and finally evaluation of policy impacts. Accordingly, the specific policy 

and decision-making context of any given assessment of biodiversity and ecosystem services will to a 

large extent determine the point of departure for subsequent methodological approaches to building 

scenarios and models of drivers (see Figure 3.1). Participatory and expert-based methods and tools 

(Section 3.2.1) are key instruments for building driver scenarios of change in biodiversity and ecosystem 

services. Both approaches have their respective advantages, with participatory approaches facilitating 

multidisciplinary stakeholder participation and the inclusion of indigenous knowledge, while expert-

based approaches allow for the greater use of formal modelling techniques and scientific knowledge. 

Different types of approaches and models are described in this chapter, which can be used (separately 

or together) at different scales and to describe specific changes in biodiversity and ecosystems, as well 

as their linkages.  
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Figure 3.1: Chapter 3 overview. 

Scenario construction (Section 3.2.2) begins with the development of qualitative storylines that are 

translated into driver scenarios. Modelling scenarios of indirect and direct drivers of biodiversity and 

ecosystem services (Sections 3.3 and 3.4) is multifaceted and in many cases multiple models are 

required to address multi-sectoral issues on different driver scales. The chapter then concludes with 

lessons learned and the way forward for future work on building scenarios and models of drivers of 

change in biodiversity and ecosystem services (Section 3.5). 

 

 

3.2 Methodological approaches to scenario and model construction 
 

The choice of method is crucial to the assessment of indirect and direct drivers. This choice depends 

strongly on the questions as well as the scope and scale of analysis. In this section, the different 

methodological approaches for assessing indirect and direct drivers in relation to the context of use are 

outlined. Many methods start with either expert-based or participatory techniques to identify relevant 

indirect drivers and construct scenarios. Based on the scenario assumptions, different types of 

modelling tools are used to quantify the evolvement of these indirect drivers and their impacts on the 

direct drivers. 

3.2.1 Approaches 
Expert-based approaches entail the use of expert opinion, knowledge (including scientific theory) or 

judgment to inform the various aspects of constructing scenarios and models of drivers. The term 

‘expert’ implies an individual who has expertise or experience within a particular dimension through 

training, study or involvement in practice (Raymond et al., 2010). Participatory methods and tools help 

define complex problems related to the governance of drivers impacting particular biodiversity and 

ecosystem services. They also provide a platform for views to be aired, perspectives broadened, and a 

greater understanding of the policy issue under consideration. Including indigenous and local knowledge 

provides a more comprehensive reflection of prevailing conditions and other key inputs, and 

incorporates methods and approaches that capture holistic values that people place on nature while 
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internalising principles and ethical values specific to their world views and realities (Illescas and 

Riqch’arina, 2007; Medina, 2014). 

3.2.1.1 Expert-based approaches 

Although all scenario construction implicitly involves some degree of expert opinion, formal expert-

based scenario modelling entails identifying and eliciting information from multiple experts, either 

individually or in a group (Krueger et al., 2012). To determine whether expert opinion should be utilised, 

Kuhnert et al., (2010) provided the following steps: 1) articulation of research questions, 2) assessment 

of available empirical data and whether the data can provide a solution, and if it can, 3) verification that 

sufficient resources are available to carry out the elicitation. Expert knowledge can also be utilised in 

studies where requisite sampling over spatial and temporal scales is not possible due to financial and/or 

logistical constraints (Martin et al., 2005).  

 

Expert-based approaches are particularly valuable for translating a perceptual model (i.e. qualitative 

understanding) into a formal model (i.e. mathematical representation) (Krueger et al., 2012). In addition 

to the contributions to formal modelling, expert opinion can enter models through informal vectors 

such as subjective choices and value-laden assumptions (see Box 3.1), as well as other biases consistent 

with the experts’ respective disciplinary training and background (Krueger et al., 2012).  

Expert-based approaches are particularly susceptible to scientific uncertainties including subjective 
judgment and uncertainties associated with the parameterisation and weighting of variables. 

Furthermore, the use of heuristics and the presence of cognitive bias associated with determining 

statistical probabilities can result in systematic bias throughout expert elicitations (Kynn, 2008). 

Disadvantages of expert-based approaches often include limited knowledge of local biota and ecological 

processes (Stave et al., 2007), which can significantly increase the time and resources needed to conduct 

environmental assessments. While the selection of, and disagreement among, experts can pose 

obstacles to this method of scenario construction (as well as the cost and time involved in eliciting 

information), scientists are increasingly aware of the advantages of the deliberate formal use of expert 

opinion to inform ecological models.  

Experts can also be stakeholders – both experts and stakeholders vary in the degree to which they have 
expert knowledge as well as the extent to which they effectively have a stake in the issue under 
consideration (Krueger et al., 2012). 

Experts can have significant institutional and financial interests, while scientific knowledge is not 

necessarily confined to traditional academic and research environments (Cross, 2003). The distinction 

between experts and stakeholders therefore needs to be undertaken carefully, with the understanding 

that experiential knowledge will impact the type of uncertainty introduced into the model, including 

individual bias. However, there are reliable techniques, such as the Delphi technique (see Box 3.1), that 

successfully reduce many uncertainties associated with expert-based elicitations.  

 

Box 3.1: The Delphi Technique 

Initially developed by the RAND Corporation in the 1950’s, the Delphi Technique is a well-established 

method for eliciting the opinion of multiple experts – ideally between 10 and 18 (Okoli and Pawlowski, 

2004) – used to construct scenarios and support decisions (Rauch, 1979). This method is particularly 

valuable in data-poor environments when translating qualitative responses into quantitative variables or 

subjective probabilities (Ouchi, 2004; MacMillan and Marshall, 2006) and is thus ideal for expert-based 

approaches to ecological modelling. The Delphi approach consists of consultations regarding the 

methodological approach, several rounds of independent and anonymous elicitation followed by 
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feedback from experts leading to subsequent revisions and, resource-permitting, a workshop or meeting 

to address any remaining issues and crystallise final results. Under the guidance of an independent 

facilitator with knowledge in the field and experience in consensus-building, the controlled environment 

of the Delphi method promotes independent thought by preventing direct confrontation between 

experts (Dalkey and Helmer, 1963). This method has the benefit of reducing undue influence by 

individual members as well as mitigating the degree to which some members may be persuaded to 

conform (i.e. group think). Here, anonymity throughout the elicitation and revision cycles also serves to 

diminish other psychological bias inherent to group processes such as emergent group norms and 

gender-related process strategies (e.g. Haidt, 2001; Hannagan and Larimer, 2010).  

 

3.2.1.2 Participatory approaches 

Participatory approaches to scenario development consist of involving a larger group of stakeholders 
through workshops or other formal meetings to share ideas and ultimately develop scenarios based on 
their collective knowledge. 

This approach has the benefit of mobilising local and indigenous expertise on scenarios, as well as 

enabling participation and better informing local stakeholders (Patel et al., 2007; Palomo et al., 2011). 

Tools such as Fuzzy Set Theory assist in the co-production of knowledge between experts and 

stakeholders through the quantification of key scenario and model parameters (Kok et al., 2015). If 

properly conducted, participatory approaches help increase the effectiveness of environmental and 

biodiversity management (Palomo et al., 2011). Nonetheless, barriers to such approaches include the 

limited understanding of relevant issues – in particular the influence of exogenous drivers (those beyond 

the control of participants) and inter-scale (global, regional, national, local) interactions (MA, 2005a) – 

and considerable differences in opinion among participants as well as difficulty in translating qualitative 

data into quantitative inputs (Walz et al., 2007).  

 

Among participatory approaches, the ‘agent-based participatory simulation’ method is a valuable way to 

investigate complex issues arising from natural resource management (Bousquet et al., 2002; Briot et al., 

2007). Essentially, direct and indirect drivers of the depletion of biodiversity and ecosystem services are 

identified through a participatory exercise through a combination of role-playing games and multi-agent 

simulations. Relevant stakeholders are able to select the main indirect drivers and interactively 

construct numerous computer-based scenarios of collective governance for the improved conservation 

of biodiversity and ecosystem services. The combined multi-agent simulations/role-playing games 

approach has proven to be an effective means of establishing sustainable and inclusive management 

schemes for protected areas that are under pressure. The key advantage of such an approach consists of 

stimulating a participatory consultation process which fosters a sound collective effort to identify 

relevant indirect and direct drivers of the transformational process and to formulate scenarios and 

pathways of potential conservation and restoration of biodiversity and ecosystem services.  

 

Stakeholder participation has, for example, proved critical when identifying drivers of change and their 

importance for an ecosystem approach to fisheries. Based on the Food and Agriculture Organization 

(FAO) code of conduct for responsible fisheries (Attwood et al., 2005) and the Australian ecological 

sustainable framework (Fletcher, 2002), a series of locally-adapted ecological risk assessments have 

been developed in the Benguela Current region (i.e. South Africa, Namibia and Angola) that take a 

participatory approach (Augustyn et al., 2014). This provides a transparent and structured process 

among stakeholders, which helps to prioritise the issues and drivers that need to be considered (Nel et 
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al., 2007). Additionally, participatory approaches are frequently employed simply to map out a range of 

views among participants.  

 

3.2.2 Scenarios 

Scenario construction is a valuable endeavour when attempting to construct possible futures in the 
context of uncertainties, particularly when ecological outcomes are highly contingent on indirect drivers 
such as economic growth and demography (Carpenter, 2002). 

Thus, scenarios or ‘variants’ are employed to account for uncertainty within models of the future. In 

these cases, rather than attempting to project from a specific set of values for driver variables onto a 

specific future, it is preferable to employ a variety of scenarios based on knowledge of a range of 

potential alternative futures (Peterson et al., 2003).  

