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Extreme robustness of scaling in sample space reducing processes
explains Zipf’s law in diffusion on directed networks
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Abstract
It has been shown recently that a specific class of path-dependent stochastic processes, which reduce
their sample space as they unfold, lead to exact scaling laws in frequency and rank distributions. Such
sample space reducing processes offer an alternative newmechanism to understand the emergence of
scaling in countless processes. The corresponding power law exponents were shown to be related to
noise levels in the process. Herewe show that the emergence of scaling is not limited to the simplest
SSRPs, but holds for a huge domain of stochastic processes that are characterised by non-uniform
prior distributions.We demonstratemathematically that in the absence of noise the scaling exponents
converge to−1 (Zipf’s law) for almost all prior distributions. As a consequence it becomes possible to
fully understand targeted diffusion onweighted directed networks and its associated scaling laws in
node visit distributions. The presence of cycles can be properly interpreted as playing the same role as
noise in SSRPs and, accordingly, determine the scaling exponents. The result that Zipf’s law emerges
as a generic feature of diffusion on networks, regardless of its details, and that the exponent of visiting
times is related to the amount of cycles in a network could be relevant for a series of applications in
traffic-, transport- and supply chainmanagement.

1. Introduction

Many stochastic processes, natural orman-made, are explicitly path-dependent. Famous examples include
biological evolution [1–3] or technological innovation [4, 5]. Formally, path-dependencemeans that the
probabilities to reach certain states of the system (or the transition rates fromone state to another) at a given time
depend on the history of the process up to this time. This statistical time-dependence can induce dramatic
deformations of phase-space, in the sense that certain regionswill hardly be revisited again, while others will be
visitedmuchmore frequently. Thismakes a large number of path-dependent complex systems, and processes
that are associatedwith them, non-ergodic. They are typicallymathematically intractable with a few famous
exceptions, including the Pitman–Yor or ‘Chinese Restaurant’ process [6, 7], recurrent random sequences
proposed byUlam andKac [8–10], Pólya urns [7, 11, 12], and the recently introduced sample space reducing
processes (SSRPs) [13].

SSRPs are processes that reduce their sample space as they progress over time. In their simplest form they can
be depicted by the following process. Imagine a staircase like the one shown infigure 1(a). Each state i of the
system corresponds to one particular stair. A ball is initially (t= 0) placed at the topmost stairN, and can jump
randomly to any of the -N 1 lower stairs in the next timestepwith a probability ( )-N1 1 . Assume that at
time t=1 the ball landed at stair i. Since it can only jump to stairs ¢i that are below i, the probability to jump to
stair ¢ <i i is ( )-i1 1 . The process continues until eventually stair 1 is reached; it then halts.

Remarkably, the statistics over a large number of repetitions of SSRPs yields an exact Zipf’s law in the rank-
frequency distribution of the visits of states [13], a fact that links path-dependence with scaling phenomena in an
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intuitive way. SSRPs add an alternative and independent route to understand the origin of scaling (Zipf’s law in
particular) to thewell known classical ways [14, 15], criticality [16], self-organised criticality [17, 18],
multiplicative processes with constraints [19–21], and preferential attachmentmodels [22, 23]. Beyond their
transparentmathematical tractability, SSRPs seem to have awide applicability, including diffusion on complete
directed acyclical graphs [13], quantitative linguistics [24], record statistics [25, 26], and fragmentation
processes [27].

SSRPs can be seen as very specific non-standard sampling processes, with a directional bias or a symmetry
breakingmechanism. In the same pictorial view as above a standard sampling processes can be depicted as a ball
bouncing randomly to the left and to the right (without a directional bias as in the SSRP) over a set of states, see
figure 1(b). The ball samples the states with a uniformprior probability,meaning that all states are sampledwith
equal probability. A situationwith non-uniformpriors is shown infigure 1(c)where the different widths of
boxes represent the probability to hit a particular state. In a standard sampling process exactly this non-uniform
prior distributionwill be recovered.

So far, SSRPs have been studied for the simplest case only, where the potential outcomes or states are
sampled from anunderlying uniformprior distribution [13]. In this paper we demonstrate that amuchwider
class of SSRPs leads to exact scaling laws. In particular wewill show that SSRPs lead to Zipf’s law irrespective of
the underlying prior distributions. This is schematically shown infigure 1(d), where the prior distribution is
non-uniform, and states are sampledwith a SSRP. The resulting distribution functionwill no longer follow the
prior distribution as infigure 1(c), but produces Zipf’s law.We show in detail how SSRPs depend on their prior
distributions. Zipf’s law turns out to be an attractor distribution that holds for practically any SSRP, irrespective
of the details of the stochastic system at hand, i.e. irrespective of their prior distributions. This extreme
robustness with respect to details of transition rates between states within a systemoffers a simple understanding
of the ubiquity of Zipf’s law. Phenomena that show a high robustness of Zipf’s lawwith respect to changes on the
detailed properties of the systemhave been reported before [25, 26, 28].

