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FOREWORD 

The public provision of urban facilities and services often 
takes the form of a few central supply points serving a large 
number of spatially dispersed demand points: for example, 
hospitals, schools, libraries, and emergency services such as 
fire and police. A fundamental characteristic of such systems 
is the spatial separation between suppliers and consumers. No 
market signals exist to identify efficient and inefficient geo- 
graphical arrangements, thus the location problem is one that 
arises in both East and West, in planned and in market economies. 

This problem is being studied at IIASA by the Public Facil- 
ity Location Task (formerly the Normative Location Modeling Task) 
which started in 1979. The expected results of this Task are a 
comprehensive state-of-the-art survey of current theories and 
applications, an established network of international contacts 
among scholars and institutions in different countries, a frame- 
work for comparison, unification, and generalization of existing 
approaches, as well as the formulation of new problems and 
approaches in the field of optimal location theory. 

This paper is a revised and extended version of several 
technical notes on public facility location written since 
October 1979.  The two principal parts of the paper by Giorgio 
Leonardi, leader of the Public Facility Location Task, are 
relatively selfcontained. The first is a nontechnical descrip- 
tion of the proposed general framework for analyzing location 
problems, the second describes mathematical models for static, 
single-service, facility location problems and their possible 
extensions and improvements. 

A list of publications in the Public Facility Location 
Series appears at the end of this paper. 

Andrei Rogers 
Chairman 
Human Settlements 

-iii- and Services Area 



ABSTRACT 

T h i s  paper ,  a condensed r e p o r t  o f  t h e  p r e s e n t  s t a t e  of  t h e  
work i n  t h e  P u b l i c  F a c i l i t y  Loca t i on  Task ( fo rmer ly  t h e  Normative 
Loca t i on  Modeling Task) a t  IIASA, ha s  t h r e e  main aims.  The f i r s t  
i s  t o  b u i l d  a g e n e r a l  framework f o r  l o c a t i o n  problems.  The second 
i s  t o  u s e  t h i s  framework t o  u n i f y  e x i s t i n g  l o c a t i o n  models. The 
t h i r d  i s  to  use  t h e  framework t o  deve lop  new, m o r e  g e n e r a l ,  and 
more meaningful  l o c a t i o n  models.  F i n a l l y ,  s u g g e s t i o n s  a r e  g iven  
on  how t o  i n t r o d u c e  m u l t i p l e  s e r v i c e s  and m u l t i p l e  t i m e  p e r i o d s  
i n  l o c a t i o n  problems. T h e m u l t i a c t i v i t y  dynamic l o c a t i o n  models 
t h a t  t h i s  p e r s p e c t i v e  g e n e r a t e s  i s  t h e  s u b j e c t  o f  f u t u r e  r e s e a r c h  
i n  t h e  P u b l i c  F a c i l i t y  Loca t ion  Task. 
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A UNIFYING FRAMEWORK FOR PUBLIC 
FACILITY LOCATION PROBLEMS 

1. INTRODUCTION 

The Public Facility Location (PFL) Task, formerly called the 

Normative Location Modeling Task, was undertaken in a rather 

exploratory way in October 1979, within the Human Settlements 

and Services Area at IIASA. In spite of the esoteric-sounding 

terminology, the PFL problem is one that is experienced daily 

and can be rephrased as: How can the location of public services 

and facilities be planned in an optimal way? A first step is to 

put aside the problem of the precise definition of such terms as 

"planning", "location", "public", "service", and "optimal", and 

focus our attention instead on operational tools, a topic already 

containing a vast amount of literature. 

To begin a study of location modeling the following general 

goals are useful. 

A comprehensive review of the existing theoretical and 

applied literature on optimal location should be made. 

After this has been done a state-of-the-art review of 

all work on optimal location modeling should be assembled. 

Simultaneously an international communication network 

among scientists working on location problems should be 

built. 



Although the above goals have actually been implemented and have 

been found useful, as the work progresses, more precise defini- 

tions are soon required. 

By far the main unsolved problem in this field of study 
is the lack of interdisciplinary work. Although this 

statement sounds just as general as the three main goals, 

it is not. A glance at the literature on location 

problems is enough to realize that most approaches and 

results are as diverse and scattered as the different 

trainings and backgrounds of their authors. It is for 

this reason that international cooperation among scholars 

studying location problems is important. 

In order to estabfish an efficient interdisciplinary 

study,general unifying frameworks are required for 

location problems. This seems to be the most promising 

way to approach the state-of-the-art review on the sub- 

ject, and the most likely way for IIASA to make an 

original theoretical contribution. 

If optimal location problems are not to be doomed to the 

realm of mathematical skill games, they must be related 

to the more general and realistic problem of planning 

optimal locational structures for interacting urban 

activity systems. This is likely to be the most promis- 

ing applied IIASA contribution. 

With these goals in mind, work has begun at IIASA and some 

results have been achieved. The purpose of this paper is to 

present this work, first by stating the limitations and short- 

comings of the present state of the research and then by point- 

ing to the main achievements and suggested approaches for further 

research. 

There are four main shortcomings to this research. First, 

a general theory has yet to be developed, although some unifying 

issues have been exploited. However, it must be said that the 

path towards unification is not really difficult; it simply 

requires some time and effort. This path proves itself to be a 

fruitful one. 



Second, some important approaches to the study of location 

modeling are lacking, due to limitations in time and knowledge. 

Among them, mention should be made of the multiobjective approach, 

the voting decision procedures, and the use of pricing policies 

(parallel tolor alternative to, physical stocks planning). 

Third, deep analysis of the relevant welfare theory behind 

the optimization models has not been carried out. This seems 

indeed to be one of the most promising issues for future research, 

both on a microeconomic and on a macroeconomic scale. 

Fourth, some algorithmic problems are still waiting for a 

rigorous solution, although heuristic tools that give good 

solutions are available. This is another strand of future 

research, and a challenge for applied mathematicians. 

The main achievements and suggested approaches for future 

research can be categorized into three groups beginning with the 

physical interpretation of results, solutions, and main proper- 

ties. This approach has always been kept in mind, and easily 

understandable rules-of-thumb have been sought and suggested 

when possible. The general direction implied here is that 

a qualitative understanding of the problem structure is some- 

times more useful than being able to generate numerical solutions. 

Although this issue is listed among the achievements, it must be 

said that just the top of the iceberg has been scratched, and a 

considerable amount of work is needed along this path. 

The second main asset of this study is that all the newly 

proposed models have been built ori existing ones, always included 

as special cases. This is a suggested standard for future 

research; nothing has to be thrown away, everything can be used 

as a start for generalization. This is not just a theoretical 

issue, as it may appear to be at first sight. Including existing 

problems as special cases usually implies being able to general- 

ize special problems, as well as solution techniques. 

The last main contribution of this work is the more realistic 

assumptions that have been introduced for users' behavior. This 

approach also is just in the beginning sta%e, and the problem 

behind it is worth further theoretical and empirical research. 



2. GENERAL ISSUES 

2.1 The Facility Location System 

Broadly speaking, the general aim of a location pattern, for 

a given set of public facilities, is twofold: 

1.  To be as near as possible to the demand, in order to 

reduce transport costs 

2. To keep the cost of establishing the facilities as low as 

possible, both by choosing low-cost locations and by 

reducing the number of facilities to be established 

Since these two goals are usually in conflict, some trade-off 

has to be found between them. The need for such a trade-off is 

the reason why nontrivial location problems exist. 

In order to build a general framework, it is useful to split 

the location problem into two subproblems. 

The first is the problem of aZZocation, where the trans- 

portation pattern between the demand locations and the 

service facilities is decided. The allocation problem 

is thus mainly concerned with the first goal of reducing 

transport costs. 

The second is the problem of facility Zocation, where 

the locations of the facilities are chosen. The loca- 

tion problem is thus mainly concerned with the second 

goal of lowecost location. 

Of course, the allocation and location subproblems are 

related and cannot be solved separately. However, this does not 

mean that they are both controlled by the same decision maker, 

nor that the possible two decision makers agree. In the most 

general case, the way the two subproblems interact is shown in 

Figure 1. 

Two formal operators have been introduced: the Zocator and 

the aZZocator. They are defined below: 

1. Locator's decision - the locator operates as follows: 
-- compares the current location and size of existing 

facilities with the demand allocated to them 
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-- evaluates the costs and benefits associated 
with the current state of the system and with 

its possible changes 

-- generates a new pattern of sizes and location 
of facilities, both by establishing new facil- 

ities and by demolishing old ones (Of course, 

building and demolition costs are taken into 

account at this stage.) 
-- 

2. Allocator 's dkcision - the allocator operates as foilows: 
-- compares the potential demand from each demand 

location, the existing size and location of 

facilities, and the transport costs (not neces- 

sarily measured in terms of money) between the 

demand and the facility location 

-- generates a pattern of trips between the demand 
and facility locations, taking into account both 

transport costs and available capacity 

In order to have a better understanding of how the allocator 

works, it is useful to make a further division into two subsystems. 

The first of these is the accessibility-sensitive d e m a n d  mechan- 

ism. In many services the total actual demand cannot be estimated 

beforehand; rather, it depends on the location, size, and prox- 

imity of the facilities. Usually, the demand will increase' with 

the accessibility of the service and is, therefore, acessibility- 

sensitive. The accessibility-sensitive demand mechanism receives 

as inputs the potential demand (i.e., the maximum demand which 

can be generated) and the evaluation of the accessibility to the 

service for each demand location. It then generates the actual 

demand from each demand location, as a fraction of the potential 

demand, according to some accessibility non-decreasing function. 

The second subsystem necessary in the allocator's decision 

is the congestion-sensitive demand mechanism. Just as demand 

can be generated by high accessibility to the service, it can 

also be discouraged by overcrowded facilities. An example where 

both mechamisms operate is leisure and recreational facilities. 

Usually, the higher the availability and nearness of swimming 



pools, the higher will be the number of people using them. On 

the other hand, if a swimming pool is overcrowded, people will 

tend to look for another one, or maybe go back home. Therefore, 

the congestion-sensitive demand mechanism receives as inputs the 

actual demand from each location, the location and size of 

facilities in each location, and the transport costs between 

demand and facility locations. It then generates the evalua- 

tion of accessibility from each demand location (accounting for 

both nearness and congestion) and the travel pattern between 

demand and facility locations. 

The interaction between the two allocator subsystems is 

perhaps better understood if rephrased in dynamic terms. Start- 

ing with some a p r i o r i  estimate of accessibility, the 

accessibility-sensitive demand mechanism generates a demand. 

This demand is fed into the congestion-sensitive demand mechan- 

ism, which then allocates it to facilities, evaluates the result- 

ing congestion in each facility, accounts for this in evaluating 

a new estimate of accessibility, and sends this information as 

a feedback to the accessibility-sensitive demand mechanism. A 

new actual demand, depending on the new congestion-reduced 

accessibility evaluation, is thus generated, and the same process 

is repeated over and over, until some equilibrium state is 

reached, provided it exists. 