 

Exploratory scenario construction begins with the preparation of qualitative narrative storylines which 

provide the descriptive framework from which quantitative scenarios can be formulated. Such 

qualitative scenarios are particularly valuable as the temporal scale under examination increases and 

there are greater chances that exogenous influences may introduce unforeseen systemic change (e.g. a 

technological shift) (Rounsevell and Metzger, 2010). The use of qualitative scenario storylines and the 

subsequent parameterisation of key drivers has been well developed within the field of climate change 

research conducted by earlier IPCC assessments (Section 3.4.2). Here, the specification of model-based 

scenario assumptions has evolved considerably over time in response to scientific advances in our 

understanding of climate change as well as the acknowledgement that socio-economic drivers are an 

integral aspect of formulating potential futures (Abildtrup et al., 2006; Moss et al., 2010).  

 

An extensive history of scenario building is beyond the scope of this paper (see for example Amer et al., 

2013). Instead, an overview of scenario use within the decision-making context of the policy cycle, with 

a specific focus on exploratory and target-seeking scenarios as well as ex-ante and ex-post assessments, 

is provided (Table 3.1). Within this context, the choice of scenario and assessment type as well as the 

related methodological approach to scenario construction is highly contingent on the position in the 

policy cycle and the intended spatial scale.  

 

Table 3.1: Combining scenario approaches and policy objectives. 
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3.2.2.1 Exploratory scenarios 

Exploratory scenarios (also known as ‘descriptive scenarios’) typically have both strong qualitative and 

quantitative components and are often combined with participatory approaches involving local and 

regional stakeholders (Kok et al., 2011). Exploratory scenarios frequently employ a co-evolutionary 

approach through the use of matrices where the projection of divergent futures is based on changes in 

the indirect and direct driver assumptions.  

The relative benefits of exploratory scenarios include flexibility to construct storylines (conducive to 
greater creativity), coverage over a wide range of outcomes, and their application to problem areas 
where specific policy responses have yet to be formulated or the nature of the problem remains unclear 
(Van Vuuren et al., 2012a). 

Exploratory scenarios are therefore particularly relevant in the agenda-setting stage of the policy cycle 

where the scale, relevant stakeholders and problem specificities are first addressed as the problem is 

brought to public attention (see Figure 3.2) (Stone et al., 2001). Exploratory scenarios can illuminate the 

discourse on the specific problems to be addressed by society in the presence of limited resources, by 

illustrating various potential futures starting from the current point in time.  

 

 

Figure 3.2: Building scenarios of indirect and direct drivers within the policy cycle context for biodiversity and 

ecosystem services. 

 

Exploratory scenario approaches (see Box 3.2) have been utilised for climate change projections and 

were used in the IPCC assessments. This process started with the estimation of greenhouse gas (GHG) 

emissions as the major driver for climate forcing, leading to the Special Report on Emissions Scenarios 

(SRES) and the latest RCPs. These scenarios were initially applied at a global scale with regional scale 

scenarios typically constructed through downscaling (downscaling refers to the transformation of 
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information from coarser to finer spatial scales through statistical modelling or the spatially nested 

linkage of structural models). Exploratory scenarios describe the future according to known processes of 

change or as extrapolations of past trends (IPCC, 2001).  

In the absence of policy change, ‘business-as-usual’ or baseline scenarios represent a future with no 
major interventions or paradigm shifts in the functioning of a system. 

However, the term ‘business-as-usual’ may be misleading in the policymaking process because 

exploratory scenarios can also describe futures that bifurcate at some point (e.g. due to the adoption or 

rejection of a new technology) or that make some assumptions about the functioning of a system. 

Exploratory scenarios are common in environmental studies because they require less speculation about 

the future and tend to be more ‘value-free’ compared with target-seeking or normative scenarios 

(Alcamo, 2001). Furthermore, researchers and stakeholders may be more comfortable with the forward 

progression of time in exploratory scenarios than with the backward-looking perspective adopted in 

target-seeking scenarios. 

 

Box 3.2: Examples of exploratory scenario narratives for coral reef ecosystems in the Caribbean 

Main steps for building exploratory scenarios: 

1) Identification of research areas (regarding potential changes in biodiversity and ecosystem areas): 

global, regional, national or local (e.g. coral reef ecosystems in the Caribbean) 

2) Identification of potential changes in biodiversity and ecosystems (e.g. increasing coral bleaching and 

mortality) 

3) Identification of main drivers of change (direct and/or indirect drivers), for example: a) climate 

change (ocean acidification, higher temperatures, etc.), b) unsustainable socio-economic activities 

(tourism, fishing, etc.) 

4) Selection of scenario axes and scenario logic (this example includes two axes to simplify the 

illustration for didactic purposes. In practice, several key stressors can generate pressures on 

biodiversity and ecosystems in a specific area): 

- Climate change trends 

- Socio-economic stressors in the Caribbean, particularly regarding unsustainable activities in coastal 

areas and oceans 

5) Building preliminary scenarios: 
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Figure Box 3.2: Scenario matrix 

 

3.2.2.2 Target-seeking scenarios 

Policy design, or formulation, is the stage in which the descriptive is transformed into the prescriptive 

according to the desired normative approach (Loorbach, 2010). Here, the will to address a recognised 

problem is translated into a viable policy formulation with clearly-defined objectives. For successful 

policies to be designed, policy options must be feasible in terms of economic and political resources as 

well as meet the needs of both the underlying science and interested stakeholders (Lemos and 

Morehouse, 2005; Jann and Wegrich, 2007). Employing normative pathway analyses such as backcasting 

approaches at this stage of the policy cycle allows for the identification of multiple potential pathways 

to a desired future vision. Target-seeking scenarios (also known as ‘normative scenarios’) constitute one 

subclass of the more general class of intervention scenarios (also known as ‘policy scenarios’) 

introduced in Chapter 1.  

 

Target-seeking scenarios are a valuable tool for examining the viability and effectiveness of alternative 

pathways to a desired outcome, particularly when used in conjunction with appropriate decision-

support protocols and tools such as those described in Chapter 2. 

Target-seeking scenarios start with the definition of a clear objective or a set of objectives that can 
either be specified in terms of achievable targets (e.g. in terms of the extent of natural habitats 
remaining, or of food production self-sufficiency) or as an objective function to be optimised (e.g. 
minimal biodiversity loss). 

Together with these goals and objective functions, a set of constraints is defined (e.g. excluding areas 

for conversion) to ensure realistic feasible outcomes. Backcasting (see Chapter 2) is particularly valuable 

when there is a great deal of uncertainty regarding future developments and the most likely future is 

not necessarily the most desirable (Robinson, 2003). Intervention scenarios typically encompass both 
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the design and implementation phases (see Figure 3.2). Within this assessment, however, target-seeking 

scenarios and the subsequent ex-ante assessments (Section 3.2.2.3) are distinguished to highlight their 

relative contributions to weighing the relative desirability of different pathways. 

 

Box 3.3: Example of target-seeking scenarios: zonation tools (Moilanen et al., 2009) for protected area 

allocation under the Aichi biodiversity target 

 

According to Aichi biodiversity target 11 adopted by the Convention on Biological Diversity, the 

protected area network should be expanded to at least 17% of the terrestrial world by 2020. However, 

there is a considerable risk of ineffective outcomes due to land-use change and uncoordinated actions 

between countries. Recent research that used zonation tools to identify the optimum location of 

protected areas for biodiversity conservation shows that, with a coordinated global protected area 

network expansion to 17% of terrestrial land, the average protection of species ranges and ecoregions 

could triple (Pouzols et al., 2014). If projected land-use change by 2040 takes place, it becomes 

infeasible to reach the currently possible protection levels, and over 1,000 threatened species would 

lose more than 50% of their present effective ranges worldwide. In addition, a major efficiency gap is 

found between national and global conservation priorities. Strong evidence is shown that further 

biodiversity loss is unavoidable unless international action is quickly taken to balance land use and 

biodiversity conservation.  

 
Figure Box 3.3: The relation between the protected area and the maximum attainable protection of species under 

conditions of the optimum spatial allocation of protected areas. Under global priorities the allocation is globally 

optimised, while under national priorities the optimisation is based on a country-by-country basis. Future 

conditions refer to conditions under the projected land-use change, which constrains the spatial allocation of 

protected areas (Modified by permission from Macmillan Publishers Ltd: [Nature] Pouzols et al., 2014, 516, 383–386, copyright 2014).  

 

3.2.2.3 Ex-ante/ex-post assessment 



Chapter 3 

 
 

Page 116 
 

Ex-ante and ex-post assessments of environmental policies are tools in the policymaking process. Ex-

ante assessment is a proactive approach, oriented to identify and address potential effects of 

environmental policies. Many of the decision-support protocols and tools described in Chapter 2 provide 

a structured means of undertaking ex-ante assessments. This form of assessment typically makes strong 

use of a second subclass of intervention scenarios (introduced in Chapter 1).  

Ex-ante assessments use policy-screening scenarios to forecast the effects of alternative policy or 
management options (interventions) on environmental outcomes. 

Environmental Impact Assessment (introduced in Chapter 2) is a widely used tool within this perspective. 

Ex-ante assessment usually starts in the very early stages of a policy formulation and design. It may 

therefore contribute to the social acceptance of policies by anticipating and addressing conflicting 

objectives and adverse effects. When properly organised, this assessment may include expert 

considerations and consultations to relevant stakeholders such as government authorities, community 

representatives, non-governmental organisations and the general public. This assessment perspective is 

embodied, for instance, in the Strategic Environmental Assessment of the European Union (European 

Commission, 2001). 

 

Other types of scenarios (e.g. target-seeking scenarios) can be used to complement and support ex-ante 

assessments. In some cases, these assessments are carried out through multiple scenario comparisons, 

and this approach helps policymakers compare the potential consequences of various scenario-based 

options (e.g. Helming et al., 2011). In the intervention design phase, different alternative policy options 

or management strategies are often developed. While final decisions will be heavily influenced by the 

full political and societal context, scenarios and models can better inform such decisions by investigating 

the effectiveness and unintended consequences of proposed policy measures through ex-ante 

assessment (Helming et al., 2011). Policy-screening scenarios require a detailed specification of changes 

in drivers such as uptake of policy measures on human behaviour, often focusing on shorter, more 

policy-relevant time frames than other types of scenarios. Economic and sector-based models are 

especially dominant here as the economic consequences and cost-benefit assessment of the proposed 

changes in drivers are essential in decision making.  