As an important examplewe demonstrate thesemathematical facts in the context of diffusion processes on
directed acyclic graphs (DAGs). Here Zipf’s distributions of node visiting frequencies appear generically,
regardless of theweight- or degree distribution of the network.We call diffusion processes onDAG structures
targeted diffusion, since, in this type network, diffusion is targeted towards a set of target or sink nodes, see
figure 1(e). The targeted diffusion results we present here are in linewith recent findings reported in [29].

2. SSRPswith arbitrary priors

We start the formal study of the statistics of SSRPs for the noiseless case which implies—in the staircase picture
—that upward jumps are not allowed (samplingwith a bias).We then study how the statistics of SSRPs behaves
when noise is introduced. In this case the probability of upward jumps is no longer zero.

2.1. Noiseless SSRPs
Think of theN possible states of a given system as stairs with different widths and imagine a ball bouncing
downstairs with random step sizes. The probability of the downward bouncing ball to hit stair i is proportional

Figure 1. (a)Pictorial view of a SSRPwith uniformpriors. A ball bounces downwards onlywith random step sizes. Aftermany
iterations of the process, the visiting probabilities of states i approach∼i−1 (Zipf’s law). (b)Randomprocess where a ball bounces
randomdistances to the left or right over equally sized boxes (uniformpriors). Visiting probabilities p(i) are uniform. (c)Random
process as in (b) butwith non-uniformprior probabilities of states (width of boxes). The visiting probabilities follow the prior
probabilities. (d) SSRPwith non-uniformprior probabilities. Visiting distributions follow the attractor to a Zipf’s distribution. This is
true for awide class of prior probabilities. (e) SSRP realised by a diffusion process on a directed acyclic network towards a target node
(orange). The visiting probability of nodes follows a Zipf’s distribution, independent of the network topology.
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to its width q(i), seefigure 1(d). Given these prior probabilities q(i), the transition probability from stair j to stair i
is

( ∣ ) ( )
( )

( )=
<

-
⎪

⎪

⎧
⎨
⎩

p i j
i jif

0 otherwise,
1

q i

g j 1

with ℓ( ) ( )ℓ- = å <g j q1 j . Prior probabilities are normalised, ( )å =q i 1i .We denote such a SSRP byψ.
One can safely assume the existence of a stationary visiting distribution, p, arising frommany repetitions of
processψ and satisfying the following relation:

( ) ( ∣ ) ( ) ( )

å=
<

p i p i j p j . 2
i j N

Using equation (1), and forming the difference
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and by re-arranging termswefind that
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wherewe use the fact that ( ) ( ) ( )+ + = +g i q i g i1 1 . Note that this is true for all values of i, and in particular
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since ( ) ( )=g q1 1 .We arrive at the final result

( ) ( )
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( )
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( )
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( )
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1 with

1

1
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j N

p(i) is the probability that we observe the ball ball bouncing downwards at stair i. Equation (6) shows that the
path-dependence of the SSRPψ deforms the prior probabilities of the states of a given system,

( ) ( ) ( )
( )

 =q i p i
q i

g i
.We can nowdiscuss various concrete prior distributions. Note that equation (6) is exact and

does not dependent on system size.
Polynomial priors and the ubiquity of Zipf’s law: Given power law priors, ( ) ~ aq i i with a > -1, one can

compute gup to a normalisation constant

( ) ( ) ( )

å a

= =
+

+a
a

a
+

g i j
i

i
1

, 7
j i

1

which, when used in equation (6), asymptotically gives

( ) ( ) ( )~p i
p

i

1
, 8

i.e., Zipf’s law.More generally, this result is true for polynomial priors, ( ) ( )
~ å aq j a ji m i

i , where the degree of
the polynomial ( ) { ( )}a a=m imax is larger than−1, in the limit of large systems. Numerical simulations show
perfect agreement with the theoretical prediction for various values ofα, seefigure 2(a) (circles, triangles, red
squares).

Fast decaying priors:The situation changes drastically for exponents a < -1. For sufficiently fast decaying
priors we have

( ) ( ) ( ) ( ) ( )ò~ ~ =g i q x x g qd 1 1 . 9
i

1

The fast decaymakes the contribution to g from large iʼs negligible. Under these circumstances equation (6) can
be approximated for sufficiently large iʼs, as ( ) ( )~p i q i .We encounter the remarkable situation that for fast
decaying priors the SSRP, even though it is history dependent, follows the prior distribution. In this case the
SSRP resembles a standard sampling process.