2.2 The Service Mechanism 

2 . 2 . 1  I n t r o d u c t i o n  

The general qualitative framework defined in Section 2.1 is 

wide enough to include most service location problems. However, 

it does not give answers to such questions as: Who are the 

locators and the allocators? How much do they agree or disagree? 

Who (or what) is traveling, where is he (or it) traveling to and 

why? Who is paying for travel costs? Who is paying for 

establishing facilities? 

Most of these questions can be given a definite answer only 

by introducing a definite kind of service. However, some useless 

generality can be eliminated by assuming that all public services 



and f a c i l i t i e s  s h a r e  t h e  f o l l o w i n g  r e a s o n a b l e  f e a t u r e s  and 

p r o p e r t i e s .  

a .  The l o c a t o r  i s  a  p u b l i c  a u t h o r i t y ;  he  b a s i c a l l y  a g r e e s  

w i t h  t h e  u s e r s  and t h e i r  g o a l s  ( t h e  c a s e  of t h e  "bad 

t y r a n t "  w i l l  be n e g l e c t e d ) ,  and sometimes h e  may a l s o  be 

assumed t o  be t h e  u s e r  h i m s e l f .  

b. The l o c a t o r ,  a  p u b l i c  a u t h o r i t y ,  pays  f o r  e s t a b l i s h i n g  

t h e  s e r v i c e  f a c i l i t i e s .  

c .  No l o c a t i o n - d e p e n d e n t  c o s t  i s  charged  t o  u s e r s ,  w i t h  t h e  

o n l y  e x c e p t i o n  of p o s s i b l e  t r a v e l  c o s t s ,  which c a n n o t  be 

e l i m i n a t e d  and are t o  a l a r g e  e x t e n t  market - independent .  

Note t h a t  no s p e c i a l  a s sumpt ion  f o r  t h e  a l l o c a t o r  h a s  been 

i n t r o d u c e d .  T h i s  i s  b e c a u s e  of  t h e  v a r y i n g  b e h a v i o r  o f  t h e  

a l l o c a t o r  which i s  t h e  v e r y  r e a s o n  d i f f e r e n t  s e r v i c e  mechanisms 

can  be found.  The d i s t i n c t i o n  between t h e  p u b l i c  d e c i s i o n  maker 

and t h e  u s e r s  may be s h a r p  o r  weak, a s  shown by t h e  f o l l o w i n g  

ext reme c a s e s .  When t h e  same d e c i s i o n  maker c o n t r o l s  b o t h  t h e  

l o c a t o r  and t h e  a l l o c a t o r ,  t h a t  i s ,  when t h e r e  i s  no d i f f e r e n c e  

between p u b l i c  a u t h o r i t i e s  and u s e r s ,  a l l  c o s t s  ( t r a v e l  and 

e s t a b l i s h i n g  c o s t s )  are  p a i d  by t h e  u s e r s .  An example o f  how 

t h i s  may happen i s  t h e  U S  pr imary  s c h o o l  sys tem,  where u s e r s  pay 

l o c a t i o n - d e p e n d e n t  t a x e s  and a t  t h e  same t i m e  c o n t r o l  t o  some 

e x t e n t  t h e  l o c a t i o n ,  s i z e ,  and a l l o c a t i o n  o f  t h e i r  own s c h o o l  

f a c i l i t i e s .  The U S  c a s e  d o e s  n o t  h o l d  i n  most  European c o u n t r i e s ,  

where t h e  v e r y  o p p o s i t e  c a n  sometimes be found.  I n  I t a l y ,  f o r  

i n s t a n c e ,  overhead  ( l o c a t i o n - i n d e p e n d e n t )  t a x e s  a r e  p a i d  f o r  

pr imary  s c h o o l s ,  b u t  l o c a t i o n  and a l l o c a t i o n  a r e  c e n t r a l l y  p lanned  

by a  p u b l i c  a u t h o r i t y ,  s o  t h a t  t h e  r e s u l t i n g  a l l o c a t i o n s  may some- 

times be i n  c o n f l i c t  w i t h  u s e r s '  p r e f e r e n c e s .  

The above examples f o c u s  o u r  a t t e n t i o n  on two main f a m i l i e s  

of s e r v i c e  mechanisms: s e r v i c e s  where t h e  same d e c i s i o n  maker 

c o n t r o l s  l o c a t i o n  and a l l o c a t i o n ,  r e f e r r e d  t o  i n  t h i s  p a p e r  a s  

d e l i v e r y  sys tems ,  and s e r v i c e s  where l o c a t i o n  and a l l o c a t i o n  a r e  

c o n t r o l l e d  by d i f f e r e n t  d e c i s i o n  makers ,  r e f e r r e d  t o  a s  u s e r s  

a t t r a c t i n g  sys tems .  



2 . 2 .  2 DeZ ive ry  S y s t e m s  

A delivery system is defined in the following way. 

The same decision maker (usually a public authority 

and/or an agency) controls location of facilities and 

allocation of services to users. 

Users do not travel; that is, service is delivered from 

the facilities to the users, and transport costs are not 

charged to the users. 

Every cost (including transportation) is paid by the 

same public decision maker. 

There are many examples of delivery systems of which three 

are mentioned here. Fire emergency services fulfill the three 

requirements, as long as no bill has to be paid for fire services. 

Police patrol systems is a second example of delivery systems. 

Health care emergency (or ambulance) systems, can also be consid- 

ered as delivery systems, as long as the decision to use them is 

not affected by transport costs and is therefore price-insensi- 

tive. 

The main distinguishing feature of delivery systems is the 

direction and kind of transport flows. Transport always takes 

place from facility locations to demand locations, and users 

do not travel; they are served at home. A delivery system is 

the simplest location problem one can conceive, since no 

conflicting goals arise (except for the usual transport-location 

trade-off problem). No user's behavior model is needed, since 

users do not behave at all in such systems (the reasonable 

assumption of accessibility and congestion insensitive demand 

is implied here for such systems - hopefully one does not set 
a fire just because he lives near to a fire station), and every 

cost is paid (or can be assumed to be paid) by the same decision 

maker. The typical direction of transport flows in a delivery 

system is shown in Figure 2. 

It may be useful to point out that a delivery system 

closely resembles the classical "plant-location" or "warehouse- 

location" problems used in private sector locational decisions 

and found in the operations research and management science 

literature (Balinski, 1961;  Efroymson and Ray, 1 9 6 6 ;  ReVelle and 



service facilities 

demand locations 

service delivery from service facilities to dezand 
locations 

Figure 2. Typical delivery-system flow pattern. 

Rojeski, 1970; Hansen and Kaufman, 1976; Erlenkotter, 1978; 

Van Roy and Erlenkotter, 1980). This means that most (perhaps 

all) deiivery-system-location problems can be solved by well 

known and reasonably simple existing techniques. 

2.2.3 Users-Attracting Systems 

A users-attracting system is the very opposite of a delivery 

system; it is the appropriate model for most meaningful urban 

service systems and it also raises unsolved problems and needs 

further research. The typical service mechanism of a users- 

attracting system is defined in the following way. 

Location and allocation are controlled by different 

decision makers, For our purposes, it can be assumed 

that location is controlled by a planner (usually a 



p u b l i c  a u t h o r i t y  o r  a g e n c y )  w h i l e  a l l o c a t i o n  i s  con- 

t r o l l e d  by u s e r s .  (Users a r e  n o t  s i n g l e  d e c i s i o n  maker s ,  

t h e y  a r e  a n  a g g r e g a t e  o f  p o s s i b l y  g o a l - c o n f l i c t i n g  

p e o p l e .  L e t  i t  b e  p r o v i s i o n a l l y  assumed,  however,  t h a t  

c o n f l i c t i n g  problems among u s e r s  c a n  b e  n e g l e c t e d ,  and  

" a v e r a g e "  u s e r s '  g o a l s  c a n  b e  d e f i n e d . )  

Users t r a v e l ;  t h a t  i s ,  t h e y  have  t o  g o  t o  t h e  f a c i l i t y  

l o c a t i o n s  i n  o r d e r  t o  be  s e r v e d .  T h i s  a l s o  means t h e y  

have  t o  pay f o r  t r a v e l i n g .  

While  t r a n s p o r t  c o s t s  a r e  c h a r g e d  t o  t h e  u s e r s  ( r e c a l l  
t h a t  t r a n s p o r t  costs a r e  n o t  n e c e s s a r i l y  p a i d  i n  t e r m s  

o f  money) ,  costs f o r  e s t a b l i s h i n g  f a c i l i t i e s  a r e  p a i d  

by t h e  p l a n n e r  o r  p u b l i c  d e c i s i o n  maker .  

T h r e e  good examples  o f  u s e r s  a t t r a c t i n g  s y s t e m s  a r e  s c h o o l s ,  

h o s p i t a l s ,  and  c u l t u r a l  and  r e c r e a t i o n a l  s e r v i c e s .  N e e d l e s s  t o  

s a y ,  e v e r y  k i n d  o f  s c h o o l  meets a l l  t h r e e  o f  t h e  above  d e f i n i -  

t i o n s ,  a l t h o u g h  t h e  f i r s t  d e f i n i t i o n  n e e d s  some c a r e  when it is  

a p p l i e d  t o  p r i m a r y  s c h o o l s ,  s i n c e  it i s  n o t  a l w a y s  c l e a r  who a r e  t h e  

u s e r s  and  what  g o a l s  t h e y  are p u r s u i n g .  I n  t h e  a u t h o r ' s  o p i n i o n ,  

c h i l d r e n  a r e  t h e  u s e r s ;  b u t  it is w e l l . k n o w n  t h a t  c h i l d r e n  d o  n o t  

l i k e  t o  g o  t o  s c h o o l ,  w h i l e  p u b l i c  e d u c a t i o n a l  a u t h o r i t i e s  f o r c e  

them t o  go .  T h i s  i s  a  t y p i c a l  c o n f l i c t i n g - g o a l s  problem.  I n  

some o t h e r  p e o p l e ' s  o p i n i o n  p a r e n t s  a r e  t h e  u s e r s ,  and  i n  t h i s  

c a s e  a  u s e r - p l a n n e r  g e n e r a l  ag reemen t  i s  more l i k e l y  t o  b e  f o u n d .  