 

The policy review phase involves the ex-post reflective assessment of the extent to which the policy 

implementation achieved the goals outlined in the initial stage of problem identification. In practice, 

evaluations are rarely consistent with underlying theory which stipulates that multiple criteria and 

methods are used, formal policy goals are questioned, and stakeholders are actively involved 

throughout the process (Mickwitz, 2003; Huitema et al., 2011).  

Ex-post assessments are the present evaluations of past efforts to achieve policy goals throughout all 
stages of the policy cycle and decision-making context. 

Some key obstacles to the realisation of policy goals include instrument design oversight, inadequate 

monitoring, and an absence of effective enforcement mechanisms (Haug et al., 2010). Furthermore, due 

to the inherent complexity of the environment-policy nexus, the enactment of environmental policies 

may result in impacts that run counter to the original goals or encourage counterproductive behaviour 

such as rebound effects (Faber and Frenken, 2009).  

 

Ex-post assessments can be based on the straightforward monitoring of variables of interest as well as 

on a comparison of the achieved change or status with the original targets and the anticipated impacts 

of the implemented measures. In many cases, it is important to distinguish the effects of the 

implemented policy or management scheme from autonomous developments (Hoffmann et al., 2015). 
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Econometric models are used to evaluate the contribution of different conditions to the monitored data. 

For example, straightforward ex-post assessments may assess forest loss within and outside protected 

areas to monitor the success of protected areas. However, such straightforward evaluations may be 

biased by the different locations of protected and unprotected natural areas that heavily impact the risk 

of deforestation (Joppa and Pfaff, 2010a). Under such conditions, more sophisticated techniques for ex-

post assessment need to be applied that are able to distinguish the influence of such confounding 

factors on the monitored impacts. 

 

3.2.3 Models 
Many typologies of modelling tools of indirect and direct drivers and their interactions are possible. 

Modelling tools can for example be categorised depending on their qualitative or quantitative nature, 

whether the underlying phenomenon can be represented by structural equations or driver processes 

are captured by data-driven approaches, and whether the model is of a deterministic or stochastic 

nature. Such broad typologies can typically be further broken down into sub-categories. For example, a 

distinction is made among structural models between simulation models and normative target-seeking 

models. Among the latter, classical economic models typically maximise a welfare function or minimise 

costs. If such models cover the entire economy they are referred to as general equilibrium models, while 

partial equilibrium models cover a specific sector in greater detail. Such economic models can be 

constructed for comparative static analysis to analyse the introduction of new drivers such as policy 

shocks or for dynamic assessments to analyse solution pathways.  

 

3.2.3.1 Modelling methods 

Traditionally, structural economic models simulate indirect and direct drivers in deterministic settings 

and the latest developments in these models allow for the assessment of very uncertain and stochastic 

phenomena such as the impact of climate change (Leclère et al., 2014) or agricultural production 

volatility on land-use change (Fuss et al., 2015). Short-term forecasts of drivers, most frequently 

economic drivers, are generated by non-structural models, implying that the modelling tool finds 

patterns in the data itself and projects these into the future. Tools for the extrapolation of current 

trends include statistical and econometric methods and data mining tools such as artificial neural 

networks, rough and fuzzy set approaches, and network theory approaches. These tools also allow for 

projections of an ensemble of variables that interact with each other, such as vector autoregressive 

models.  

 

Data-driven models will not typically allow for a mechanistic understanding of how and why drivers 

interact. As a general rule, the short-term predictive skill of data-driven approaches is superior to 

mechanistic structural models. However, for long-term analyses – where biophysical boundaries of 

production systems need to be respected – and for the analysis of structural adjustments of drivers due 

to policy changes, mechanistic models are more suitable.  

 

Good modelling practice 

Modelling of indirect and direct drivers of change in biodiversity and ecosystem services has so far been 

undertaken mainly in the domain of academic research and thus good modelling practice is defined 

through the peer review process.  

Key driver scenarios such as long-term Gross Domestic Product (GDP) development are produced 
through more expert-driven simple models and are not subject to stringent technical quality control 
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measures; therefore the credibility of such driver projections typically rests on the reputation of the 
expert team. 

There are currently less than a handful of institutions that issue long-term projections of GDP, and none 

of their models consider feedback from resource constraints. More sectoral models of indirect drivers, 

such as integrated assessment models or partial equilibrium models, are typically very large and highly 

complex due to their fundamentally non-linear structures. It is next to impossible to review such model 

structures with reasonably limited resources; if operated by an individual, analyses generated by such 

models are typically judged on the behaviour of a few output variables of interest given a specific 

problem. Integrated assessment models are typically used at the stage of policy formulation and very 

few of these models are actually used for policy planning purposes where review procedures are more 

biting than academic peer review. Given the fact that there are fundamentally different purposes and 

subsequent review procedures for different modelling tools, the production of consistent scenarios of 

long-term driver behaviour is currently more an art than a science. It is unlikely that there will be a 

major breakthrough in the science of long-term projections of indirect and direct drivers. Rather, there 

is a tendency to increasingly introduce quality control measures through good practice guidance.  

 

For example, good practice guidance for GHG accounting in the land-use sector has been established for 

more than a decade, and this provides the basic accounting rules for subsequent projections. The 

modelling process of producing projections is subject to TCCCA principles (transparency, completeness, 

consistency, comparability and accuracy). For example, in establishing forest management reference 

level (FMRL) scenarios, the TCCCA principles allow a technical evaluation of these scenarios by an 

independent review panel organised by the United Nations Framework Convention on Climate Change 

(UNFCCC). The ultimate purpose of the FMRL process is to trigger payment streams for additional 

climate mitigation efforts. 

 

3.2.3.2 Linking multiple models 

The development and quantification of scenarios of indirect drivers and their impacts on direct drivers 

of change in biodiversity and ecosystem services is multifaceted. In many cases, multiple models are 

required to operate at different spatial scales and/or to cover various driver constellations. For example, 

modelling of habitat conversion may require the use of demographic, economic and biophysical models 

to properly represent the development of the impact of different indirect drivers. For regional 

assessments, global scale assessment models are often required to account for the influence of distant 

drivers on the region of interest, while region-specific models are used to add finer spatial detail to the 

simulations (Verburg et al., 2008).  

No single model can capture all dynamics at a high level of detail, and the coupling or integration of 
models has become a popular tool to integrate the different dimensions. However, the degree of 
coupling varies among studies and the choice of integrated modelling versus a loose coupling of models 
depends on the specific requirements of the assessment as well as the system under consideration. 

The loose coupling of specialised models has the advantage that the specific strengths of each model are 

retained. An example of this tactic is the nested modelling approach used by Verburg et al., , (2008). 

Here, global economic models explore changes in world consumption and production in terms of the 

consequences for land use at the level of world regions. Detailed, spatially-explicit land-use change 

models subsequently downscale calculated areas of land use to individual pixels to show the types and 

location of changes in land use and terrestrial habitats. Based on the resulting land-use change patterns, 

a new set of models is used to assess the consequences of land-use change for carbon sequestration 

(Schulp et al., 2008) and ecosystem services.  
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The disadvantage of loose coupling models where only limited information is exchanged between the 

models (often in only one direction) is the lack of representation of feedback between the modelled 

components and the risk of inconsistencies in representation of the same phenomenon in the different 

models (e.g. a forest in one model can be defined differently in another model).  

The loose coupling approach has a risk of propagation of error and uncertainty between the coupled 
models, which is difficult to track and quantify (Verburg et al., 2013b). 

At the other end of the spectrum, integrated assessment models have been developed that embed the 

different model representations of the system in a consistent manner. Often, such integrated 

assessment models are modular and the different modules are built based on simple representations of 

the system under consideration. Given the embedding in a single simulation environment, the inclusion 

of feedback and interaction between the different modules is allotted more attention and there is 

consistent representation of variables across the different modules (Verburg et al., 2015). 

 

Similar models have been developed for regional scales that include the most important spatially-

specific indirect and direct drivers while taking into account knowledge on region-specific interactions 

and data availability (Harrison et al., 2015). A disadvantage of this approach is the inherent complexity 

of the models and the strongly simplified representation of the individual model components. This 

increased complexity reduces the applicability and transparency of the models (Voinov and Shugart, 

2013). Although presently these models tend to be used for a wide range of different questions, their 

model structures often inherit a focus on the specific questions that the models were developed for. 

Therefore, care needs to be taken regarding the range of their application. 

 

The choice of integrated modelling versus a loose coupling of models depends on the specific 

requirements of the assessment but also on the system being studied. An integrated modelling 

approach is required when feedback between the system components or spatial scales studied is 

important to system outcomes. However, when dynamics in the individual components dominate, the 

use of specialised models is recommended to capture such dynamics adequately. Also, should the study 

aim to identify leverage points in the dynamics of the indirect drivers, a loosely coupled model approach 

may have advantages for studying the different components of the system both separately and as part 

of the full system, allowing identification of the role of system interactions. 

 

 

3.3 Scenarios and models of indirect drivers 
 

The role of indirect drivers is an integral aspect of scenario development and subsequent analysis in 

complex ecological systems. Indirect drivers play a major role in influencing direct drivers of biodiversity 

and ecosystem change, as well as strongly influencing other indirect drivers. Socio-economic and 

demographic trends heavily influence consumption patterns with subsequent environmental 

implications (e.g. Seto and Kaufmann, 2003). In addition to interacting with socio-economic and 

demographic drivers, technological innovation can lead to the adoption of cleaner and more sustainable 

energy production, as well as indirectly contributing to environmental degradation through electronic 

and other waste as well as increased demand for the raw materials used in new technologies. While 

difficult to model, an understanding of the role of societal drivers such as culture and government is 

crucial to sustainable ecosystem management as these are strong drivers of value sets and decision 

frameworks that affect behaviours. 
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The influence of indirect drivers on biodiversity and ecosystem change materialises to a large extent 

through the valuation of biodiversity and ecosystem services. Institutional setups, as well as 

environmental policies and governance frameworks, are currently embedded in shaping valuation 

outcomes, with long-term effects for biodiversity conservation and equity of access to ecosystem 

services benefits (Gomez-Baggethun and Ruiz-Perez, 2011). Elaborated upon in subsequent sections, the 

relative levels of different types of uncertainty (defined in Chapter 1) and the extent of the current use 

of indirect drivers in scenarios and models varies from driver to driver (Table 3.2). 