Exponential priors: For exponential priors, ( ) ~ bq i e i, with b > 0, wefind according to equation (6) that
( ) =p i N1 , i.e., a uniformdistribution. To see this note that, up to a normalisation constant, g(i) is a geometric

series

( ) å= =
-
-

b b
b

b
=

g i e e
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e 1
.

j

i
j

1

i
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Substituting it into equation (6), one finds the exact relation

( ) ( ) ( )=
-
-
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b

-

-
p i p 1

1 e

1 e
, 10

i

which can be safely approximated, for i 1, by

( ) ( ) ( ) -
b
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⎝

⎞
⎠p i p 1 1

1

e
. 11

Weobserve that this is a constant independent of i. Accordingly, after normalisation, wewill have ( ) ~p i N1 .
Note that exponential priors describe a somewhat pathological situation. Given that a state i is occupied at time t,
the probability to visit state -i 1 is huge compared to all the other remaining states, so that practically all states
will be sampled in a descending sequence:  -  -  - i i i i1 2 3 1, which obviously leads to a
uniform p. Again, numerical simulations showperfect agreement with the prediction, as shown infigure 2(a)
(grey squares). Switching frompolynomial to exponential priors, we switch the attractor from the Zipf’s regime
to the uniformdistribution.

2.2. Noisy SSRPs
Noisy SSRPs aremixtures of a SSRPψ and stochastic transitions between states that are not history-dependent.
Following the previous scheme of the staircase picture, the noisy variant of the SSRP, denoted by yl, starts atN
and jumps to any stair <i N , according to the prior probabilities q(i). At i the process nowhas two options: (i)
with probabilityλ the process continues the SSRP and jumps to any <j i, or, (ii)with probability l-1 jumps
to any point <j N , following a standard process of samplingwithoutmemory. l-1 is the noise strength. The
process stopswhen stair 1 is hit. The transition probabilities for yl read

( ∣ )
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l l
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+ - <

-
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Note that the noise allowsmoves from j to i, even if >i j. Proceeding exactly as beforewe get

( )
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( )l
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+
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1

1
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1
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Figure 2.Probability distributions arising fromnumerical realisations of SSRPs over 104 states without noise (a), andwith a noise level
of l = 0.5, (b). Colours correspond to various prior probabilities: polynomial, ( ) ~ aq i i , with a = -0.5 (blue circles), a = 1 (red
circles) and a = 2 (green circles) in both panels. The exponential case, ( ) ~q i ei (grey squares) is shown in panel (a) only. Dashed
black lines show the theoretical results without noise from equation (6) (a), andwith noise from equation (17) (b). Clearly, Zipf’s law
( ( ) ~ -p i i 1) emerges for the different polynomial prior probabilities, whereas for the exponential prior probability the expected
uniformdistribution is obtained (a). All simulationswere donewith 107 repetitions (a) and 105 repetitions (b).
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where ( )lp i depicts the probability to visit state i in a noisy SSRPwith parameterλ. As a consequence we obtain:
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The product term can be safely approximated by
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wherewe used ( ) ∣~q j g xd d j and ( )+ ~x xlog 1 for small x, assuming that
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1

where ( ) ( )l
l-p q1 1 1 acts as the normalisation constant.λ plays the role of a scaling exponent. For l  1 (no

noise), pλ recovers the standard SSRPψ of equation (1). For l = 0, we recover the case of standard random
sampling, p q. It is worth noting that continuous SSRP display the same scaling behaviour (see appendix A).
The particular case of ( ) =q i N1 that was studied in [13], shows thatλ turns out to be the scaling exponent of
the distribution ( ) ~l

lp i i1 . Note that these are not frequency- but rank distributions. They are related,
however. The range of exponents ( ]l Î 0, 1 in rank, represents the respective range of exponents [ )a Î ¥2, in
frequency, see e.g. [14] and appendix B. For polynomial priors, ( ) ~ aq i i (a > -1), onefinds

( ) ( )( )~l
a l l- -p i i . 171

The excellent agreement of these predictionswith numerical experiments is shown in figure 2(b). Finally, for
exponential priors ( ) ~ bq i e i (b > 0) the visiting probability of for the noisy SSRP yl becomes

( ) ( )~ l b-p i e 1 i, see table 1. Clearly, the presence of noise recovers the prior probabilities in a fuzzyway,
depending on the noise levels. The following table sumarizes the various scenarios for the distribution functions
p(i) for the different prior distributions q(i) and noise levels.