With t h e  o n l y  e x c e p t i o n s  o f  emergency ambulance s y s t e m s  and  

home h e a l t h  care d e l i v e r y  s y s t e m s ,  a l l  h e a l t h  c a r e  f a c i l i t i e s  

meet t h e  t h r e e  d e f i n i t i o n s  g i v e n  above .  I n d e e d ,  t h e  h e a l t h  c a r e  

s y s t e m  p o s e s  new mode l ing  p rob lems ,  s i n c e  i t  e x h i b i t s  a  m u l t i -  

l e v e l  s t r u c t u r e  as f a r  a s  t h e  p a t i e n t - - o r  u s e r - - i s  c o n c e r n e d .  

A t y p i c a l  p a t i e n t  h i s t o r y  c o u l d  b e  t h e  p r o g r e s s i o n  from a  day-  

h o s p i t a l  f o r  a  check-up t o  a  s p e c i a l i z e d  h o s p i t a l  where t h e  

p a t i e n t  w a s  found  t o  have  c a n c e r ,  t h e n  t o  a s p e c i a l i z e d  s u r g i c a l  

h o s p i t a l  where he  was o p e r a t e d  o n ,  a f t e r  which h e  was s e n t  t o  a 

r e h a b i l i t a t i o n  c e n t e r  u n t i l  f u l l  r e c o v e r y .  I f  he  i s  l u c k y  

enough,  h e  w i l l  f i n d  a l l  f a c i l i t i e s  h e  n e e d s  i n  t h e  same l o c a -  

t i o n s .  But  t h i s  i s  u n l i k e l y ,  s i n c e ,  w h i l e  g e n e r a l  p u r p o s e  



f a c i l i t i e s  ( e . g . ,  d a y - h o s p i t a l s )  may be f a i r l y  s c a t t e r e d ,  

s p e c i a l i z e d  o r  i n f r e q u e n t  t r e a t m e n t s  t e n d  t o  be c o n c e n t r a t e d  i n  

few l o c a t i o n s  ( e . g . ,  r e h a b i l i t a t i o n  c e n t e r s ) .  The h e a l t h  c a r e  

f a c i l i t i e s  o p t i m a l  l o c a t i o n  must  t a k e  t h i s  m u l t i l e v e l  s t r u c t u r e  

and b e h a v i o r  i n t o  a c c o u n t ,  i n  o r d e r  t o  e v a l u a t e  n o t  o n l y  

a c c e s s i b i l i t y  from demand l o c a t i o n s  t o  f a c i l i t y  l o c a t i o n s ,  - b u t  

a l s o  a c c e s s i b i l i t y  w i t h i n  f a c i l i t i e s  b e l o n g i n g  t o  d i f f e r e n t  

l e v e l s .  

P u b l i c  l i b r a r i e s ,  t h e a t e r s ,  and swimming p o o l s  a r e  s e v e r a l  

examples o f  c u l t u r a l  and r e c r e a t i o n a l  s e r v i c e s  where t h e  t r a v e l  

p a t t e r n  r e s u l t i n g  from u s e r s '  b e h a v i o r  i s  u s u a l l y  f a r  from a  

p lanned one.  D i f f e r e n t  t a s t e s  may l e a d  t o  c h o i c e s  which d i s a g r e e  

w i t h  d i s t a n c e  minimizing.  Unl ike  t h e  d e l i v e r y  sys tems ,  i n  t h e  

u s e r s - a t t r a c t i n g  sys tems  e v e r y  p o s s i b l e  c o m p l i c a t i o n  c a n  a r i s e  

(and u s u a l l y  d o e s ) .  L o c a t i o n  g o a l s  (or  p l a n n e r  g o a l s )  and 

a l l o c a t i o n  g o a l s  (or  u s e r  g o a l s )  may b e  d i f f e r e n t  and c o n f l i c t i n g ,  

a l t h o u g h  t h e  p u b l i c  f a c i l i t y  a s sumpt ion  u s u a l l y  i m p l i e s  t h e y  a r e  

n o t .  A model f o r  u s e r s '  b e h a v i o r  i s  needed,  s i n c e  u s u a l l y  s u c h  

s i m p l e  r u l e s  a s  n e a r e s t - f a c i l i t y  a l l o c a t i o n  a r e  u n r e a l i s t i c  and 

do  n o t  f i t  t h e  a c t u a l  b e h a v i o r .  A c c e s s i b i l i t y  and c o n g e s t i o n  

s e n s i t i v e n e s s  may a l s o  b e  r e q u i r e d ,  a s  i n  t h e  c a s e  o f  r e c r e a t i o n -  

a l  s e r v i c e s .  The t y p i c a l  d i r e c t i o n  o f  t r a n s p o r t  f l o w s  i n  a  u s e r s -  

a t t r a c t i n g  sys tem i s  shown i n  F i g u r e  3 .  

I t  may b e  u s e f u l  t o  s a y  t h a t  models f o r  u s e r s - a t t r a c t i n g  

sys tems a r e  h a r d l y  found i n  t h e  o p e r a t i o n s  r e s e a r c h  (OR)  and 

management s c i e n c e  l i t e r a t u r e ,  u n l e s s  f o r  s p e c i a l  c a s e s ,  which 

c a n  be  (or  a r e  f o r c e d  t o  b e )  r educed  t o  t h e  u s u a l  p l a n t - l o c a t i o n  

form. On t h e  o t h e r  hand,  t h e  problem of  model ing  l o c a t i o n  

sys tems  based  on a c t u a l  u s e r s '  b e h a v i o r  a p p e a r s  i n  most  r e g i o n a l  

s c i e n c e  and u rban  geography l i t e r a t u r e  (Lowry, 1964; H a r r i s ,  1964; 

Huff ,  1964 and 1966; Lakshmanan and Hansen, 1965; Wilson,  1970, 

1974, and 1976; Coelho and Wilson,  1976 and 1977; L e o n a r d i ,  1978 

and 1979a; H a r r i s  and Wilson,  1 9 7 8 ) .  Most o f  t h e s e  models a r e  

based on t h e  s o - c a l l e d  g r a v i t y ,  o r  s p a t i a l  i n t e r a c t i o n s  assump- 

t i o n ,  a c c o r d i n g  t o  which t h e  number of  t r i p s  between demand and 

f a c i l i t y  l o c a t i o n s  i s  p r o p o r t i o n a l  t o  a  smooth d e c r e a s i n g  func-  

t i o n  o f  d i s t a n c e  o r  t r a v e l  c o s t  ( o t h e r  imposed c o n s t r a i n t s  b e i n g  

m e t ) .  



service facilities 

demand locations 

trips from demand locations to facilities 

Figure 3. Typical users-attracting system flow pattern. 

Although the above models are based on more general and 

sensible physical assumptions, as compared to the usual OR 

"plant-location" models, the development of mathematical tools 

and algorithms have not been as good as in the OR field. This 

is an area where some unsolved problems can still be found, and 

further research is needed. 

2.3 The Users' Behavior 

2 , 3 . 1  Introduction 

The purpose of Section 2.3 is to introduce some specific 

assumptions and models for users' trip-making and facility-choosing 

behavior. Therefore, from now on reference will be made only to 

the users-attracting systems. Here again it can be said that, 

although each kind of service is associated with a different 

user's behavior, many common features in the models and techni- 

ques can be found. The main issues leading towards some unifying 



results can he summarized into three groups. 

The problem of relating users' choices to some optimizing 

behavior is the first main issue. Although a completely random- 

choice behavior is possible, in most meaningful cases some 

regularities can be found, which lead to the assumption that 

users consistently choose locations with some overall optimiza- 

tion criterion. Gravity and spatial interaction models play an 

important role in this field, since they have both good empirical 

testing and optimization interpretations. 

The second issue is the problem of defining a suitable 

general form for an accessibility-sensitive demand mechanism. 

This is a problem seldom found in both OR and regional science 

literature. It is therefore a good topic for further research, 

and a most promising one, since many public services exhibit 

accessibility-sensitivs demand. 

The third problem is that of defining a suitable, general 

form for a congestion-sensitive demand mechanism. Of course, 

congestion mechanisms are the main subject of queuing theory. 

But the queuing theory approach is micro and is therefore 

unlikely to be useful to solve problems of realistic size (that 

is, with many service locations). Some simpler models are there- 

fore needed, perhaps based on more aggregate assumptions and 

variables than queuing models. 

In the following sub-sections a general, nontechnical 

description of ways to solve the above problems is given, and 

some possible further generalizations are suggested. 

2 . 3 . 2  P lanned  V e r s u s  UnpZanned A Z  l o c a t i o n  

Although it sounds like a contradiction (and in the opinion 

of the author it is, to some extent), it is worth considering 

the case of users-attracting systems where allocation is centrally 

planned, although the users pay for travel costs. This is not 

necessarily a strong inconsistency with the public nature of the 

services to be located. If, for instance, users have a general 

tendency to minimize travel costs, but may also wish to trade 

off other costs or benefits (like congestion or quality of 



service), while a public decision maker strictly minimizes 

travel cost, it cannot be said that he is really inconsistent 

with users1 goals. He is just narrow-minded and uninformed on 

some details of the users1 preferences, although he is aware of 

some of their main and simplest tendencies (like travel cost 

minimizing), Since he is unable to predict what users will do 

when facilities will be provided, he just imposes on them a 

behavior according to his simplified version of their own goals. 

This approach is somewhat justified (although not necessarily 

to be agreed with) when there is no difference between users and 

public decision makers, in either goals or costs to be paid, or 

when the public decision maker has enough normative power to 

effectively impose the allocation rule. The US-Italian primary 

school location-allocation examples are relevant again here. 

As already stated, there is no difference between such 

problems and classical plant-location problems, as far as mathe- 

matical models and solution algorithms are concerned. The 

induced users1 behavior follows the simple nearest-facility 

allocation rule, depicted in Figure 4. 

service facilities 

demand locations 

,-* trips from demand locations to nearest facilities 

Figure 4. Typical users' flow pattern for planned-allocation 
users-attracting systems. 



Let it now be assumed that at least one of the two justifi- 

cations to the approach of the decision maker no longer holds 

true, or is likely to be unfair. It may happen, for instance, 

that trade-offs between travel costs and other users' costs and 

benefits are too relevant to be neglected. Obvious examples are 

health care (non-emergency) services, most kinds of schools, and 

cultural and recreational facilities. It may also happen that 

the public planner has no real normative control on the way users 

allocate themselves to facilities. He is just hoping they will 

go to the nearest facilities, and makes his plan accordingly. 

In this case, allocation should not be referred to as "planned". 

What the public decision maker is actually doing is using a bad, 

unreliable users' behavior model. 

Many more examples could be given, which regrettably raise 

complicated social and political issues, outside the scope of 

this paper. Let it be assumed, therefore, that there are 

enough intuitive reasons to focus our interest on location 

systems where allocation is left to the users' unplanned 

behavior. These systems will be referred to as "unplanned 

allocation systems". 

Without much loss of generality, let it also be assumed that, 

other things being equal, users tend to minimize travel cost. 

It then follows that possible deviations from this tendency may 

result if some of the "other things" are not perfectly "equal". 