 

Table 3.2: Degree of uncertainty and utilisation in scenarios and models by indirect driver. 

 
 

3.3.1 Economic trends 
Economic drivers and economic trends impact both social and environmental dimensions of sustainable 

development. Economic growth is the main global driver of resource consumption (Dietz et al., 2007). 

Consequently, these drivers have a growing effect on ecosystems and ecosystem functions (Gomez-

Baggethun and Ruiz-Perez, 2011). According to the MA (MA, 2005c), global economic activity increased 

nearly sevenfold between 1950 and 2000 and is expected to grow again by a further threefold to sixfold 

as measured by GDP by 2050. While technological and institutional innovations have increased 

resource-use efficiency, consumption growth has outstripped increases in efficiency (Raudsepp-Hearne 

et al., 2010). 

 

Taking a historical perspective, past and prevailing patterns of production and consumption embodied in 

global economic trends have generated growing pressures on natural resources, the environment and 

ecosystem functions. The World Wildlife Fund Living Planet Report (McLellan et al., 2014) concludes that 

humanity’s demand has exceeded the planet’s biocapacity for more than 40 years, and the ecological 

footprint shows that 1.5 Earths would be required to meet the demands humanity makes on nature 

each year. This demand is further compounded by the influence of population trends (see Section 3.3.2) 

and technological change (see Section 3.3.5). 

 

GDP is widely used as the sole socio-economic measure. Alternatively, the Human Development Index 

(HDI) adopts a wider approach, taking into account quality of life, health and education (see UNDP, 

2014a). However, even the HDI has considered the economic component (income) as a key factor in its 

calculations since 1990, when the publication of the annual United Nations Development Programme 

(UNDP) Human Development Report started (UNDP, 2014b). Virtually all socio-economic and 

environmental scenarios for this century (i.e. up to the year 2050 and beyond) include economic growth 

as a key driver, and GDP scenarios are typically built on explicit storylines about the evolution of 

determinants of the economic system. 

 

For example, the identification of possible elements of SSP scenarios (O’Neill et al., 2014) consider the 

following scenario elements essential within the category of ‘economic development’: global and 
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regional GDP, or trends in productivity; regional, national and subnational distribution of GDP, including 

economic catch-up by developing countries; sectoral structure of national economies, in particular the 

share of agriculture, and agricultural land productivity; share of population in extreme poverty; and 

nature of international trade. More information on the SSPs, including economic and demographic 

projections, can be found in the SSP database (https://tntcat.iiasa.ac.at/SspDb). 

 

According to the IPCC Fifth Assessment Report (IPCC, 2014), economic and population growth continue 

to be the most important indirect drivers of CO2 emissions. This assessment highlights that the 

contribution of population growth between 2000 and 2010 remained roughly identical to the previous 

three decades, while the contribution of economic growth rose sharply.  

Scenarios that assume rapid economic growth in the coming decades are mainly based on prioritising 
market goals and incentives under conventional market approaches, with adverse social and 
environmental implications, including negative impacts on biodiversity and ecosystems (e.g. Global 
Environmental Outlook 4 (GEO4) Market First, Rothman et al., 2007) (IEEP et al., 2009). 

The linkages between economic drivers and technological development have also been explored in the 

context of building socio-economic and environmental scenarios. In many cases, scenarios assuming 

rapid economic growth in a conventional market context are based on dynamic technological 

development. However, many multidimensional asymmetries characterise these processes.  

 

3.3.2 Demographic trends 
In concert with other indirect drivers, changes in population size as well as demographic variables such 

as population distribution and age structure exert significant anthropomorphic pressures on direct 

drivers of biodiversity and ecosystem change. Demographic pressures are intricately interlinked with 

consumption and environmental externalities, many of which exhibit non-linear dynamics not regulated 

by market forces (Dasgupta and Ehrlich, 2013). In addition to greater demand for natural resources, 

growing populations require greater amounts of food, driving land-use and land-cover change through 

deforestation and conversion to agricultural land. Populations with high per capita consumption rates 

(of goods and services) generate high demand for natural resources, representing a potentially greater 

biodiversity and ecosystem services threat than population growth (see Section 3.3.3). 

Urbanisation driven by growing populations and internal migration acts as an indirect driver of land-use 
change through linear infrastructures such as transportation networks and synergies with other forms of 
infrastructure development (Seiler, 2001). 

In addition, while the effect of urbanisation on local land-use change is a complex phenomenon 

contingent on a number of factors, outmigration to urban areas frequently results in greater 

mechanisation and agricultural intensification made possible by remittances and driven by higher urban 

consumption levels (Lambin and Meyfroidt, 2011).  

 

The primary determinants of population growth and structure are fertility, mortality and migration, with 

fluctuations among the former two characteristic of stages in the demographic transition model (e.g. 

Caldwell et al., 2006). Regional and local variation exists where there are significant socio-economic, 

governmental and developmental heterogeneities, particularly between rural and urban areas of less 

developed countries. The most recent United Nations (UN) population projections (UN, 2015) utilise 

Bayesian hierarchical models and the cohort component method to formulate probabilistic forecasts of 

population growth, adding to the high/low/medium scenarios of past UN projections (Gerland et al., 

2014). Whereas the UN projects continued growth throughout this century, the International Institute of 

Applied Systems Analysis (IIASA) projects an 85% chance of global population stabilisation and relies 

https://tntcat.iiasa.ac.at/SspDb
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more heavily on expert-based assumptions, utilising a multi-state cohort model to produce projections 

by age and sex, differentiated by education (Lutz et al., 2014). Here, projections are formulated 

according to five SSPs and contingent assumptions for fertility, mortality, migration and education.  

 

While the focus in the field of demography is on global and national population projections, future 

research is increasingly taking into consideration subnational migration patterns and differential 

population trajectories according to socio-economic heterogeneities. Such analyses will be of 

considerable importance for understanding the effect of population growth on biodiversity and 

ecosystem change at regional and local spatial scales. As one example, population age structure has 

been found to influence consumption patterns, with younger and older people consuming more than 

middle-aged cohorts (e.g. Erlandsen and Nymoen, 2008; Liddle and Lung, 2010). This illustrates the 

paramount importance of examining how people interact with their environment due to socio-economic 

(Section 3.3.1) and sociocultural (Section 3.3.3) influences. 

 

3.3.3 Society and culture 
Culture in the form of the values, norms and beliefs of a group of people can act as an indirect driver of 

ecosystem change by affecting environmentally-relevant attitudes and behaviours. Chapter 5 provides 

an elaboration on the role of values (see also IPBES Deliverable 3d on the conceptualization of multiple 

values). The influence of societal and cultural values (and subsequent behaviour) on indirect and direct 

drivers of biodiversity and ecosystem change is acknowledged throughout the existing literature (e.g. 

Milton, 2013).  

The impact of sociocultural influences on drivers of biodiversity and ecosystem change is often not 
explicitly captured in formal modelling methods due to the difficulty of identifying and parameterising 
what are often complex and overlapping phenomena. 

In this respect, the role of sociocultural heterogeneity is frequently overshadowed in modelling 

applications by more easily quantified socio-economic metrics (e.g. GDP and education), prompting 

criticism that data-driven methodologies place an undue emphasis on measurable indicators while 

neglecting the role of sociocultural values and practices.  

 

In addition to the challenge of identifying and measuring sociocultural drivers that capture the way in 

which people interact with their environment, understanding environmentally-relevant attitudes and 

values is further complicated by the value-action gap (Blake, 1999; Kollmuss and Agyeman, 2002). There 

is a large body of quantitative research from the cognitive sciences highlighting the considerable 

disparity between knowledge, values and actual behaviour, indicating that rationalist linear models do 

not fully capture the processes underpinning decision-making behaviour (e.g. Bechara et al., 1997; Haidt, 

2001). Research into social networks reveals that behaviour is substantially shaped by the sociocultural 

context in which individuals are embedded (Christakis and Fowler, 2013). These dynamics also apply to 

pro-environmental behaviours with, for example, the use of block leaders to disperse information on 

conservation through community and social networks (Abrahamse and Steg, 2013). The growing field of 

social network analysis thus represents one statistically rigorous method of identifying individuals who 

are the most influential in spreading information and values through their respective peer networks (i.e. 

high centrality individuals) (Burt et al., 2013).  

 

Due in part to their highly interlinked and amorphous character, sociocultural values are greatly affected 

by other indirect drivers. For example, in India researchers have largely attributed low meat 

consumption to cultural and religious traditions that prohibit and discourage the consumption of meat, 
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particularly beef (Godfray et al., 2010b). Although India is known as one of the world’s most vegetarian-

friendly countries, a closer examination reveals a considerable amount of heterogeneity in India’s diet 

and a trend toward the adoption of Western consumption patterns (Amarasinghe et al., 2007; Deaton 

and Drèze, 2009). Livestock production has a substantial negative impact on biodiversity through a 

number of direct drivers, including meat production-related habitat loss, indirect and direct GHG 

emissions, land degradation caused by excessive grazing and nutrient pollution (Stehfest et al., 2009; 

Machovina et al., 2015). Due to the considerable environmental impact of meat-heavy diets (Herrero et 

al., 2013), scenario analyses often include meat, vegetarian and healthy diet variants (e.g. Stehfest et al., 

2009; Wirsenius et al., 2010). 