3.Diffusion onweighted acyclic graphs

The above results have immediate and remarkable consequences for the diffusion onDAGs [30] or,more
generally, on networks with target-, sink- or absorbing nodes.We call this process targeted diffusion. In
particular, the results derived above allowus to understand the origin of Zipf’s law of node visiting times for
practically all weightedDAGs, regardless of their degree- andweight distributions.Wefirst demonstrate this fact
with simulation experiments onweightedDAGs and then, in section 3.2we analytically derive the
corresponding equations of targeted diffusion for the large class of sparse randomDAGs, that explain that Zipf’s
lawmust occur in node visiting frequencies. In appendix B proofs are given for the cases of exponential and scale
free networks.

We start with the observation that SSRPswith uniformpriors can be seen as a diffusion processes on a fully
connectedDAG,where nodes correspond one-to-one to the stairs of the above examples. This results in a Zipf’s

Table 1.Distribution functions p(i) of SSRPs for the various prior distribu-
tions q(i). SSRP distributionswith a noise level of ( )l-1 are indicated
by ( )lp i .

Prior (sub-) logarithmic Polynomial Exponential

q(i) ai (a < -1) ai (a > -1) be i

p(i) ai -i 1
N

1

( )lp i noise ai ( )a l l- -i 1 ( )l b-e 1 i
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law of node visiting frequencies [13]. However, such fully connected networks are extremely unlikely to occur in
reality. To createmuchmore realistic structures, we generate arbitrary randomDAGs following e.g. references
[30, 31]. Start with any undirected connected graph ( ) V E, , withV the set of nodes, E the set of edges, andP(k )
the degree distribution, see figure 3(a). Next, label each node in any desiredway that allows an ordering, for
examplewith numbers N1 ,..., , seefigure 3(b). The labelling induces an order that determines the directionality
of links in the graph: if nodes i and j are connected, we draw an arrow from i to j, if >i j, or from j to i, if <i j, as
seen infigure 3(c).We denote the resultingDAGby ( ) V E,D D . The order induced by the labellingmimics the
order (or symmetry breaking) that underlies any SSRPs. By definition, there exists, at least, one target node, ‘1’.

Noise can be introduced to thisDAG construction as follows: if node i and j are connected in  and >i j one
can assign an arrow from i to j (as before)with probabilityλ, or place the arrow in a randomdirectionwith
probability l-1 . This will create cycles that play the role of noise in the targeted diffusion process. This
network is no longer a pureDAG since it contains cycles.

3.1. Targeted diffusion on specific networks
Adiffusion process on D is now carried out by placing randomwalkers on the nodes randomly, and letting
them take steps following the arrows in the network. They diffuse according to theweights in the network until
they hit a target node and are then removed.We record the number of visits to all nodes and sort them according
to the number of visits, obtaining a rank distribution of visits5.We show the results fromnumerical experiments
of 107 randomwalkers on variousDAGs infigure 4. Infigures 4(a) and (b)weplot the rank distribution of visits
to nodes forweighted Erdős–Rényi (ER)DAGnetworks. Aweightwik is randomly assigned to each link Îe Eik

from a givenweight distribution p(w).Weights either follow a Poisson distribution, figure 4(a), or a power-law
distribution, figure 4(b). In both cases Zipf’s law is obtained in the rank distribution of node visits. For the same
networkwe introduce noisewith l = 0.5 and carry out the same diffusion experiment. The observed slope
corresponds nicely with the predicted value ofλ, as shown infigure 4(a) (red squares) for the Poissonweights.

We computed rank distributions of node visits fromdiffusion onmore general network topologies. In
figure 4(c)we show the rank distribution of node visits where the substrate network is the citation network of
high energy physics in the arXiv repository [33, 34], and the order is induced by the degree of nodes. Figure 4(d)
shows the rank distribution of node visits fromdiffusion on an exponential DAG, that is generated by non-
preferential attachment [35], where the order of nodes is again induced according to the degree. Both networks
showZipf’s law in the rank distribution of node visits. This is remarkable since both networks are drastically
different in topological terms.

3.2. Analytical results for targeted diffusion on randomDAGs
For diffusion on randomDAGs it is possible to obtain analytic results that are identical to equation (1), showing
that Zipf’s law is generally present in targeted diffusion.

Wefirst focus on the definition of the prior probabilities in the context of diffusion on undirected networks.
As stated above, q(i) is the probability that state i is visited in a random sampling process, seefigures 1(b) and (c).