If the overall result of such a process is examined, one can 

expect to find a frequency of users' trips that decreases with the 

cost of traveling from demand location to facilities. The usual 

trip pattern resulting from this behavior looks like the one 

shown in Figure 5. That is, although most trips are to the 

nearest facility, a sizeable amount are to a further facility. 

The pattern shown in Figure 5 is an intermediate one between two 

possible extremes: 

-- All flows go to the nearest facilities, which then reduces 
to the already discussed planned-allocation problem 

-- Flows are evenly split among facilities, which is 
equivalent to a users' behavior totally insensitive to 

travel cost 



f a c i l i t i e s  

0 demands 

t r i p s  f r o m  demand l o c a t i o n s  

t o  f a c i l i t i e s  

Figure 5. Typical users' flow pattern for unplanned-allocation 
users-attracting system. 

2 . 3 , 3  Spatial-Interaction-Based AIIocation Models 

This section focuses on possible useful ways to handle the 

unplanned-allocation case discussed in Section 2.3.1. Provided 

users are assumed to have different tastes, value judgments, 

and cost-benefit evaluations for each facility, their behavior 

can be modeled by using one of the following two approaches. 

1. The disaggregate approach, where a complete list of all 

users in each location is kept, and the utility functions 

(or at least the preference ordering relations) on 

alternative facilities are defined for each user in the 

list. This approach has been recently proposed by 

Hanjoul (1 980). 

2. The aggregate approach, which is useful when the list of 

users becomes very large and it is impractical to keep 

track of every user and hopeless to define so many 

preference orders. Some general regularities in 



aggregate behavior are usually found, when the overall 

result of superimposing all these different preference 

orders is observed. The frequency of choice usually 

decreases with travel costs. If needed, or if available 

data make it possible, other relevant explanatory 

variables can be introduced. Such observed data can be 

plotted and fitted with some curve (and a good fit is 

usually found). 

It is obvious that the first approach can be used only when 

the number of different users, or preference orders, in the list 

is small. It is, however, interesting when micro-behavior 

exploration is the main concern. But for operational purposes 

the aggregate approach seems better, when users are so many they 

cannot be listed one by one.(This is, by the way, the usual case 

with real public facilities.) 

Approach 2 gives rise to what are usually referred to as 

"gravity", or "spatial-interaction" models. In loose terms 

(more technical definitions will be given in later sections), 

the main feature of a spatial-interaction model is to replace 

the very sharp assumption of travel-cost minimizing with the 

smoother assumption of space-discount behavior. While the 

travel-cost-minimizing user places infinite value on the nearest 

facility, the space-discounting user ranks in distance-decreasing 

order all facilities, the distance-decrease shape being given by 

a curve similar to those in Figure 6. Moreover, space-discounting 

users are assumed to be stochastic, and to choose facilities with 

probabilities proportional to the space-discount factor (other 

possible constraints being met). Stochastic behavior here is 

merely a model of our ignorance, since detailed information on 

each user has been lost after the aggregation process*. 

*A microeconoaiic stochastic behavior miqht also be introduced, 
if each user is assuned to have a probability distribution on 
utilities assiqned to each facility. This is basically what 
random utility theory is. But luckily enough random-utility 
based models are indistinguishable from gravity models at the 
macro level. They are actually a possible alternative inter- 
pretation of the same models, rather than new ones. 
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Figure 6. General shape for a family of space-discount functions. 

I 

A useful property of the family of curves shown in Figure 6 

is that it includes the nearest-facility allocation rule as a 

special case (curve 1). It also includes the opposite limiting 

case, that is, the random (distance or travel cost independent) 

allocation rule (horizontal line 4). In real problems, however, 

cases will be found between these two extremes: 2 and 3. 

2 s t r o n g  s p a c e  
d i s c o u n t  e f f e c L  

Although gravity or spatial-interaction models were first 

developed empirically, many alternative theoretical justifica- 

tions for them have been proposed in the last 10 years, so that 

what once seemed to be slightly more than a rule-of-thumb model 

has become a topic worthy of consideration by theoretical econo- 

mists and geographers, mathematicians, and statisticians, besides 

, regional scientists. Such theoretical works range from the 

classical entropy maximizing approach (Wilson, 1970), which is 

an aggregate one, to disaggregate stochastic-choice models, 

among which the logit model is the best known (McFadden, 1973, 

1974), to models that derive macroeconomic interpretations by 

aggregating random-choice models, like in the consumer surplus 

maximizing approach (Neuburger, 1971; Williams, 1977; Coelho 

and Williams, 1978; Coelho and Wilson, 1976) or in the 

accessibility maximizing approach (Leonardi, 1973, 1975, 1978; 

Williams and Senior, 1978). 

3 weak s p a c e  
d i s c o u n t  e f f e c ,  * d 



In spite of the seemingly strong differences among these 

approaches, it is surprising how they all give rise to the same 

models, as far as their mathematical form is concerned. This is 

not really surprising, if one considers the fact that the logit 

model, which is supposed to have definite roots in random 

utility theory (being a typical "micro" model), is merely a 

multinomial logistic distribution. On the other hand, the 

entropy maximizing approach, which has been developed in statis- 

tical mechanics (and makes no assumptions on the microscopic 

behavior of the system under study, but just poses some weak 

constraints at the aggregate level) gives rise to the same 

multinominal logistic distribution. (The Bolzmann probability 

distribution used in thermodynamics and the Fermi-Dirac distri- 

bution of quantum mechanics are nothing but special forms of 

logit models). 

Besides the theoretical significance of this genera! consis- 

tency between different interpretations, it is operationally 

comfortable to know that one has to work with just one mathematical 

formulation. Although the subject will be treated in more detail 

in later sections, it is worth at this point to give the general 

form for a spatial interaction model, which is as follows: 

where 

itj are'subscripts labeling the locations of demand 
and facilities, respectively 

Gi is the total demand for service generated in i 
per unit time 

W is a measure of attractiveness of facility in j 
j 

'i j is the total cost associated with a displacement 
from i to j, measured in appropriate units 

f(.) is a space discount function, of the kind 
discussed above 



'i j is the number of customers living in 
location i and using the facility loca- 
tion j 

The space-discount function is often assumed to have some special 

form, like a negative exponential, or a negative power function, 

but none of these assumptions is needed to analyze the general 

structure of a spatial-interaction model. On the contrary, terms 

like "generation" and "attractiveness" need a better definition, 

since they are related to the problems of modeling sensitiveness 

of demand both to travel cost or accessibility and to congestion 

or overcrowding of facilities. 

2 . 3 . 4  A c c e s s i b i  Z i t y  - S e n s i t i v e  Demand 

Most existing public facility location models assume both 

allocation of customers to the nearest facility and insensitive- 

ness of demand to accessibility to the service. But, as already 

discussed in the introductory sections, this assumption is not 

appropriate for many services, where the total demand cannot be 

estimated independently of the size and location of facilities. 

In other words, demand is induced by the provision of the service, 

and usually the easier facilities can be reached, the higher will 

be the demand. In loose economic terms, it may be said that 

travel cost acts as a price to be paid in order to use the 

service, and total demand is nonincreasing with this cost. 

Although the sensitive-demand problem has been stated in market- 

like terms, it is in no way related with market economies rather 

than planned economies. Travel costs must be paid everywhere, 

since they depend on the existence of space distances, and are 

not necessarily measured in terms of money. (In most urban 

settlenents travel time is usually the best measure of travel 

cost.) 

In order to define a general structure for an accessibility- 

sensitive-demand model, some definite measures of accessibility 

have to be introduced. The three main possibilities are listed 

below. 



a. Accessibility is measured by means of either the nearest 

facility travel cost or the arithmetic mean of travel 

costs to all facilities. Both measures tacitly assume 

that customers agree on evaluating distances according 

to a minimum distance, or an arithmetic mean basis. 

These assumptions are usually inconsistent with a general 

spatial-interaction behavior. 

b. Accessibility is a measure of users' benefit consistent 

with a spatial-interaction behavior. Since according 

to most spatial interaction data, users seem to apply a 

definite distance-decreasing discount factor on facil- 

ities, the most natural measure of accessibility seems 

to be a sum of the capacity (or attractiveness) of all 

service facilities, each one discounted with its own 

space discount factor. Such a measure is closely related 

to early concepts of social physics and regional analysis 

(like potentials and related concepts). (See Steward, 1948; 

and Vickerman, 1974 for a review.) In its modern form 

it has been introduced by Hansen (1959), and developed 

by Ingram (1971), Neibull (1971), Leonardi (1976), 

Smith (1976),  avids son (1977), and Sheppard (1979). Its 

general form is: 

A is the measure of accessibility to the 

service from a given demand location 

W is a weight measuring attractiveness of 
j 

facility in j; no generality is lost if the 

W. are assumed to be normalized, i.e.: 
I 



C is the cost of traveling from the demand loca- 
l tion to the facility in j 

f(-) is a space-discount function 

c. Accessibility is measured by an "average" travel cost, 

where the averaging operator is consistent with a 

spatial-interaction behavior. Since users perceive 

distance by means of a space discount function, which is 

averaged to build an accessibility measure (see b above), 

it is natural to obtain a measure of "average" travel 

cost by applying the inverse of the space-discount 

function to accessibility. That is 

where 

- 
C is the average travel cost from a given demand 

location having accessibility A defined by (2) 

F' ( *  ) is the inverse function of f ( ) 

Average travel cost as computed by (3) is the only possible 

average ensuring consistency in problems of aggregating and 

disaggregating spatial-choice models. It has been discussed in 

depth by many authors (usually for special functional forms), 

among them Wilson (1 974) , Williams (1 977) , and Leonardi (1 979b) . 
Two general forms are possible for an accessibility- 

sensitive-demand generation model depending on whether accessi- 

bility is measured by some actual "accessibility" index, like 

(2), or by some measure of "average" (including minimum distance) 

cost. The first general form is an accessibiZity-increasing 

demand curve, like the one shown in Figure 7. In general, 

demand G will increase up to a maximum value P, corresponding to 
the maximum value of A, which is reached when all travel costs 

are zero (that is, space disappears). Furthermore, generated 
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Figure 7. An accessibility-increasing demand curve. 
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demand G will be bounded from above by a maximum potential 

demand P, which is always finite (even though possibly very large) 

if the total population living in the demand location is finite. 
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The second general form for an accessibility-sensitive- 

demand model is an average-cost-decreasing demand curve, like 

the one shown in Figure 8. In general, demand G will reach its 
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Figure 8. An average-cost-decreasing demand curve. 



(physically feasible) maximum P for zero cost, and then decrease 
as travel cost increases. The upper bound P has the same mean- 

ing as before. 

Of course there is no real difference between the two 

formulations given above, since the two demand curves can be 

mapped one on the other. The choice of the best formulation is 

a matter of convenience. 