 

3.3.4 Governance and institutions 
Institutions play an important role in the management and exploitation of biodiversity and ecosystem 

services (Lowry et al., 2005; Abunge et al., 2013). Ill-informed and weak governance frequently leads to 

mismanagement of the commons (see Box 3.3), as well as the adoption of environmentally-

unsustainable policies (Laurance, 2004; UNEP, 2013). Effective institutional design and implementation 

is however crucial. Institutional drivers operate at various spatial scales, from global (international) to 

local (subnational), and include the influence of policies that encourage a particular behaviour (e.g. 

agricultural subsidies) as well as the direct impact of enacting environmental legislation (e.g. designation 

of conservation areas). The concept of governance used by Gupta and Pahl-Wostl,  (2013) refers to the 

exercise of authority by different social actors through the development and implementation of explicit 

and implicit substantive and procedural rules to manage resources for the social good.  

 

In many countries, factors such as weak governance and institutions, lack of cross-sectoral coordination 

and illegal activity are cited as key indirect drivers of ecosystem change (Kissinger and Rees, 2010). 

Common governance challenges include confused goals, conflicts and unrealistic attempts to scale up 

beyond institutional capacity. Where collective action and conflict resolution mechanisms break down, 

the governance of ecosystem resources is compromised (Ostrom, 1990). Fragmented legal systems can 

lead to gaps and conflicts (Techera and Klein, 2011, Pomeroy et al., 2010), while the governance of 

large-scale ecosystems requires the identification of the heterogeneous, multi-scale and interlinked 

nature of these systems (Fidelman et al., 2012). 

 

Institutions can promote ecosystem services exploitation. For instance, in Thailand policies that 

promoted shrimp farming by absentee landlords led to the massive destruction of mangrove ecosystems 

and thereby the exposure of coastal communities to catastrophic storm and tsunami events (Barbier et 

al., 2011). Alternatively, public policies can positively affect biodiversity and ecosystem services 

dynamics as exemplified by recovering fish stocks under the Common Fisheries Policies of the European 

Union (Fernandes and Cook, 2013). Here, secure private-property rights are widely considered to 

promote more efficient resource utilisation and property management than open access schemes, 

although there are many circumstances in which private-property rights do not guarantee resource 

conservation (Acheson, 2006), in addition to which most common property arrangements involve some 

degree of private-property management (Ostrom and Hess, 2007). Group size and makeup (e.g. gender) 

also have important implications for sustainability in situations involving collective resource 

management (Poteete and Ostrom, 2004; Westermann et al., 2005).  
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Governmental and institutional norms condoning corruption can easily become entrenched in 

impoverished environments, with significant consequences for the sustainable management of 

biodiversity and ecosystem services.  

The failure to enforce rules (e.g. due to corruption or underfunding), as well as the absence of clear 
boundaries at the local level, can lead to collective action problems (Gibson et al., 2005). 

So-called ‘paper parks’ are one example of where intended conservation measures lack the political 

willpower or enforcement capabilities necessary to carry them out (Wright et al., 2007). The problem of 

corruption is particularly pronounced when the enforcement of rules regarding highly-valued resources 

hinges on the ability of poorly paid government officials to resist bribes (Smith et al., 2003). Furthermore, 

the sustained impacts of direct drivers such as natural disasters can result in governmental and 

institutional instability, highlighting potential feedbacks between indirect and direct drivers (see Box 3.4).  

 

Box 3.4: Divergent environmental management histories in Haiti and the Dominican Republic 

The effects of institutional and governmental policies on the environment is clear in the contrast 

observed between the Dominican Republic and Haiti. Despite geographical similarities, a long history of 

weak environmental governance coupled with colonial exploitation has led to ecosystem degradation 

and increased vulnerability to natural disasters in Haiti (Roc, 2008). In addition to biodiversity protection 

and preservation, forest conservation measures as well as planning and adaptation capacities are crucial 

aspects for reducing the impact of natural disasters on human life and development (Day, 2009). In 

contrast with Haiti, the Dominican Republic has largely mitigated such consequences through successful 

environmental management. Where Haiti’s forested territory has shrunk from approximately 85% in the 

15th century to 2–4% today, forest cover in the Dominican Republic has rebounded from 12% in the 

1980s to 40% today, due in large part to reforestation programmes and the enforcement of regulations. 

In Haiti, land degradation resulting from deforestation and unsustainable agricultural practices is a 

major direct driver of ecosystem change, with trade in charcoal providing a strong economic impetus. In 

contrast with the constitution of the Dominican Republic, which prioritises sustainable environmental 

management, many of the relevant laws in Haiti date back to the 19th century and the enforcement of 

extant regulations is hampered by a lack of political will as well as technical and financial limitations.  

 

International trade and financial policies and practices considerably influence biodiversity and 

ecosystems services. Trade liberalisation, for instance, may have positive impacts to the extent that it 

stimulates the more efficient use of resources on macro-scales and connects more regions to the world 

market. However, higher levels of foreign debt service, structural adjustment programmes and a high 

dependency on primary sector exports are associated with higher numbers of threatened mammals and 

birds. This is because structural adjustment loans and large debt service burdens lead debtor nations to 

increase exports of agricultural goods and natural resources to generate currency for debt repayment 

(Shandra et al., 2010). Finally, conflicts undercut or destroy environmental, physical, human and social 

capital, diminishing available opportunities for sustainable development (UNEP, 2006). 

 

The vital role of governance and institutions as drivers of biodiversity and ecosystem change was 

highlighted in the ALARM project, with scenarios encompassing agricultural, chemical, energy, transport, 

technology and trade sector policy variants (Spangenberg, 2007). The future application of the current 

ecosystem services approach will need to involve a more critical focus on environmental governance, 

transparency and participation as well as a consideration of the great uncertainties prevailing at various 

spatial and temporal scales (Paavola and Hubacek, 2013).  
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A more thorough understanding of how biodiversity, ecosystems and ecosystem services are governed, 
and incorporation of this understanding into driver scenarios, will be crucial for ensuring improved 
biodiversity and ecosystem services management in the context of governance systems. 

 

3.3.5 Technology 
The rate of technological change is considered to be an indirect driver of biodiversity and ecosystem 

services change because it affects the efficiency with which ecosystem services are produced or used 

(Alcamo et al., 2005). It is recognised that technological change can result in increased pressure on 

ecosystem services through increased resource demand, as well as leading to unforeseen ecological 

risks. In comparison with anthropomorphic indirect drivers that are relatively constrained by biophysical 

limitations such as economic and demographic trends, technological innovation can potentially serve as 

a catalyst of paradigmatic shifts in production systems with considerable societal implications (e.g. Perez, 

2004). Although technology can significantly increase the availability of some ecosystem services and 

improve the efficiency of the provision, management and allocation of different ecosystem services, it 

cannot serve as a substitute for all ecosystem services (Carpenter et al., 2006).  

 
The impact of technological innovation on biodiversity and ecosystem change is exerted through its 

influence on direct drivers as well as through interactions and synergies with other indirect drivers. With 

the exception of recent work (e.g. Dietrich et al., 2014), the role of technology trends in land-use change 

modelling applications is typically implemented exogenously due to the relative paucity of information 

on the relationship between research and development and technological change. Such decoupling of 

the assumptions about technological change from model dynamics can result in an underestimation (or, 

potentially, overestimation) of technological change that is most problematic in long-term projections 

(Dietrich et al., 2014). As with economic and demographic drivers, scenarios of technological change are 

included in the SSPs.  

 

Technologies associated with agriculture and other land uses (see Box 3.4) have a large impact on 

drivers of biodiversity and ecosystem change. The agricultural intensification of the ‘green’ revolution 

led to higher crop yields and lower food prices, to some extent mitigating the expansion of agricultural 

land (Evenson and Gollin, 2003) and resulting in a net decrease in GHG emissions (Burney et al., 2010). 

However, while intensification may have represented an advantageous pathway from a land-use change 

and climate change perspective, excessive nitrogen and phosphorous use through fertilisers has led to 

the substantial degradation of freshwater and marine habitats (Smith et al., 1999). Furthermore, the 

shift from traditional crop varieties to industrial monocultures has resulted in a loss of crop genetic 

diversity (FAO, 2010) as well as increased susceptibility to disease and pests (Zhu et al., 2000; Jump et al., 

2009). Looking to the future, recent global food demand projections foresee a doubling of crop 

production between 2005 and 2050 (Tilman et al., 2011), largely due to the global dietary shift toward 

greater rates of meat consumption now taking place throughout the developing world (Delgado, 2003; 

Speedy, 2003; Thow and Hawkes, 2009). 

Agricultural land expansion is estimated to be the direct driver for around 80% of deforestation 
worldwide and is the dominant cause of land-use change (Hosonuma et al., 2012) as well as a key 
contributor to GHG emissions through land-use change (Paustian et al., 2006). 

Agricultural technologies acting on direct drivers of biodiversity and ecosystem change include 

improvements in crop yields and resilience; sustainable livestock, fishing and aquaculture practices; and 

mechanisation and engineering practices such as precision farming (Beddington, 2010). In addition to 

shaping current practice, the introduction of new technologies can result in entirely new markets, 



Chapter 3 

 
 

Page 126 
 

particularly in confluence with government incentives, as illustrated in the case of biofuels (see Box 3.5). 

In a potential future of nine billion inhabitants, some argue that genetically modified crops hold the 

promise of increasing yields in productive land as well as allowing for cultivation in previously intolerant 

environments (Fedoroff et al., 2010; Godfray et al., 2010a), potentially resulting in a net biodiversity 

increase (Carpenter et al., 2011). The protection of existing genetic diversity in the form of wild crop and 

livestock varieties is key to safeguarding against future environmental change (Mace et al., 2012). 

Indeed, the presence of wild varietals is essential for isolating yield-boosting genes as well as other 

desired qualities such as drought and flood resistance (Normile, 2008). 