Figure 3.Building aDAG. (a) Start with any undirected, connected graph. (b)Place a unique label N1 ,..., on each node of the graph.
(c) draw an arrow from i to j, if >i j , or from j to i, if <i j. The strict ordering induced by the labelling prevents the emergence of
cycles [30, 31]. Such a graphwill have at least, one target or a sink node, in the depicted case this is node i=1. A diffusion process of
this graph, where randomwalkers are randomly placed on the graph and follow the arrows at every timestep, is called targeted diffusion
with target node i=1.

5
Rank ordering is not necessary whatsoever to see the clear agreement with the theoretical predictions. Almost identical results are seen

whenwe order nodes according to their numerical ordering.
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In the network context this corresponds to the probability that node i is visited by a randomwalker. Assume that
we have an undirected randomgraph ( ) V E, and that theNnodes are labelled N1 ,... . The probability that a
randomwalker arrives at node i from a randomly chosen link ofE, the network-prior probability of node i, is
easily identified as

( )
∣ ∣

( )ºq i
k

E2
, 18G

i

where ∣ ∣E is the number of links in the graph; the factor 2 appears because a link contains 2 endpoints. If
{ }s º k k,...,G N1 denotes the undirected degree sequence qG, is a simple rescaling of sG, i.e., ∣ ∣

s=qG E G
1

2
. Using

the same notation as before, the cumulative network-prior probability distribution is ℓ( ) ( )ℓº åg i qG i G .
From equation (18) and by assuming that in sparse graphs the probability of self-loops vanishes, i.e.,

( ) p e 0ii , one can compute the probability that a link eij exists in  , [32]

ℓ
( ) ( ) ( )

( )
∣ ∣ ( ) ( ) ( )

ℓå
Î = =p e E

k i k j

k
E q i q j2 , 19ij

N
G G

where the second step is possible since ℓ( ) ∣ ∣ℓå =k E2N .With this result, the out-degree of node labelled i in
the graph D can be approximated by

Figure 4.Node visiting rank distributions fromdiffusion onweightedDAGs, built over Erdős–Rényi graphs (seeDAG construction)
with =p 1 2, andN=100 nodes (a) and (b). Theweight distributionwik follows (a) a Poisson distributionwith average m = 6, and
(b) a power-law ( ) µ -p w w 1.5 that is shown in the inset. In both cases the predicted Zipf’s law is present (black dashed line), even
though the networks are small. In (a) theDAG condition is violated (red squares) by assigning randomdirections to a fraction of

l-1 links. This allows for the presence of cycles, which play the role of noise in a SSRP. A power lawwith the exponentλ is observed
in the corresponding rank distribution, perfectly in linewith the theoretical predictions (dashed black lines). (c)A targeted diffusion
experiment on aDAG that is based on the citation network ofHEP arXiv repository, containing 104 nodes belonging to the 104most
cited papers. (d)The results of the same experiment on an exponential network of the same size is given. The inset shows the respective
degree distributions. Despite the huge topological difference between these two graphs, the rank distribution of visits to nodes is
clearly of Zipf’s type for almost four decades in both cases.

7

New J. Phys. 18 (2016) 093010 BCorominas-Murtra et al



( )

∣ ∣ ( ) ( )

∣ ∣ ( ) ( )

∣ ∣ ( ) ( ) ( )

å

å

å

= Î

=

=

= -

<

<

<

k p e E

E q i q j

E q i q j

E q i g i

2

2

2 1 . 20

i
j i

ij

j i
G G

G
j i

G

G G

out

Note that to compute ki
out we only need take into account the (undirected) linkswhich connect i to nodes with a

lower label <j i, according to the labelling used for theDAG construction outlined above.
We can now compute the probability that a randomwalker jumps fromnode i to node j on theDAG D,

( ∣ ) ( ∣ ) ( ) ( )=
Î Î >⎧⎨⎩p j i

p j i e E p e E i j, if

0 otherwise.
21G

ij ij

This is the network analogue of equation (1). Here ( ∣ )Îp j i e E, ij is the probability that the randomwalker
jumps from i to j given that >i j and the link eij exists in  . Clearly, this probability is

( ∣ )

( ∣ ∣ ( ) ( )) ( )

Î =

= - -

p j i e E
k

E q i g i

,
1

2 1 , 22

ij
i

G G

out

1

Using equations (19) and (22) in (21)we get

( ∣ ) ( )
( )

( )=
>

-
⎪
⎪

⎧
⎨
⎩

p j i
i j; if

0 otherwise,
23G

q j

g i 1
G

G

which has the same form as equation (1). Note that this expression only depends on qG, i.e. the degrees of nodes
in the undirected (!) graph  . The solution of equation (23) is obtained in exactly the sameway as before for
equation (1), and the node visiting probability of targeted diffusion on randomDAGs is