Perhaps it is also worth mentioning that, just as nearest- 

facility travel cost is included in "average costs" many special 

measures are incorporated in "accessibility measures" as defined 

by (2), including the widely used "coverage-based" accessibility 

measure. This measure is defined as the number (or the total 

capacity, or any measure proportional to them) of facilities 

which can be reached within a given maximum travel-cost range. 

This is a special case of (2), where f(*) is a step function 

like the one shown in Figure 9. 

However, a step function is not the best one to be used 

for elastic-demand models, since the way it evaluates distance 

is typical of emergency services, which usually (and hopegully) 

have inelastic demand. 

1 

C t r a v e l  - 
0 C m a x i m u m  c o s t  

r a n g e  

Figure 9. Step space discount function for "coverage" acces- 
sibility measures. 



2 . 3 . 5  C o n g e s t i o n - S e n s i t i v e  Demand 

As with accessibility-sensitive demand, most facility loca- 

tion models ignore possible demand sensitiveness to congestion. 

Indeed, the best-known models in the literature on static optimal 

location modeling are "uncapacitated", which means they assume a 

total capacity that always matches total demand. 

Just like travel cost, congestion is a cost that all custom- 

ers have to pay (usually in non-monetary units) in order to be 

served, no matter what economic system rules their country. 

Although congestion costs are not as unavoidable as travel costs 

since there is no real physical bound on building new facilities, 

capacity expansion usually does not solve the problem. This is 

true mainly when the accessibility-sensitive-demand mechanism is 

also at work, since increase in capacity increases accessibility, 

which in turn generates new demand. The joint effect of both 

mechanisms may therefore result in increased congestion because 

we increased capacity. This frequently happens with many ser- 

vices, not necessarily of a recreational nature, like non- 

emergency health care facilities. It always happens when capac- 

ity expansion is decided locally, without an overall look at 

the whole system of locations. 

The simplest congestion-sensitive-demand model is a linear 

feedback signal that is given by the difference between total 

capacity and attracted demand, which changes the value of the 

attractiveness weights for each facility. (It is assumed that 

attracted demand may never be greater than total capacity, by 

definition.) The resulting weights give a new value for acces- 

sibilities, which in turn generate different values for total 

demand, and so on, over and over, until some equilibrium (if any) 

is reached. This two-step mechanism can be given the following, 

simple mathematical formulation. 

1. Congestion-sensitive attractiveness weights are eval- 

uated according to the formula 



where: 

is the capacity of facility in location j 

D is the total demand attracted in location j  
j  

wi ( - )  is the (normalized) attractiveness weight 
J 

for facility in location j ;  it is a function 

of the vector X - D = { x j  - D.) of differ- 
3 

ences between total capacity and attracted 

demand. 

2. The new accessibility resulting from'the new weights 

is evaluated, according to ( 2 ) .  

where 

A(-) is the accessibility measure, expressed as 

a function of the differences between 

capacity and demand 

Although accessibility has been used in the above formula- 

tion, of course a similar formulation can be given in terms of 

average travel cost. 

.?. 3 .6  O v e r a t 2  S t r u c t u r e  o f  t h e  A c c e s s i b i  l i t y - C o n g e s t i o n -  
S e n s i t i v e  A l l o c a t i o n  S y s t e m  

Now that all its subsystems have been defined the overall 

allocation system can be assembled. Its general structure is 

shown in Figure 10. 

The contents and meaning of each subsystem need no further 

explanation, since they have been described in detail in the 

preceeding sections. The flows 1ir:king the subsystems are worth 

some explanation, however, Taken as a whole, the system receives 

two inputs, the potential demand P and the capacity X, and gives 
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Figure  1 0 .  An overview of t h e  r e l a t i o n s h i p s  among s t a t i c  f a c i l i t y -  
l o c a t i o n  models. 



the allocation matrix S as an output. While the input P is 

totally exogenous, possibly given by some population forecast 

model, the input X is a control vector, whose choice determines 

size and location of facilities. The output S will be subject 

to evaluation in the decision process, together with the control 

vector X, since benefits and costs will depend on them. Two 

main feed-back loops can be seen in the inner flows. 

The main loop links demand generation, allocation, and 

congestion evaluation. The'demand generation subsystem 

(or accessibility-sensitive-demand model), receives an 

accessibility estimate A, generates a demand G and sends 

it as an input to the allocation subsystem. This sub- 

system (using also the current estimate of attractive- 

ness W) allocates the generated demand G to facilities, 

by means of a general spatial-interaction model, and 

evaluates the total demand D attracted by each facility. 

The attracted demand evaluation D is sent to the 

congestion-sensitive subsystem, which compares it with 

capacity X, evaluates new weights W and new accessi- 

bilities A. Finally, the new accessibility evaluation 

is sent back again to the accessibility sensitive 

demand subsystem, and a new cycle is started. 

The smaller loop links the allocation and the conges- 

tion evaluation. This is a simple loop, nested within 

the main one, with the only purpose of updating the 

attractiveness vector W, to be used in the allocation 

model, and the attracted demand vector D, to be used in 

the evaluation of new congestion-sensitive weights. 

A warning will conclude this section. The system has been 

described in pseudo-dynamic terms, but its use for dynamic 

simulation is not suggested. Although the way it works is better 

understood in dynamic terms, the general model of Figure 10 is 

more likely to give good steady-state solutions, rather than the 

actual transient behavior of an allocation system. This is 

mainly due to two reasons. The first is that most of the models 

used, especially the allocation (spatial interaction) model, are 

equilibrium models. Usually the transient dynamic behavior of a 



spatial interaction pattern does not fit a gravity model, and 

it takes some nonnegligible time to settle down (provided no 

further noise is introduced). The second reason is that usually 

real spatial interaction systems have time lags. The reaction 

of demand to changes in accessibility and in congestion cannot 

be immediate, nor can demand be assumed to receive perfect infor- 

mation on all the changes in every location as soon as these 

changes take place. 

In spite of this, a rough dynamic use of the model is possi- 

ble when we are interested in long term changes rather than in 

transient behavior. In other words, if information on system 

changes is sampled at time intervals at least as long as the 

average settling-down time, and if significant input changes can 

be reasonably assumed to take place only at the sampling times, 

then just a sequence of equilibrium states will be observed. 

This.kind of analysis is closer to comparative statics, rather 

than dynamics. In any event, the construction of a satisfactory 

dynamic spatial-interaction framework is not an aim of this 

paper. [Some attempts in this direction can be found in Harris 

and Wilson (1978), Bertuglia and Leonardi (1979), and Wilson 

(1979). I 

2.4 Goals and Tools for Service Location Planning 

2.4.1 I n t r o d u c t i o n  

While the previous sections have been mainly devoted to the 

description of the system's behavior, the following sections will 

review the problem of controlling the location-allocation system 

in some optimal way. This means answering three questions. 

1. Which goals are relevant for a service location planning 

decision? 

2. Which variables can be used to control the systems, and 

under what constraints? 

3. What is the general form of models corresponding to 

different goal-control variable combinations? 

As already stated in the general introduction, no attempt 

will be made here to go deeply into such complicated problems 



as the foundations of welfare theory, public goods theory, equity 

theory, and so on. The existing location models have usually 

simple objective functions and constraints, and no large theoret- 

ical apparatus is needed to interpret and justify them. However, 

some common features in them are general enough to deserve a 

special discussion. 

Most of these general problems have been already met in the 

introductory sections: the equity-efficiency trade-off problem, 

which is easily generalized to multi-objective conflicting 

problems; the location-allocation consistency problem; and the 

introduction of actual users' behavior in location models. 

2.4.2 The Equity-Efficiency Trade-off ProbZern 

A vast literature can be found on the conflict between 

equity and efficiency in location problems (see Alperovich, 1972; 

McGrew and Monroe, 1975; McAllister, 1976; Morrill and Symons, 

1977; Bigman and ReVelle, 1978, 1979; and Lea, 1979). Although 

discussions on the exact definition of terms like "equity", 

"welfare", and "efficiency" tends to be endless, the problem 

behind these terms is quite simple. Apart from technical details, 

all measures of equity or welfare used in location problems are 

measures of nearness, ease of access, and fair distribution of 

service to users. This is true for the transport-cost minimiza- 

tion criterion used in most models (although some criticism can 

be raised against it as far as-fair distribution is concerned), 

for the maximum coverage criterion used in many models for the 

location of emergency services, and for the consumer-surplus 

maximizing models used in locating urban activities with spatial 

interactions. 

Maximization of access and equitable distribution of service 

capacity to the customers usually implies the opening of many 

dispersed small facilities. On the other hand, efficiency is 

usually measured in terms of the costs to be paid to establish 

and operate the facilities. Since both costs usually exhibit 

economies of scale, maximization of efficiency often implies 

concentration of service in few large facilities. In loose 

terms, an optimal location model might be generally defined as a 



method to find a trade-off between these two conflicting goals. 

It is also worth noting that the existence of these two conflic- 

ting goals is the only reason location models have some meaning 

and usefulness. Locational decisions taken according to only 

one goal would lead to ridiculous and unrealistic results. 

From the technical standpoint, there are three ways to 

introduce equity-efficiency goals in location problems, giving 

rise to three different broad families of models: 

Models where some user's benefit (cost) is maximized 

(minimized), subject to a budget constraint on total 

cost to establish and run the facilities. This is 

usually considered as the typical formulation for a 

public facility location problem, since public author- 

ities, who are assumed to pay for the costs, are 

supposed to not use their budget for profit-making. 

The above general definition of public facility location 

problems is found in ReVelle et al. (1970), ReVelle and 

Rojeski (1970), Swain (1974), and Hansen and Kaufman 

(1976). 

Models where some efficiency measure is maximized, sub- 

ject to a constraint on the minimum users' benefit 

requirement. Typical examples are the so-called set- 

covering problems, which are also widely used to locate 

some public facilities (mainly emergency services). In 

its simplest form, a set-covering location problem 

minimizes the number of facilities to be located (the 

efficiency goal) subject to the requirement that each 

demand location has at least one facility within a given 

maximum range of travel time (the equity constraints). 

This formulation has been widely used for locating 

emergency services with deliveries from facilities to 

demand locations, like fire stations and ambulance 

systems (Toregas et a1.1971; ReVelle et al. 1976; 

Plane and Hendrick, 1977). 

Models where the objective function is the difference 

between a measure of users' benefit and public authority 

costs in order to establish and run facilities without 



any constraints. Since the two terms are usually 

measured in different units, at least one of them 

(usually the cost term) must be weighted with a scaling 

factor, reflecting the judgment of the decision maker 

(or decision makers) on their relative importance. 