 

Box 3.5: Bioenergy and indirect land-use change 

 

The Global Biosphere Management Model (GLOBIOM) developed by IIASA is used to illuminate the 

complex interplay of agricultural, bioenergy and forestry production sectors on land-use change. 

GLOBIOM is a partial equilibrium economic model focused on specific economic sectors (18 most 

important crops, 7 livestock products, full forestry and bioenergy supply chains) and encompassing 30 

world regions in varying degrees of resolution and disaggregation. The model is supported by a 

comprehensive geospatial database (Skalský et al., 2008) that informs production potential and 

simulates under a dynamic recursive framework land-use changes at 10 year intervals up to 2100. 

Indirect GLOBIOM drivers are an exogenous GDP and population growth projections which, together 

with food consumption per capita (FAO-based), allow for the simulation of supply and demand, 

commodity markets and international trade. GLOBIOM also represents technological progress in crop 

and livestock production and land conversion constraints related to biophysical or policy restrictions. 

Direct drivers are model outputs including spatially-explicit land-use change, GHG emissions, water use, 

biomass extraction and nutrient balances. 

 

The confluence of bioenergy technologies and government subsidies illustrates the potential for 

emerging technologies to create new markets with complex synergies and feedbacks. Coupled with 

market feedback mechanisms, GLOBIOM is capable of modelling a wide range of environmental 

scenarios and has recently been employed to cast light on the debate surrounding the impact of 

expanded biofuel production on indirect land-use change (Havlík et al., 2011). The model shows that 

first generation biofuels (e.g. ethanol and biodiesel) lead to greater deforestation than ‘no biofuels’ 

under all scenarios and have a negative net effect on global GHG levels through increased indirect land-

use change emissions. The adoption of second generation biofuels (derived from woody biomass), 

produced through existing production forests, leads to the lowest cumulative deforestation as well as 

the greatest decrease (27%) in overall GHG emissions. Second generation biofuels are thus the most 

advantageous from the perspective of limiting GHG; however, externalities are highly contingent on the 

feedstock source, with tree plantations established on cropland and grassland leading to the greatest 

amount of deforestation and water consumption.  

 

 

3.4 Scenarios and models of direct drivers 
 

Anthropogenic direct drivers are to a significant extent driven by the indirect drivers outlined in Section 

3.3. Direct drivers impact biodiversity and ecosystem change at a more proximate level, frequently 

involving synergies with other direct drivers, and ultimately feeding back into indirect drivers. Salafsky et 
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al., (2008) provides an exhaustive and detailed list of direct threats to biodiversity that broadly fall under 

the rubric of land-use change, climate change and pollution, natural resource use and exploitation, and 

invasive species. A general overview of each driver is provided in the following sub-sections, followed by 

a description of prominent scenarios, models and case studies. As with indirect drivers, direct drivers are 

subject to differing types of uncertainty and are not equally represented in the existing scenario and 

modelling literature (Table 3.3). 

 

Table 3.3: Degree of uncertainty and utilisation in scenarios and models by direct driver. 

 
 

3.4.1 Land-use change 
Habitat modification is seen as a prime driver of biodiversity loss and changes in the level and 

composition of ecosystem services provided at any given location. Habitat modification is mostly a result 

of land-use change, either induced by human action or as a result of changes in the physical 

determinants of the habitat (e.g. due to changes in hydrology or climate). Habitat modification also 

occurs in marine environments, where trawling has particularly devastating implications for seafloor 

ecosystems (Hiddink et al., 2006). In most cases, the modification of habitat due to human interference 

is much faster and more pronounced than changes due to climate change (Lehsten et al., 2015). 

However, in specific environments such as the arctic tundra region, climate change can also have major 

impacts on habitat.  

Land-use change is the major human influence on habitats and can include the conversion of land cover 
(e.g. deforestation or mining), changes in the management of the ecosystem or agro-ecosystem (e.g. 
through the intensification of agricultural management or forest harvesting; see Box 3.6) or changes in 
the spatial configuration of the landscape (e.g. fragmentation of habitats) (van Vliet et al., 2012; Verburg 
et al., 2013b). 

At the regional scale, a variety of different models have emerged in the past decades to simulate 

changes in land use driven by demographic change, policies and changing demands for land-based 

commodities or urban use. Model structure and characteristics are often specific to the scale of 

application, the research questions and the dominant processes involved. Agent-based models have 

become popular tools for small areas and when it is important to explicitly represent diversity in land-

use decision making (Matthews et al., 2007; Brown et al., 2014). In such models, the changing landscape 

pattern emerges from the decisions of individual landowners and managers that respond to (often 

exogenously defined) indirect drivers.  

 

At larger spatial and temporal scales, a simpler conceptualisation of decision making is often applied and 

land-use change is simulated based on the suitability of locations for a specific land use, with the 

regional-level demands for the different land uses and spatial constraints resulting from regulations and 

land-use planning (van Delden et al., 2011). In such models, pixels are the units of simulation and often 

the state of neighbouring pixels is taken to represent neighbourhood effects and processes such as 

centripetal forces and economies of scale in urban development. Many global scale land-use models use 

macro-economic representations of commodity markets and trade simulation in general or partial 
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equilibrium models to simulate land-use change between different world regions. In many cases, land-

use decisions are represented by simulating the land-use choice of a representative farm at the regional 

level (van Meijl et al., 2006) or at the level of coarse spatial units (Schmitz et al., 2012). Spatial patterns 

of land-use change are calculated using either simple land-allocation algorithms based on land suitability 

or more complex routines that account for competition between alternative land uses (van Asselen and 

Verburg, 2013).  

Independent of the scale, most land-use models simulate mainly the major conversions of land cover 
(urbanisation, deforestation, etc.) and ignore the subtler modifications of habitat conditions due to 
changes in land management and in the spatial configuration of landscapes (Kuemmerle et al., 2013). 

This is due to either a lack of fine-resolution data on landscape elements and linear features, or the 

simplified representation of landscapes by either dominant or fractional land cover (Verburg et al., 

2013a). 

 

Box 3.6: Agroforestry 

High rates of deforestation near biodiversity hotspots are associated with low rates of human 

development and high population growth, with human development and economic policies emerging as 

key factors (Jha and Bawa, 2006). Although there is no substitute for primary forest in terms of 

biodiversity value (Gibson et al., 2011), traditional agroforestry systems foster greater biodiversity than 

monocrop systems (McNeely and Schroth, 2006) and may serve as one method of ensuring socio-

economic livelihoods at the margins of rainforests (Steffan-Dewenter et al., 2007). Agroforestry systems 

have also been found to reduce dependency on nearby reserves and pristine forests, although economic 

incentives are important to offset the cost to farmers of planting and maintaining trees on farmland 

(Bhagwat et al., 2008). Further governance options include the implementation of existing conservation 

frameworks such as REDD (Reducing Emissions from Deforestation and Forest Degradation) to maximise 

the conservation of high biodiversity areas (Harvey et al., 2010). 

 

3.4.2 Climate change and pollution 
Climate change 

Direct driver pathways of climate change are related to changes in climate and weather patterns 

impacting in situ ecosystem functioning and causing the migration of species and entire ecosystems. 

There are indications that climate change-induced temperature increases may threaten as many as one 

in six species at the global level (Urban, 2015).  

Rising atmospheric CO2 concentrations leading to higher ocean temperatures and ocean acidification are 

expected to have profound effects upon marine ecosystems, particularly coral reefs (Hoegh-Guldberg et 

al., 2007) and marine communities near the seafloor (Hale et al., 2011). Recent studies projecting reef 

contraction due to global warming are unanimous in their depiction of the negative impacts on the 

marine biodiversity that depend on these ecosystems (e.g. Pandolfi et al., 2011), although the direct 

effects of ocean acidification are highly variable across different taxa (Hendriks et al., 2010). 

 

The construction of climate driver scenarios starts with a forcing on the climate system expressed in 

irradiance (watts per square meter). For the IPCC Fifth Assessment Report, emissions scenarios 

consistent with climate forcing targets were constructed as RCPs by a community effort of integrated 

assessment modelling groups with the aim to inform global circulation models and Earth system models. 

The biodiversity and ecosystem services-relevant variables characterising RCP scenarios include 

characteristics of land-use scenarios, which were downscaled to provide spatially-explicit land-use maps 
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for the climate modelling community. Gridded land-use transition data for the past and future time 

period were developed from the reconstruction based on HYDE 3 agricultural data and FAO wood 

harvest data and future land-use scenarios from integrated assessment models. These gridded land-use 

datasets are used as a forcing for some Earth system models participating in the Coupled Model 

Intercomparison Project experiments, to assess the biogeochemical and biogeophysical effects of land-

use and land-cover change in the climate change simulation. 

 

The Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) used climate change projections to 

make impact assessments in different Earth system sectors and at different scales. Based on common 

background scenarios, uncertainties across multiple impact models have been derived. ISI-MIP aims to 

establish a longer-term coordinated impact assessment effort driven by the entire impact community 

covering all biodiversity and ecosystem services sectors on global scales and for selected regional and 

ecosystem-specific case studies. In this way, feedbacks between managing biodiversity and ecosystem 

services sectors, climate and Earth systems can be studied in a loosely coupled manner. A few groups 

are currently working on fully coupling all three model types (global circulation models, Earth system 

models and integrated assessment models), where the latter cover both the climate mitigation and 

adaptation functions of ecosystem management. Using such full coupling, climate drivers and their 

biodiversity and ecosystem services feedbacks can be consistently analysed. Decision-support tools can 

be expected to become more useful in the decades to come, as the temporal (including climate 

extremes) and spatial resolution of climate signals improve and more transient model runs become 

available (Fuss et al., 2015). 

 

Box 3.7: IPCC scenarios 

 

Global-scale long-run environmental assessments are typically framed in consistency with existing 

scenario storylines such as the IPCC Special Report on Emission Scenarios (Nakićenoić and Swart, 2000). 