( )
( )
( )

( )µp i
q i

g i
, 24G

G

which is the network analog of equation (6).
Wefinally show the results for aDAG that is based on an ER graph. For an ER graph, by definition, the

probability for a link to exist is a constant ( ]Îr 0, 1 , and ( )Î =p e E rij . Againwe label all nodes by N1 ,..., and

build aDAG ER
D as described above. It is not difficult to see that the out-degree of node i is ( ) ( )= -k i i r1out ,

and, using this directly in equation (21), we get

( ∣ ) ( )=
>

-
⎪

⎪

⎧
⎨
⎩

p j i
i jif

0 otherwise,
25G

i

1

1

which is the standard equation for a SSRPwith uniformprior probabilities q, [13]. Thismeans that for the ER
graph qG(i) is a constant and ( ) ~g i iG . Using this in equation (24), wefind that the node visiting probability is
exactly Zipf’s law, with respect to the ordering used to build theDAG

( ) ( )µ -p i i . 261

Note that this result is independent of r and, therefore, of the average degree of the graph.

4.Discussion

Wehave shown that if a system,whose states are characterised by prior probabilities q, is sampled through a
SSRP, the corresponding sampling space gets deformed, in away that Zipf’s law emerges as a dominant attractor.
This is true for a huge class of reasonable prior probabilities, andmight be the fundamental origin of the
ubiquitous presence of Zipf’s law in nature. On the theoretical sidewe provide a direct link between non-
ergodicity as it typically occurs in path-dependent processes and power laws in corresponding statistics.
Formally, SSRPs define amicroscopic dynamics that results in a deformation of the phase space. It has been
pointed out that the emergence of non-extensive propertiesmay be related to generic deformations of the phase
space [36–38]. Consequently, SSRPs offer a entirely new playground to connectmicroscopic andmacroscopic
dynamics in non-equilibrium systems. Our results could help to understand the astonishing resilience of some
scaling patterns which are associatedwith Zipf’s law, such as the recent universality in body-mass scaling found
in ecosystems [39].
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Wediscussed one fascinating direct application of this process: the origin of scaling laws in node visit
frequencies in targeted diffusion on networks.We demonstrated both theoretically and by simulations that the
immense robustness of these scaling laws in targeted diffusion—andZipf’s law in particular—arises generically,
regardless of its topological details, or weight distributions. The corresponding exponents are related to the
amount of cycles in a network. This finding should be relevant for a series of applications of targeted diffusion on
networkswhere a target has to be found and reached, such as in traffic-, transport- or supply chainmanagement.
We conjecture that thesefindings and variations will apply for search processes in general.
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AppendixA. Continuous SSRPs

Consider the interval ( ]W = N0, . The prior probability density q is defined from a differentiable function
W  +f : as

( )
( ) [ ]
( )

( )=
Î⎧⎨⎩q x

f x x N

f

if 1,

1 otherwise.
A.1

Since this represents a probability density

( )ò =q x xd 1.
N

0

The region ( )0, 1 where ( ) ( )=q x f 1 acts as a trapping region offinitemeasure. Aswe shall see, the particular
choice of the length of such trapping region has no consequences for the global statistical patters, as long as it is
finite.Wewill refer to this trapping region as W1. In addition, for any ⧹Î W Wx 1wedefine the interval

( )W = x0,x , which is the sampling space frompoint x. These sampling spaces are now continuous but still can
be ordered by inclusion,meaning that if Î Wx y, and >x y , then W Ì Wy x.

A.1. Noiseless continuous SSRPs
With the example of the staircase inmind, we can describe a SSRPψ over a continuous sampling space, see figure
A1 .We start in the extreme of the interval, x=N, andwe choose any point ofΩ following the probability
density q. Supposewe land in <x N . Then, at time t=1we choose at random somepoint ¢ Î Wx x following a
probability density proportional to q.We run the process until a point Î Wz 1 is reached. Then the process stops.
The SSRPψ can be described by the transition probabilities between the elements of Î Wx y, such that >y 1as
follows

( ∣ ) ( ) ( ) ( )=
<⎧⎨⎩p x y

q x g y x yiff

0 otherwise,
A.2

where g(y) is the cumulative density distribution evaluated at point y,

( ) ( ) ( ) ( ) ( )ò ò= = +
W

g y q x x q x x fd d 1 . A.3
y

1y

Weare interested in the probability density pwhich governs the frequency of visits alongΩ after the
sampling processψ. To this end, we start with the following self-consistent relation for p,

( ) ( ∣ ) ( ) ( )ò=p x p x y p y yd . A.4
x

N

Recall that the integration limits òx

N
represent the fact that a particular state x can only be reached froma state

>y x . By differentiating this integral equationwe obtain:

( ∣ ) ( ) ( )ò=
⎛
⎝⎜

⎞
⎠⎟

p

x x
p x y p y y

d

d

d

d
d . A.5

x

N

In agreement to equation (A.2), ( ∣ ) ( ) ( )=p x y q x g y if >y 1and >y x . Equation (A.5) can be expanded
using the Leibniz rule:
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( ) ( ∣ ) ( ) ( )
( )

( )

( )
( ) ( )

( )
( ) ( )

( )
( )

( )
( ) ( ) ( )

( )
( ) ( )

ò

ò

= -

= -

= -

p x

x

p x y

x
p y y

q x

g x
p x

q x

q x

x

q x

g y
p y y

q x

g x
p x

q x

q x

x
p x

q x

g x
p x

d

d

d

d
d

1 d

d
d

1 d

d
. A.6

x

N

x

N

This leads to a differential equation governing the dynamics of SSRPs under arbitrary prior probabilities q,

( )
( )

( ) ( )
( )

( ) ( )= -
⎛
⎝⎜

⎞
⎠⎟

p x

x q x

dq x

x

q x

g x
p x

d

d

1

d
. A.7

The above equation can be easily integrated in the interval ( ]N1, . Observing that equation (A.7) can be rewritten
as

( )
( )

( )
( )

( )=
⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

p x

p x x

q x

g x
x

d d

d
log d . A.8

Onefinds:

( ) ( )
( )

( )k= +
⎛
⎝⎜

⎞
⎠⎟p x

q x

g x
log log , A.9

κ being an integration constant to be determined by normalisation. The above equation has as a general solution
for points ( ]Îx N1,

( ) ( )
( )

( )=p x
Z

q x

g x

1
, A.10

whereZ is the normalisation constant

( )
( )

( )ò=Z
q y

g y
yd . A.11

N

0

This demonstrates how the prior probabilities q are deformedwhen sampled through the SSRPψ in the region
( ]Îx N1, . This is the analogous to equation (6) of themain text.

A.2. Continuous SSRPswith noise
Suppose the interval ( ]W = N0, and let us define a probability density q onΩ as in equation (A.1). The noisy
SSRP yl starts at x=N and jumps to any point in ¢ Î Wx , according to the prior probabilities q. From ¢x the
systemhas two options: (i)with probabilityλ the process jumps to any  Î W ¢x x , i.e., yl continues the SSRPwe
described above or, (ii)with probability l-1 , yl jumps to any point  Î Wx , following a standard sampling
process. The process stopswhen it jumps to amember of the sink set, namely to a x 1. The transition
probabilities now read ( )" >y 1 ,

Figure A1.Continuous SSRPs: a ball bouncing to the left on a continuous interval [ ]W = N0, . At each time step it lands at a given
point ofΩ according to a prior probability density ( )q x xd . The process stopswhen the ball falls into a region offinitemeasure,
represented here as the interval [ ]0, 1 .
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( ∣ )
( ) ( ) ( ) ( )

( ) ( )
( )

l l
l

=
+ - <

-

⎧⎨⎩p x y
q x g y q x x y

q x

1 iff

1 otherwise,
A.12

Note that the noise enables the process tomove from y to x, in spite >x y . Aswe did in equation (A.4), we can
find a consistency relation for the probability density pλ of visiting a given point ofΩ along a noisy SSRP

( ) ( ∣ ) ( ) ( ) ( ) ( )òl l= + -lp x p x y p y y q xd 1 . A.13
x

N

If we take the derivative

( )
( ∣ ) ( ) ( ) ( )

( ) ( )
( )

( )
( )

( ) ( ) ( )

( )
( )
( )

( ) ( )
( )

( ) ( ) ( )

( )
( ) ( ( ) ( ) ( )) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
( )

ò

ò

ò

l l

l l l

l
l l

l l l

l

= + -

= - + -

= - + -

= - - - + -

= -

l
l

l
l

l l

l l

l l

⎛
⎝⎜

⎞
⎠⎟

p x

x x
p x y p y y

q x

x

q x

x

p y

g y
y

q x

g x
p x

q x

x

q x

q

x

q x

g y
p y y

q x

g x
p x

q x

x

q x

q x

x
p x q x

q x

g x
p x

q x

x

q x

q x

x
p x

q x

g x
p x

d

d

d

d
d 1

d

d

d

d
d 1

d

d

d

d
d 1

d

d

1 d

d
1 1

d

d

1 d

d
,

x

N

x

N

x

N

where the fourth step is performed taking the definition of ( )lp x given in equation (A.13).We therefore have the
following differential equation for ( )lp x ,

( )
( )

( ) ( )
( )

( ) ( )l= -l
l

⎛
⎝⎜

⎞
⎠⎟

p x

x q x

q x

x

q x

g x
p x

d

d

1 d

d
, A.14

which can be rewritten as

( )
( )

( )
( )

=l

l
l

⎛
⎝⎜

⎞
⎠⎟

p x

p x x

q x

g x
x

d d

d
log d .