Although this formulation is usually considered as more 

suited to private sector location problems, it has also 

been used to analyze trade-offs between benefits and 

costs in public facility location problems (possibly 

with a sensitivity analysis on the scaling factor). 

This "bi-objective" approach is discussed in Bigman and 

ReVelle (1 979) and Erlenkotter (1 977) . 
Although these three formulations seem rooted on quite 

different public welfare conceptions, they share many common 

formal features, to such an extent that they actually can be 

reduced to the same mathematical form and solved with the same 

algorithms. If, for instance, a Lagrangean relaxation is 

introduced for the constraints of the first two types of models, 

both can be replaced by a model of the third type, the Lagrange 

multiplier acting as a scaling factor. This is even more 

sensible than the original formulations, since it is usually 

hard, for a public decision maker to assess a priori the values 

for a total budget or a minimum travel-time requirement, so that 

a trade-off sensitivity analysis has to be made anyway. 

Other unifying properties can be found in the various ways 

of measuring travel cost and accessibility to the users. ~lthough 

the minimum distance requirement seems very different from travel 

cost minimization, it has been shown (Church and ReVelle, 1976) 

that the minimum distance requirement is a special case of travel- 

cost minimization, provided an infinite cost is placed on dis- 

placements outside of the required range. 

2.4. 3 The ~ocation-AZZocation Consistency ProbZem 

It has been stated in Section 2 that location and allocation 

may be controlled by different decision makers. For the case of 

users' attracting systems, allocation is always left to the users, 

while location and size of facilities are decided by a public 

authority. 



If the simplifying assumption is introduced that users 

always choose the nearest facility, the resulting location models 

belong to the class of plant-location problems fcund in operations 

research and management science literature. The recent develop- 

ment of tremendously powerful dual-based algorithms (Bilde and 

Krarup, 1977; Erlenkotter, 1978; Van Roy and Erlenkotter, 1980; 

Wolsey, 1980) makes it hard to imagine any further improvement 

on theory and computation for these problems. 

If, on the other hand, users are allocated to facilities 

according to a general spatial-interaction-based allocation 

model of the form proposed in Section 2.3, then many new 

theoretical and computational problems arise. 

The general structure of a (possibly dynamic) location 

model based on a spatial-interaction allocation rule is shown 

in Figure 11 .  
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Figure 1 1 .  General form of a dynamic location-allocation model. 



The variables and symbols introduced in the diagram of 

Figure 1 1  are defined as follows: 

P = {pi) is a vector whose components are 

the potential demands in each 

demand location i 

is a vector whose components are 

the unit time potential demand 

increments in each demand location i 

is a vector whose components are 

the existing service capacities in 

each service location j 

is a vector whose components are 

the new capacities in each service 

location j, after the location 

decision has taken place 

is the allocation matrix, i.e., a 

matrix whose elements are the flows 

of users between each demand-facility 

location pair (i, j ) 

is the allocation rule, as resulting 

from the general model shown in 

Figure 10 (Section 2.3.5) i .e., 

A (  , - 1  is a matrix function of the 
vectors of potential demand and 

service capacity, and the equation 

holds 



is the public authority-evaluated 

users' benefit, i.e., V(-,-,-) is 

a scalar function of the allocation 

matrix, of the potential demand 

vector and of the capacity vector 

is the cost paid by the public 

authority to change the capacity (by 

expansion or demolition), i.e., 

C ( 0 , ~ )  is a scalar function of the 

old and new capacity vectors 

a is a unit-time discount factor 

is the total discounted value for 

a decision process starting with 

potential denand P and capacity Y 

The general model of Figure 1 1  can be further specialized, 

depending on which one of the following assumptions holds. 

a. Both location and allocation are directly decided by 

the public authority; this often (but not necessarily) 

leads to a problem of the plant-location type. Of 

course, in this case no spatial-interaction behavior 

takes place, since it is inhibited by the public 

authority-imposed behavior. (Many school allocation 

policies work like this, although they are often subject 

to serious criticisms.) 

b. Allocation results from unplanned users' behavior, i.e., 

from a spatial interaction model. The users' behavior 

model is known to the public authority, who takes it 

into account in deciding the location and size of facil- 

ities. However, the benefit evaluation of the public 

authority is not necessarily related to some natural 

users' benefit function, nor does such a function need 

to exist. This is a case where possible conflicting 

problems may arise, both among users and between the 

users and the public authority. Of course, a spatial 



i n t e r a c t i o n  model i s  n o t  s u i t e d  t o  t a k e  c o n f l i c t s  i n t o  

accoun t ,  s i n c e  it i s  an agg rega t e  model where a l l  u s e r s  

a r e  averaged o f f .  The microscop ic  approach seems 

b e t t e r  f o r  t h i s  purpose  (see t h e  f i r s t  approach d i s -  

cussed  i n  S e c t i o n  2 .3 .2 ) ,  s i n c e  it can  keep t r a c k  o f  

each u s e r  ( o r  p o s s i b l y  of  each homogenous group of  

u s e r s ,  i f  such a  grouping can be  d e f i n e d ) .  Th i s  ap- 

proach w i l l  n o t  be developed h e r e ,  b u t  it may w e l l  be 

one o f  t h e  t o p i c s  f o r  f u t u r e  r e s e a r c h  on l o c a t i o n  models.  

c .  A s  i n  c a s e  b ,  a l l o c a t i o n  r e s u l t s  from unplanned u s e r s '  

behav io r ,  b u t ,  u n l i k e  c a s e  b ,  some agg rega t e  u s e r s '  

b e n e f i t  f u n c t i o n  is assumed t o  e x i s t .  More p r e c i s e l y ,  

a  s c a l a r  f u n c t i o n  W(S,P,X) can  be d e f i n e d ,  such t h a t  t h e  

problem: 

max W(S,P,X) 

i s  so lved  by 

where A ( P , X )  i s  t h e  u s e r s '  behavior-based a l l o c a t i o n  

r u l e .  S ince  u s e r s  behave a s  i f  they  w e r e  maximizing 

f u n c t i o n  ( 7 )  , it i s  n a t u r a l  t o  c a l l  W t h e  u s e r s  b e n e f i t  

f u n c t i o n .  I t  i s  a l s o  n a t u r a l ,  f o r  a  f a i r  p u b l i c  d e c i s i o n  

maker, t o  u se  t h e  same b e n e f i t  f u n c t i o n  i n  t h e  eva lua-  

t i o n ,  t h a t  i s ,  t o  d e f i n e :  

When assumpt ions  (7), ( 8 ) ,  and ( 9 )  ho ld ,  no c o n f l i c t  

problem a r i s e s  between t h e  u s e r s  and t h e  p u b l i c  d e c i s i o n  

maker (PDM), t h a t  i s ,  t h e r e  i s  p e r f e c t  c o n s i s t e n c y  

between l o c a t i o n  and a l l o c a t i o n .  

The cases a ,  b, and c above g i v e  r i se  t o  t h e  fo l l owing  t h r e e  

f a m i l i e s  o f  mathemat ica l  programming problems. (For  s i m p l i c i t y ,  a  



static formulation is used, that is, we set a = 0): 

a. max {V[A(P,X) ,P,Xl - C(Y,X) 1 
A, X 

that is the PDM decides both on the allocation rule A 

and on the size of location of facilities X. 

b. max {V[A(P,X) ,P,Xl - C (Y,X) 1 
X 

that is, the PDM decides on the size and location of 

facilities X, while the allocation rule A is given and 

depends on users' behavior. 

c. max {max V[A, (PIX) ,P,Xl - c(Y,X) 1 
X A 

that is, the PDM decides on the size and location of 

facilities X, while the users decide on the allocation 

rule A. Moreover, both the PDM and the users agree on 

the way to evaluate benefits, since users choose, among 

all possible allocation rules, the one that maximizies 

V, while the PDM chooses, among all possible location 

patterns X, the one that maximizes V-C. 

2 . 4 .  4 S p a t i a  2 - I n t e r a c t i o n  Embedding L o c a t i o n  Models  

A noteworthy property of problem (12) is that, since the 

order with which the maximization operators are applied is 

immaterial, it can be rewritten as: 

max max Iv[A(P,x) ,PIXI - C(YIX) 1 
?. X 

and this is identical to (10). This means that, in the case of 

a perfect consistency between location and allocation goals the 

location problem is formally equivalent to a totally planned 

problem,although with a generally nonlinear objective function, 



Let two special, but still fairly general, assumptions now be 

introduced: 

a. The cost function is separable, that is, the total cost 

can be expressed as the sum of individual costs for each 

facility location: 

C(Y,X) = C  h. (x.) 
j 3 3  

where h . ( - )  is a (usually concave) scalar function. The 
3 

Y vector has been dropped, since it is constant, so that 

it is implicitly taken into account in the way the h.(-) 
3 

are built- 

b. The function V(S,P,X) can be expressed as 

where 

G = { C  Sij? is the vector of demands generated 
i 

in each i, 

D = l C  Sijl is the vector of demands attracted 
j in each j. 

The meaning of assumption (15) is that users, as well as the 

public decision maker, evaluate the allocation pattern S, the 

unsatisfied demand P-G (generated by the accessibility-sensitive 

mechanism), and the difference between capacity and attracted 

demand X-D (generated by the congestion-sensitive mechanism). If 

the following variables are introduced: 

- SiO = P - Gi - Pi - Z Sij the unsatisfied potential 
j demand in demand location i 

the unused capacity in facility 

j 



and the S matrix is augmented by one column {siO) and one row 
(S } (the element SO0 is not required), then an alternative 

0 j 
representation of (1 5) is: 

It is also tacitly assumed that Y(-) is undefined for negative 

values, so that explicit nonnegativity constraints are not 

needed. 

If assumptions a and b are introduced in (13), the following 

mathematical programming problem is obtained: 

max {Y(s) - C h.(x.)) 
s,x j 3 I 

But the x variables can be eliminated by means of (l8), when 
j 

expressed in terms of the S variables. The general form of the 

resulting location-allocation problems is: 

max iY(S) - I h.(I Sij + S )I 
s j J i  0 j 

The above formulation includes most of the existing static 

facility location models. As a special case, if demand is 



inelastic (that is, SiO = 0 , SOj = 0), Y is linear, h.(*) are 
I 

made up of a fixed charge plus a linear cost, it reduces to the 

standard plant-location problem (provided nonnegativity restric- 

tions for S are introduced). If, however, Y is built in such a 

way that a spatial interaction model is induced for the optimal 

St then (19)-(20) includes most spatial-interaction based 

location-allocation models. 