The scenarios of the IPCC, the MA, the Global Biodiversity Outlook, the Global Environment Outlook and 

the Global Deserts Outlook have used these storylines or close derivatives of these to generate indirect 

driver scenarios for their sector-specific outlooks. Regional assessments of the MA and the national 

variants of the Global Environment Outlook, such as those carried out in the United Kingdom, China and 

Brazil, have used globally consistent regional variants of existing storylines. Downscaled gridded 

scenarios of socio-economic drivers of SRES (Grübler et al., 2007) have been used as indirect drivers of 

forest-cover change (Kindermann et al., 2008). Climate change scenarios are typically provided on the 

same grid resolution and are used as direct drivers of ecosystem change (e.g. Seidl et al., 2014). Local 

and more regional specific scenarios of indirect and direct drivers are typically constructed bottom-up 

and may significantly deviate from the globally established storylines. More recently, associations or 

even directing mapping of such bottom-up scenarios into global storylines have been performed, 

allowing for increased comparability across regional case studies (e.g. Vervoort, 2013). 

 

The SRES (Nakićenoić and Swart, 2000), long employed by the IPCC, has given way to a new framework 

formed by the confluence of the RCPs and the SSPs. RCPs are constructed from radiative forcing targets 

and present a range of potential futures consisting of a low mitigation scenario, two stabilisation 

scenarios and one high baseline scenario (Van Vuuren et al., 2011). SSPs, as newly formulated by O’Neill 

et al., , (2014), illustrate socio-economic factors that would make meeting mitigation and adaptation 

more or less difficult. Building on previous work integrating SRES with socio-economic scenarios 

(Abildtrup et al., 2006), this new model takes the form of a dual axis matrix with RCPs representing the 
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possible trajectories of climate change drivers (Moss et al., 2010; Van Vuuren et al., 2011), and SSPs 

representing possible socio-economic developments that would impact the ability to mitigate and adapt 

to climate change (Van Vuuren et al., 2012b). 

 

Pollution 

Pollution is an important driver of biodiversity and ecosystem change throughout all biomes, with 

particularly devastating direct effects on freshwater and marine habitats. Due to its multifaceted nature, 

scenario analyses are frequently tailored to the specific subclass of pollution under consideration.  

The early reports of the effect of the organochlorine insecticides DDT, along with its analogue DDD, on 

the western grebe (Garrett, 1977) are one of the most documented examples of the biodiversity-

pollution nexus. The end of DDT use in the early 1970s in many countries has already contributed to the 

recovery of many of the impacted populations. Incidents of the massive killing of marine mammals 

caused by contamination with polychlorinated biphenyl (PCBs) and other persistent organic pollutants 

(POPs) that belong to the same organochlorine family were also frequently reported (Kannan et al., 

2000; Shaw et al., 2005). More recently, veterinary diclofenac used to treat livestock throughout South 

Asia has been implicated in the collapse of vulture populations (Oaks et al., 2004), with significant 

ecosystem services implications (Ogada et al., 2012).  

 

The biodiversity of soil fauna is vital to many ecosystem services, including carbon storage, soil fertility 

and plant diversity, and insect population control (Wolters, 2001). The degradation of soil biodiversity 

through industrial pollution can result in the proliferation of invasive and destructive species as well as 

the loss of endemic microorganisms (Hafez and Elbestawy, 2009). In addition to above-ground plant 

biodiversity decline, ongoing soil biodiversity loss due to agricultural intensification is likely to impair 

ecosystem multifunctionality, resulting in decreased carbon sequestration as well as greater nitrogen 

emissions and phosphorous leaching, among other impacts (Wagg et al., 2014). 

 

At a global level, the atmospheric deposition of nitrogen has been recognised as one of the most 

important threats to the integrity of global biodiversity (Sala et al., 2000; Butchart et al., 2010). Once 

nitrogen is deposited on terrestrial ecosystems, a cascade of effects can occur that often leads to overall 

declines in biodiversity (Bobbink et al., 2010). Within terrestrial biomes, nitrogen deposition through 

fossil fuels and fertiliser use has been found to impede decomposition and slow microbial growth, with a 

number of implications for terrestrial biodiversity (Smith et al., 1999; Carreiro et al., 2000; Janssens et al., 

2010). Changes in biotic or ecological characteristics are simulated in response to environmental drivers 

using mathematical representations of the most important processes. Such process-based models are 

useful for assessing temporal trends and response times. However, they often require a large amount of 

data for model calibration (Dise et al., 2011). 

 

While terrestrial ecosystems have been affected by nitrogen-phosphorous fertilisers, these have had a 

far more pernicious effect on the biodiversity of freshwater and marine habitats, leading to 

eutrophication and hypoxic or ‘dead’ zones that support no aquatic life. Eutrophication and acidification 

occur when nitrogen and phosphorous – the primary limiting factors for algal growth – are introduced, 

allowing algal blooms to proliferate which deplete the water of oxygen as well as frequently resulting in 

toxic algae (Camargo and Alonso, 2006). At a regional scale, various scenario analyses have examined 

the impact of reduced nutrient loads on coastal ecosystems in the North Sea (e.g. Skogen et al., 2004; 

Lenhart et al., 2010). Integrated approaches to modelling nutrient emissions have also been conducted 
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on a global scale using the MA storylines and the Global Nutrient Export from Watersheds (NEWS) 

model, highlighting the role of indirect drivers on future nutrient emissions (Seitzinger et al., 2010). 

 

Plastic debris is emerging as one of the most potent pollutants of marine environments. Results from 

the ocean circulation model HYCOM (Hybrid Coordinate Ocean Model), coupled with the particle-

tracking model Pol3DD, estimate that 5.25 trillion plastic particles weighing 268,940 tons are in the 

world’s oceans (Eriksen et al., 2014). The potential for plastic debris to travel considerable distances, its 

resistance to biodegradation, and its potential to accumulate in habitats far from its point of origin 

present a distinct challenge (sCBD, 2012). In addition to the direct introduction of microplastics used in 

commercial cleaning processes as well as plastic pellets and powders (Barnes et al., 2009), larger pieces 

of plastic are degraded by the effects of heat, wave action and UV, eventually forming microplastics and 

nanoplastics ranging from 5µm to 200 nm in diameter (Ryan et al., 2009; Andrady, 2011; Sundt et al., 

2014). The ingestion of such plastics by aquatic life can lead to physical blockages, resulting in mortality 

as well as the accumulation of POPs throughout the food chain (Box 3.8). This problem is particularly 

pronounced near the ocean floor, where higher density plastics accumulate and are consumed by 

benthic scavengers which serve as a vector to higher trophic organisms (Wright et al., 2013). In addition 

to the ingestion of plastic, entanglement in plastic loops and ‘ghost nets’ affects a number of marine 

animals, resulting in strangulation and reduced fitness (Derraik, 2002). According to sCBD,  (2012), 

impacts of marine debris have been reported for 663 species.  

 

Plastic pieces also serve as long-lasting vectors of transport across marine environments, introducing 

invasive species to the detriment of endemic biota (Gregory, 2009). There is also growing evidence that 

microplastics absorb POPs, serving as a high concentrate vector of transport and ingestion by marine 

organisms (Teuten et al., 2009). Compounding this phenomenon, climate change has greatly expanded 

the habitable range of many generalists that are now able to take advantage of such vectors, illustrating 

the complex interlinkages among biodiversity and ecosystem services direct drivers.  

 

Box 3.8: Persistent organic pollutants 

 

POPs are a group of chemicals that include some pesticides, some industrial chemicals, dioxins and 

furans. The use of POPs has been banned under the Stockholm Convention on Persistent Organic 

Pollutants, which came into force in 2004 (Ahmed, 2006). The tendency of POPs to dissolve and 

bioaccumulate in fat tissues, subsequently bioamplifying through food chains, has enabled them to build 

up in tissues, reaching very high concentrations in organisms at the top of the food chain, causing 

serious impacts and possible massive death. Recently, various reports have emerged to document the 

deleterious effect of endocrine disturbing chemicals (EDCs) – a group of chemicals that includes 

pesticides, industrial chemicals, metals and personal care products – on endocrine systems (Bergman et 

al., 2013). Other potential pollutants that impact biodiversity include heavy metals (Mulder and Breure, 

2006), nutrients (Ochoa-Hueso et al., 2011) and systemic pesticides (Van der Sluijs et al., 2015). 

 

Models have been used to depict changes in ecosystems however, due to the complexity of the 

biological system, there is little consensus on the basic equations for describing physical systems (James, 

2002). As one example, Aquatox is one of the most widely used aquatic ecosystem models. It models 

chemical fate and effects as a prelude to the evaluation of past and present, direct and indirect impacts 

of stressors of aquatic ecosystems. Aquatox can simulate flasks and tanks, ponds and pond enclosures, 

successive stream reaches, lakes, reservoirs and estuaries (Park et al., 2008). The model is frequently 
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used in mapping the bioaccumulation of pollutants in plants, fish and shorebirds that feed on aquatic 

organisms. However, like most water quality models, Aquatox predicts only the concentrations of 

pollutants in water but cannot project the effects of said pollutants. 

 

3.4.3 Natural resource use and exploitation 
The anthropogenic exploitation of wildlife has occurred throughout human history, leading to 

biodiversity loss and extinctions; however, the recent rate of loss has accelerated sharply (Leakey and 

Lewin, 1996).  

The most overexploited species include marine fish, invertebrates, trees, tropical vertebrates hunted for 

bushmeat and species harvested for the medicinal and pet trade (MA, 2005b). 

As direct drivers of biodiversity and ecosystem change, natural resource use and climate change exhibit 

interlinkages in the form of climate change-induced increases in scientific and stochastic uncertainty 

related to the modelling and management of natural resources (Nichols et al., 2011). 

 

Trade in bushmeat is one of the greatest threats to wildlife in the tropics, particularly among large-

bodied slow-reproducing species. Indeed, vulnerable species have already been extirpated in many 

regions, resulting in an ‘extinction filter’ where the remaining species are those capable of coping with 

anthropogenic pressures (Cowlishaw et al., 2005). In addition to being a conservation issue, bushmeat 

hunting and consumption is intricately tied to the livelihood of households not only as a protein source 

during periods of low agricultural production, but also as a source of income from sales to more affluent 

urban households (de Merode et al., 2004; Bennett et al., 2007).  