Integrating it overall ( ]Îx N1, , we obtain

( ) ( )
( )

( )=l
l

l
p x

Z

q x

g x

1
, A.15

which again demonstrates how the noisy SSRPdeforms the underlying prior probabilities q,Zλ being the
normalisation constant. Interestingly, if l < 1, i.e., if we consider a noisy SSRP,λ has the role of a scaling
exponent.We observe that we recover the standard SSRPψ described above in equation (A.2) if l  1 (no
noise) and the Bernouilli process following the prior probabilities q if we have total noise, as expected. The
results for the continuous SSRPs are similar to the discrete case; compare equation (A.15) and equation (16).

Appendix B. Targeted diffusion onnetworkswith different topologies

In the followingwefind themapping between the degree distribution P(k ) and the undirected ordered degree
sequence.Oncewe know the degree sequence, we can compute the network prior probabilities qG thanks to
equation (18). Then, we apply directly equation (24), which gives us the general formof statistics of node visits
for targeted diffusion.

Without any loss of generality we assume that there is a labelling of the nodes of the graph  , such that the
undirected degree sequence sG, given by

{ } ( )s º k k,..., , B.1G N1

is ordered,meaning that

( )  k k k... . B.2N1 2

In the followingwewill assume that the degree distribution P(k ) is known and that wewant to infer the
formal shape of sG, if any. In general, a formalmapping fromP(k ) to sG is hard or even impossible tofind.
However, it can be approximated. Let us assume that there exists a function ( ) =f i ki that gives the degree of the
i-th node of the ordered degree sequence of the undirected graph  . Suppose, for the sake of notational
simplicity, that =k ki . Clearly, ( ) =-f k i1 . From this we infer that there are approximately -i 1nodeswhose
degree is higher than k. The probability offinding a randomly chosen nodewhose degree is higher than k, ( )<P k ,
is ( ) ( )= å ¢< ¢>P k P kk k . The number of nodes with degree larger than kwill thus be approached by ( )<NP k .
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Under the assumption that the number of nodes is large one can argue that

( ) ( ) ( )ò~ ¢ ¢-
¥

f k N P k kd . B.3
k

1

The identification of f from the knowledge ofP(k )provides the functional shape of the ordered degree sequence
and, consequently, the network-prior probability distribution.

Exponential networks:Exponential networks have a degree distribution given by

( ) ( ) ( )cµ -P k kexp , B.4

with c > 0. The direct application of equation (B.3) reads

( ) ( ) ( )c~ --f k N kexp , B.51

leading to

( ) ( )c~ - ⎜ ⎟⎛
⎝

⎞
⎠f i

N

i
log . B.61

Sincewe assumed that ( )=k f ii , and knowing, from equation (18), that ( ) ∣ ∣=q i k E2i , the network-prior
probabilities for exponential networks, qexp, are given by

( ) ( )
c

µ ⎜ ⎟⎛
⎝

⎞
⎠q i

N

i

1
log . B.7exp

For large graphswe can approximate gG(i) by

ℓ( ) ( )

( ) ( )

ℓ




òå= ~

~ + +

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

g i q
N

x
x

i
N

i
N

log d

log 1 log , B.8

G
i

i

exp
1

and equation (24) asymptotically becomes

( )
( )( ) ( )µ

+
p i

i i

log

log 1

1
. B.9

N

i

N

i

Targeted diffusion on exponential DAGnetworks therefore leads to Zipf’s law in node visiting frequencies.
Scale-free networks: Scale-free networks have a degree distribution ( ) ~ a-P k k . For a > 2, which is the

most common case, one has

( ) ( )~ a- -f k Nk , B.101 1

which implies

( ) ( )~ b-f i i , B.11

with ( )b a- = - -1 1. Therefore, the network-prior probabilities for scale-free networks, qSF, are given by

( ) ( )µ b-q i i . B.12SF

As a consequence the cumulative network-prior distribution, gSG, is (approximating the sumwith an integral)

( ) ( )~ b- +g i i . B.13SF
1

Using equation (24), this leads to

( ) ( )~ 
b

b

-

- +
p i

i

i i

1
. B.14

1

Again Zipf’s law appears in the node visiting probabilities.
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