The most useful property of such a formulation is that the 

spatial interaction model need not be introduced explicitly in 

the objective function or in the constraints. It is "embedded" 

by the optimization, and it holds for the optimal point, although 

it is not required to hold in the whole feasible region. The 

above two tricks, the embedding property and the widening of the 

feasible region, are the main reasons models of the (1 9) - (20) 
type are computationally attractive and successful. The embedd- 

ing approach has been first introduced by Coelho and Wilson 

(1976), and its close relationships with earlier works and 

problems were soon realized (Harris, 1964; Lakshmanan and Hansen, 

1965; Huff, 1966; Leonardi, 1973). Among its recent developments, 

the most promising ones for further research seem to be the 

extention to more complex systems of spatially interacting urban 

activities, (Wilson, 1978; Wilson and MacGill, 1979; Leonardi, 

1979a; MacGill and Wilson, 1979) with the possible inclusion of 

the transport network optimization (Boyce and Southworth, 1979; 

Boyce and LeBlanc, 1979). 

There is,however, a general criticism to be made to most of 

the works referred to above. While much theoretical insight has 

been gained by developing sound economical interpretations for 

the proposed spatial-interaction embedding objective functions 

(Neuburger, 1971; McFadden, 1973, 1974; Williams, 1977), most of 

the cost functions introduced in the models seem too simple and 

unrealistic; namely, they are usually simple linear functions, 

which of course cannot account for any economy-of-scale effect. 

In this respect, the traditional plant-location problems seem 

much more realistic, whether they introduce the scale effect by 

a non-smooth fixed-charge cost function, thus making it a com- 

binatorial programming problem, or they use a smooth concave 



cost f u n c t i o n .  The need i s  f e l t  t h e r e f o r e  t o  d e v e l o p  new models ,  

which s h a r e  b o t h  t h e  r e a l i s t i c  f e a t u r e s  o f  t h e  s p a t i a l - i n t e r a c t i o n  

embedding f u n c t i o n s ,  and t h e  r e a l i s t i c  f e a t u r e s  o f  t h e  concave  

( p o s s i b l y  non-smooth) cost f u n c t i o n s .  Some a t t e m p t s  have been 

made a l r e a d y  towards  t h i s  d i r e c t i o n ,  by i n t r o d u c i n g  g e n e r a l  

concave  f u n c t i o n s ,  a s  i n  Jacobsen  and Kessel ( 1 9 7 7 ) ,  or by u s i n g  

concave CES f u n c t i o n s ,  as i n  Leonard i  (1978, 1979a) ,  or  f i x e d  

c h a r g e s  and c o m b i n a t o r i a l  s t r u c t u r e s ,  a s  i n  Hodgson ( 1 9 7 8 ) ,  

Beaumont (1979) , and Leonard i  (1980) . T h i s  s t r a n d  of  r e s e a r c h  

seems a  m o s t  p romis ing  one ,  a s  it promotes  r e c o n c i l i a t i o n  among 

t h e  t w o  " s c h o o l s "  ( t h e  OR approach and t h e  s p a t i a l  i n t e r a c t i o n  

a p p r o a c h ) ,  and it y i e l d s  more u s e f u l  models f o r  r e a l  p l a n n i n g  

problems. I t  i s  t h e r e f o r e  a  l e a d i n g  t o p i c  f o r  t h e  l a t e r  s e c t i o n s  

of  t h i s  p a p e r ,  as w e l l  a s  fo r  f u r t h e r  r e s e a r c h  w i t h i n  t h e  P u b l i c  

F a c i l i t y  L o c a t i o n  Task. 

2 .4 .5  An Overview o f  t h e  R e Z a t i o n s h i p s  among S t a t i c  Faci  Z i t y -  
L o c a t i o n  Mode Zs 

I t  is  wor th  a t  t h i s  p o i n t  t o  s t o p  f o r  a  w h i l e ,  and t o  look  

back a t  what h a s  been d i s c u s s e d ,  b e f o r e  i n t r o d u c i n g  new t o p i c s .  

An o v e r a l l  p i c t u r e  o f  t h e  l i n k s  among assumpt ions  and models  i s  

shown i n  F i g u r e  12. B a s i c a l l y  t h r e e  b road  f a m i l i e s  o f  l o c a t i o n  

models have  been found ( t h e  round boxes a t  t h e  bot tom o f  t h e  

d iagram) : 

1. The p l a n t - l o c a t i o n  and r e l a t e d  l i n e a r  models.  Although 

t h e s e  a r e  borrowed from p r i v a t e  sector l o c a t i o n  problems,  

t h e y  have  been shown t o  be  u s e f u l  f o r  some p u b l i c  s e r v i c e  

l o c a t i o n  problems a s  w e l l ,  l i k e  d e l i v e r y  sys tems  and  

emergency s e r v i c e s .  T h e i r  u s e  f o r  some u s e r s - a t t r a c t i n g  

sys tems  ( l i k e  p r imary  s c h o o l s )  h a s  a l s o  been found,  

a l t h o u g h  t h e  soundness  o f  t h i s  approach  is n o t  war ran ted .  

2. The s p a t i a l  i n t e r a c t i o n  embedding models .  These  have  

been deve loped  main ly  i n  t h e  f i e l d s  o f  r e g i o n a l  s c i e n c e  

and urban p l a n n i n g  and a r e  s t i l l  w a i t i n g  f o r  f u r t h e r  

development .  Although t h e i r  b e g i n n i n g  h a s  been i n  r e t a i l  

l o c a t i o n  problems ( H a r r i s ,  1964) ,  t h e y  seem t o  b e  a  

g e n e r a l  too l  t o  model a l l  u s e r s 1  a t t r a c t i n g  s y s t e m s ,  and 
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their use for public facility location has probably more 

justifications than the original use in the retail sec- 

tor (since they are based on users' benefit maximizing, 

rather than on producer's profit maximizing). 

The models which do not belong either to 1 or 2. These 

models are a minority in the literature, and most of 

them were probably produced because of lack of insight 

into their economical justifications. There are, how- 

ever, few exceptions which deserve further attention, 

since they seem to pose some new meaningful and challeng- 

ing issues for future research. Some examples are the 

work of Hanjoul (1980) on the disaggregate analysis of 

users' utility functions and preference orders; of 

Hansen, Thisse, and Hanjoul (1979) on the introduction 

of pricing policies in locational decisions1 of Hansen 

and Thisse (1980) on the introduction of voting proce- 

dures in locational decisions; and of Stahl (1980) on 

locational patterns arising from imperfect users' infor- 

mation. 

Behind these three broad families of models, a hierarchy of 

assumptions (the square boxes in Figure 12) can be built, each 

path in the hierarchy leading to just one of the sets of models. 
. . 

The following five hierarchical levels can be seen. From top to 

bottom they are: 

Assumption on who decides location and size of facili- 
ties (By definition of public facility location, this 

decision maker can only be a public authority.) 

Assumption on who decides demand allocation to facili- 

ties (This is the very start of possible branchings, 

leading to different models.) 

Assumption on users' behavior in choosing facilities. 

6 Assumption on the existence of an overall users' bene- 

fit function 

Assumption on consistency between public authority 

goals and users' goals 

Different combinations of different answers to the questions 



posed in the assumptions above lead to different models, as 

shown in Figure 12. 

Another useful property for a unifying framework is revealed 

by the dotted-line path at the bottom of the diagram of Figure 12. 

All the existing models seem to include the linear plant-location 

model as a special limiting case. This property holds true for 

the spatial-interaction embedding models (Leonardi, 1980), and 

it is rooted in the earlier well-known result (Evans, 1973). 

Some care, however, should be taken when stating this always holds 

true for the third kind of models (right-hand side round box at 

the bottom of Figure 12!, although this can be shown for some 

meaningful cases (Hodgson, 1978; Hanjoul, 1980). Anyway, this 

limiting property has to be recommended as a criterion for 

choosing between good and bad models, since usually models which 

do not meet it are easily found to have some inconsistency in 

theory and formulation. 

2.5 Towards More General Space-Time Structures 

2 . 5 . 1  I n t r o d u c t i o n  

Although the problems of locating different interacting 

activities and of dynamic (n?ultistage) optimization have been 

mentioned, the general framework developed so far is mainly a 

static single-service one. This reflects the state of the 

existing literature, which is mainly concerned with static single- 

service location problems. It is felt, however, that the future 

of location planning tools is in dynamic multi-service (or multi- 

activity) location models. 

The reason for multi-service systems becomes apparent if, 

for instance, the assumption of home-based return trips is 

dropped, and more general multiple-destination trips are allowed 

for the users. Multiple trips link all services and activities 

together (including residence), and a public decision on how to 

optimally locate them has to take these links into account. The 
reason for dynamics becomes apparent when it is realized that 

services have to be located in a built environment, with already 

existing facilities. Most static location models are very 



unrealistic in this respect, as they seem to assume that every- 

thing has to be built from scratch, except demand locations and 

sizes. But the real urban management problem has to deal with 

existing physical stocks of facilities, which means that capacity 

expansion, demolition, and relocation, rather than simple-minded 

optimal location, are the meaningful decisions. Of course, a 

dynamic framework is required for such decisions, since the urban 

manager has to take into account both the past (the current 

demand and stock of facilities) and the future (demand changes 

and influence of changes in current stock on future demand- 

facility interaction). 

The above stated problems cannot be .treated with the same 

detail used for static facility location problems, since they 

need a substantial amount of new theoretical and empirical 

research, which must still be carried out. Only an outline will 

be given here for some of the possible issues for future research 

programs, with no claim of exhaustiveness. 

2.5.2 The MuZtiactivity Location Problem 

The multi-activity location problem dates back as far as 

Koopmans and Beckmann (1957), for a normative approach, and 

Lowry (1964), for a descriptive approach. The simple, and yet 

powerful, Lowry framework has been given a mathematical- 

programming interpretation by Coehlo and Williams (1978), Wilson 

(1 978), Leonardi (1 979a) , MacGill and Wilson (1 979) , and 
Shmulyan (1980), thus leading towards its possible use as an 

explicitly normative tool. ~uilding on the above mentioned refer- 

ences, a possible multiactivity generalization of model (19)-(20) 

is as follows: 

max (Y (s)  - z hk ( z s i j  +sk O j  1 1  
s j k  ' i 



where a l l  v a r i a b l e s  and  f u n c t i o n s  a r e  d e f i n e d  a s  b e f o r e ,  e x c e p t  

f o r  t h e  s u p e r s c r i p t  k and  r ,  l a b e l i n g  d i f f e r e n t  a c t i v i t i e s ,  and 

a t h e  r a t i o  o f  k - a c t i v i t y  demand t o  r - a c t i v i t y  demand. Some- 
r k '  

t i m e s  ( b u t  n o t  n e c e s s a r i l y )  t h e  a r k  c o e f f i c i e n t s  c a n  b e  i n t e r -  

p r e t e d  a s  t r a n s i t i o n  p r o b a b i l i t i e s .  More g e n e r a l l y ,  t h e  { a r k }  

a r r a y  i n t r o d u c e s  a  l i n e a r  t echno logy  t y i n g  a l l  a c t i v i t i e s  

t o g e t h e r ;  i n  t h i s  s e n s e ,  c o n s t r a i n t s  ( 2 2 )  c a n  be  i n t e r p r e t e d  as 

some k i n d  of s p a t i a l  breakdown o f  a n  i n p u t - o u t p u t - l i k e  model.  