 

There is a general consensus among conservationists that sustainable bushmeat management and 

harvesting through better regulation is the best available solution to overexploitation, given the socio-

economic contexts in many of the affected regions. 

Human activities have severely affected ocean health through overfishing, although there are significant 

country-level differences (Halpern et al., 2012). As the primary driver of the decline in marine resources, 

the overexploitation of marine habitats has led to precipitous drops in commercially valuable species, as 

well as other species subject to bycatch and overfishing (Pauly et al., 2002). The decision to exit a 

declining fishery is highly contingent on the socio-economic status of the fisher, with poorer households 

less likely to leave (Cinner et al., 2009). Furthermore, there is evidence at the local level that proximity 

to markets and market demand better predict overfishing than population density (Cinner and 

McClanahan, 2006). Here, participatory modelling approaches with greater stakeholder involvement at 

the local level are highly appropriate for applications involving the sustainable governance of natural 

resources (Videira et al., 2010), with particular salience for the management of fisheries (Röckmann et 

al., 2012). 

 

Trade in ornamental species, including vertebrates associated with traditional Chinese medicine, has led 

to significant biodiversity losses, particularly in the South East Asia region (Sodhi et al., 2004; Nijman, 

2010). In addition, trade in aquatic ornamental fish serves as a vector for the spread of invasive species 

(Padilla and Williams, 2004). As a direct driver, natural resource use and exploitation is heavily 

influenced by indirect drivers such as socio-economic and demographic trends, as well as societal and 

cultural influences. Indeed, per capita consumption levels are emerging as a potentially more important 

driver of biodiversity and ecosystem change than population growth (Toth and Szigeti, 2016). Models 

and scenarios of natural resource consumption and exploitation therefore need to be intimately tied to 

economic and sociocultural trends. 
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3.4.4 Invasive species 

Invasive species may be indigenous and/or exotic/alien, and occur mostly in terrestrial and aquatic 

ecosystems (marine and freshwater), disrupting the ecological functioning of natural systems. Invasive 

species outcompete local and indigenous species for natural resources, with negative implications for 

biodiversity. A number of invasive and alien species or weeds have been reported in various parts of the 

world, resulting in loss of biodiversity at local and regional scales and causing significant economic 

damage (Mack et al., 2000).  

The type and extent of invasive species will depend on the drivers which, for terrestrial environments, 

mainly include the type of habitat, soil, climatic conditions and degree of disturbance. The dispersion of 

invasive species has been extensively studied as a function of both climate and land-use change, with 

the general finding that climate change is conducive to increased invasions in both terrestrial and 

marine ecosystems (Hellmann et al., 2008; Rahel and Olden, 2008; Walther et al., 2009). The influence 

of land-use change is less clear, although habitat type is a good indicator of invasiveness, and disturbed 

habitats (e.g. arable land, anthropogenic herb stands) are more susceptible to invasion (Chytrý et al., 

2008). Most invasive species do not have natural enemies in their new environments and have to be 

removed using chemical, manual, mechanical or integrated methods.  

 

A number of invasive species-related models have been developed and used in depicting invasive 

species spread, distribution in new areas, and also for quantifying their impacts on the environment. 

Climex, first published in the 1980s, is one of the earliest used models of invasive species. The primary 

output is a mapped prediction of the favourability of a set of locations for a given species, although the 

model also produces a suite of additional information to allow for a further understanding of species 

responses to climate. Bioclimatic envelope models such as Climex have been frequently employed to 

map species distribution, although the predictive accuracy of such models can vary substantially 

depending on the inclusion of topographic heterogeneity and CO2 concentrations (Willis and Bhagwat, 

2009). Spatially-explicit models (Modular Dispersal in GIS, MDiG) were designed as an open source 

modular framework for dispersal simulation integrated within a GIS (Geographic Information System). 

The model modules were designed to model an approximation of local diffusion, long distance dispersal, 

growth and chance population mortality based on the underlying suitability of a region for the 

establishment of a viable population (Pitt, 2008). 

 

Box 3.9: Invasive species in the South African context 

 

Of the approximately 8,750 alien species introduced into South Africa, 161 are seriously invasive, while 

others have the potential to become invasive in the future (Van Wilgen et al., 2001). In the arid- and 

semi-arid savannah and grassland biomes of Southern Africa, invasive species occur in areas that are 

degraded, mostly in rangelands that have been disturbed by overgrazing or mismanagement, negatively 

impacting the grazing capacity of the area. This thickening of indigenous woody species (also called bush 

encroachment) is caused by species such as Senegalia mellifera (black thorn), Terminalia sericea 

(terpentine bush), Vachellia tortilis (umbrella thorn), and Dichrostachys cinerea (sickle bush). High-

density woody alien species, such as members of the Prosopis species (mesquite), compete for moisture 

with local species, especially in the lower-lying riverine areas and valleys. Prosopis invasions in the 

Northern Cape Province of South Africa result in an estimated water loss of 8.94 million m3 every year.  

 



Chapter 3 

 
 

Page 134 
 

 

3.5 Lessons learned and the way forward 
There are a myriad of models used to make projections of indirect and direct drivers. This diversity 

reflects the necessity that ‘every problem requires its own model’ and that one model or model 

approach alone is unlikely to sufficiently characterise possible futures of drivers and driver processes.  

Scenarios and models of drivers often need to be specifically tailored to the needs of different policy or 
decision contexts. Existing approaches can be useful for the data they contain, but rarely deliver 
meaningful results or even insights if applied without proper adaptation to a particular decision context. 
There is no single scenario development or modelling tool that serves the needs of the full range of 
application domains. Even integrated assessment and general equilibrium models, in and of themselves, 
typically fall short of capturing the necessary details required by biodiversity and ecosystem services 
applications. 

However, although integrated assessment models or general equilibrium models will rarely be the 

recommended model of choice for a specific biodiversity and ecosystem services study, they may still be 

indispensable for providing boundary conditions. Linking the macro-model context to specific 

biodiversity and ecosystem services models will ensure globally consistent local results and sector-

specific consistency in a wider socio-economic context. 

 

Given that the science of developing driver scenarios is still maturing, the way forward will require an 

increased focus on refining strategies to improve the characterisation of uncertainties, including notions 

of ignorance, through improved creativity in building scenario storylines to better characterise the 

possibility spaces of driver sets and their evolution over time. Uncertainty can be elucidated by 

identifying and eliminating bias, and by increasing precision through making models more data-driven 

where robust data are available. Model bias is mainly related to spatial, sectoral and temporal 

inconsistencies. Strategies for addressing these (and discussed further in Chapter 6) include:  

 Clusters of spatially linked models need to be developed to guarantee the relevance and 

consistency of scenarios of biodiversity and ecosystem services change from the global to the local 

level. The two-way spatial coupling of models in combination with hierarchically nested scenario 

storyline building will ensure that local case studies are consistent with global assumptions and, at 

the same time, that the upscaling of local knowledge can enrich storylines on larger spatial 

aggregates (Verburg et al., 2015). 

 Interactions of biodiversity and ecosystem services with the wider socio-economic system will need 

to be modelled through appropriate response functions or through direct or indirect model linkage 

with high-resolution driver information needed for a specific biodiversity and ecosystem services 

study and more aggregated models covering the rest of the socio-economic system. 

 In many cases, environmentally-defined spatial scales and units of analysis would be more relevant 

for biodiversity driver scenarios than other scales and units (e.g. administrative, municipal, 

provincial or country). Laura,  (2009) assesses the challenges of conserving biodiversity across the 

US-Mexican border, finding that many problems are often exacerbated by socio-economic and 

cultural differences. This study shows how access to relevant information on biodiversity drivers is 

particularly affected when ecosystems are artificially divided by different administrative regimes. In 

these cases, information-sharing tends to be slow, policymaking processes can be delayed, and key 

options for protecting shared resources tend to be overlooked.  

 The issue of temporal inconsistencies has a long-standing history in natural resource management, 

since the introduction of discounting in forest management by Faustmann,  (1849), and is a strong 

driver of human-impacted ecosystem change and driver management. Harmonising long-term 
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strategies with short-term actions remains a challenge. Forecasting tools for short-term market 

variables will need to be connected to projection tools carrying out long-run analyses of market and 

environmental resource variables.  

 

Improvements in the precision of existing tools will necessitate the assimilation of large amounts of 

Earth observation data, market information and observations describing dimensions of human 

behaviour and human capital, including knowledge of biodiversity and ecosystem services management 

(see Chapter 8). Data-driven approaches to precision improvements will need to be applied to identify 

parameters of scenario models. 

 

Scenario storyline formulation for indirect and direct drivers has a long tradition in foresight studies, 

economic analysis and demographics, and more generally in integrated assessment and impact 

assessment. Most scenario assessments are of a deterministic nature and typically ask the question 

what the best policy options would be given a single driver reference scenario. While some biodiversity 

and ecosystem services studies can be ‘pegged’ to existing driver scenarios or scenario families, in many 

circumstances new scenarios of indirect and direct drivers departing from existing global environmental 

assessment scenarios such as IPCC SSPs/RCPs and MA will need to be constructed to find a better fit 

with biodiversity and ecosystem services-specific contexts. In this case, existing scenarios will serve as 

reference points and benchmarks for specific biodiversity and ecosystem services driver scenarios. Due 

to the long-lasting nature and irreversibility of many biodiversity and ecosystem services-related 

decisions, the current practice of operating with only one reference driver scenario needs to be 

augmented by developing multiple reference scenarios entering decision making under uncertainty 

tools, which will ensure that biodiversity and ecosystem services management strategies are robust 

under a wide range of possible driver scenarios, or at least allow for the transparent assessment of 

relative risks. 
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