Indeed,  i f  summation o v e r  i i s  t a k e n  on b o t h  s i d e s  o f  ( 2 2 ) ,  t h e  

f o l l o w i n g  s e t  o f  e q u a t i o n s  i s  o b t a i n e d :  

where : 

i s  t h e  t o t a l  a c t u a l  ( s a t i s f i e d )  

demand f o r  a c t i v i t y  k ,  

k k  
Y = U P i - S i o )  i s  t h e  d i f f e r e n c e  between t h e  poten-  

i t i a l  denand f o r  a c t i v i t y  k o r i g i n a t i n g  

i n  demand r e s i d e n c e s  and t h e  u n s a t i s -  

f i e d  demand f o r  a c t i v i t y  k .  

I f  t h e  f o l l o w i n g  v e c t o r  and m a t r i x  n o t a t i o n  i s  i n t r o d u c e d :  

t h e n  ( 2 3 )  becomes: 

and i t s  e x p l i c i t  s o l u t i o n ,  f o r  Y g i v e n ,  is :  

The resemblance  of  ( 2 5 )  t o  t h e  g e n e r a l  s o l u t i o n  of  a n  i n p u t - o u t p u t  

model t h u s  becomes e v i d e n t .  But t h e  main i n t e r e s t i n g  f e a t u r e  of  



(25) is that, unlike in the usual input-output case, the total 

demand vector Y is not qiven. Because of its definition, it 

depends on unsatisfied demand, which in turn depends on the 

accessibility-sensitive demand generation mechanism. This means 

that the total demand vector is affected by the spqtial-interaction 

process. This is a warning for every top-to-bottom resource 

allocation procedure: feedbacks come from the bottom, and differ- 

ent locational policies may require changes in higher-level 

resource allocation policies. 

2.5.3 The Dynamic-Location Problem 

The dynamic-location problem was first introduced in Manne 

(1967), in a mainly private-sector oriented fashion. It was 

further extensively reviewed by Scott (1 971 ) , Sheppard (1 974) , and 
Erlenkotter (1979). A new operational approach for solving 

dynamic-location problems has recently been developed by Van Roy 

and Erlenkotter (1980). The trouble is, that all these works 

refer to linear objective functions, and no spatial-interaction 

behavior is taken into account. Moreover, they are mainly oriented 

towards capacity expansion for growing demand in a finite time 

horizon (although this assumption has been relaxed to some extent 

recently, see Van Roy and Erlenkotter, 1980). On the other hand, 

in most developed countries urban managers are faced with problems 

of fast fluctuating (sometimes declining) demand, the fluctuations 

taking place over time, space (because of migrations and residential 

mobility),and kind of services. (For instance, although total high 

school demand is usually growing everywhere, specializations 

required from the labor market may change over time.) At the same 

time, the average life of urban stocks is usually very long, and 

decisions on expansion, demolition and relocation are forced to be 

slower than the demand-changing process. 

I£ a rephrasing of the dynamic location problems in terms of 

classical operations research model forms is attempted, one might 

say that, while the capacity-expansion oriented approach raises 

mainly a job-scheduling problem, the urban stocks management 

approach raises mainly an inventory problem. This difference leads 



t o  two v e r y  d i f f e r e n t  ways t o  d e f i n e  a n  o p t i m a l  p o l i c y ,  a s  w e l l  

a s  two v e r y  d i f f e r e n t  p l a n n i n g  p h i l o s o p h i e s .  

1 .  F o r  f i n i t e - h o r i z o n  c a p a c i t y  e x p a n s i o n ,  a n  o p t i m a l  p o l i c y  

i s  a  p r o j e c t ;  t h a t  i s ,  a  l i s t  o f  f a c i l i t i e s  t o  be  opened  

and  c l o s e d  a t  e a c h  t i m e  p e r i o d .  

2 .  F o r  unbounded-hor izon  u r b a n  s t o c k  management, a n  o p t i m a l  

p o l i c y  i s  a n  i n v e n t o r y  r u l e ;  t h a t  i s ,  a  r u l e  wh ich ,  

g i v e n  t h e  c u r r e n t  knowledge o f  a c t u a l  demand, i t s  

p o s s i b l e  f o r e c a s t s ,  and  t h e  c u r r e n t  s t o c k  l e v e l s  i n  e a c h  

l o c a t i o n ,  d e t e r m i n e s  t h e  b e s t  way t h e s e  s t o c k  l e v e l s  

s h o u l d  b e  changed .  

Thus,  w h i l e  i n  a p p r o c h  1  t h e  main c o n c e r n  w i l l  b e  how much, where ,  

and  when t o  b u i l d ,  a p p r o a c h  2  w i l l  l e a d  t o  p rob lems  l i k e  u n c e r t a i n -  

t y  o v e r  f u t u r e  demand, a d a p t i v e  u p d a t i n g  mechanisms,  and  m o n i t o r -  

i n g  i n d i c a t o r s  f o r  c h a n g e s  i n  t h e  s y s t e m  r e q u i r i n g  new d e c i s i o n s .  

The mode l ing  of  s u c h  s y s t e m s  w i l l  n o t  be  a t t e m p t e d  h e r e ,  b u t  i t  

i s  o n e  o f  t h e  e x p e c t e d  r e s u l t s  o f  f u t u r e  r e s e a r c h .  

3 =  SOME UNIFYING PROPOSALS FOR STATIC FACILITY LOCATION MODELS 

3.1 I n t r o d u c t i o n  

T h i s  s e c t i o n  e x p l o r e s  t h e  p r o p e r t i e s  and  t h e  p o s s i b l e  

s o l u t i o n  methods  f o r  p roblem ( 1 9 ) -  ( 2 0 )  i n  t h e  s p e c i a l  case when a  

s p a t i a l  i n t e r a c t i o n  model  g i v e n  i n  e q u a t i o n  ( 1 )  h o l d s ,  and  t h e  

s p a c e  d i s c o u n t  f u n c t i o n  i s  a  n e g a t i v e  e x p o n e n t i a l .  I t  h a s  b e e n  

shown by Neuburger  (1971)  t h a t  t h e  s p a t i a l - i n t e r a c t i o n  embedding 

f u n c t i o n  f o r  t h e s e  models  h a s  t h e  g e n e r a l  form 

1 S . .  l o g s  Y (s) = - - i j  - 1 sij cij  e i j  11 ij 

where  

3 i s  t h e  s p a c e  d i s c o u n t  f a c t o r .  

Neuburger  a l s o  shows t h a t ,  i f  t h e  s p a t i a l  i n t e r a c t i o n  model i s  

l o o k e d  a t  a s  a  demand f u n c t i o n  ( t r a n s p o r t  c o s t s  c i j  b e i n g  t h e  



prices), then (26) can be interpreted as the consumers' surplus 

associated with the allocation matrix { s  and the travel cost 
i j 

matrix { c i j } .  The function defined by (26) is therefore the most 

natural measure of users' benefit, consistent with the assumed 

spatial interaction behavior, and the best suited evaluation 

criterion for a public decision maker. The function (26) is also 

related to Wilson's e.ntropy function (Wilson, 1 9 7 0 ) ,  although, as 

Neuburger points out, the analogy is only formal and no deep 

meaning should be looked for in it. 

It will be noticed in (26) that, if 6+w, then Y (S) reduces 

to a simple linear total transport cost term. Therefore, linear 

problems of the plant-location type are included in (26) as 

special cases. 

The aim of the next sections is both to review the main 

existing formulations of the spatial-interaction embedding location 

problems, and to propose new possible models. 

The exposition will be in order of increasing complexity, 

starting with the simplest case of inelastic-demand linear-budget 

constrained models, and introducing gradually elastic demand, 

existing stock, nonlinear cost functions. All the problems are 

formulated in the first standard form discussed in 2.4.2, that is, 

maximizing users' benefit subject to a constraint on total budget. 

3.2. Linear Budget Constraints 

3 .2 .7  T h e  F ixed  Demand Case 

If a Neuburger consumer surplus function of the form (26) is 

assumed as a measure of users' benefit, and if the cost for 

establishing and running the facilities are linear functions of 

the form: 

where 

h . ( x j )  is the total cost for a facility of size 
3 (capacity) x j in location j 



a is the cost per unit size in location j 
j 

b is the fixed (size-independent) cost to be paid 
j for opening a facility in j 

Then the general location model with fixed total demand assumes 

the following form: 

1 
min - ' ' i j  log 

i j  + z z S i j  C i j  
S , L , X  B ~ ~ E L  i j C L  

subject to 

C ( a ,  x + b.) < B 
j EL I j I - 

(the constraints s i j  > - 0 are not needed, since the objective 

function is not defined for negative values), where: 

i labels the demand locations, which are given 

j labels the locations of facilities 

L is the subset of chosen facility locations, among 
all possible given locations; the subset L is not 
given, but it has to be determined by optimization 

'i 
is the flow of users from demand location i to 
facility j ,  for  EL (here only users' attracting 
systems are considered) 

is the total demand in location i 



'i 
i s  t h e  c o s t  of a  t r i p  from demand l o c a t i o n  i t o  
f a c i l i t y  i n  l o c a t i o n  j  

x i s  t h e  s i z e  of t h e  f a c i l i t y  i n  l o c a t i o n  j ,  f o r  
j   EL 

B i s  t h e  t o t a l  budget  a v a i l a b l e  f o r  e s t a b l i s h i n g  and 
running a l l  t h e  f a c i l i t i e s  

The problem of choosing t h e  s u b s e t  L induces  combina to r i a l  

f e a t u r e s  i n  t h e  above mathematical  program. I f ,  a s  a  s p e c i a l  ca se ,  

6-+ , t h e  f i r s t  t e r m  i n  t h e  o b j e c t i v e  f u n c t i o n  d i s a p p e a r s ,  and 

t h e  above problem becomes: 

min ' ' i j  ' ij s , L , X  i j&L 

s u b j e c t  t o  

C ( a ,  x + b . )  < B 
 EL j  3 - 

(Now c o n s t r a i n t s  s > 0 a r e  needed.)  
i j  - 

Since  t h e r e  i s  no need t o  ma in t a in  unused capacity,when t h e  

budget  c o n s t r a i n t  i s  b ind ing  ( t h e  most s e n s i b l e  c a s e )  it w i l l  

a l s o  be: 

That i s ,  t h e  t o t a l  c a p a c i t y  of t h e  f a c i l i t y  i n  l o c a t i o n  j  i s  set 

equa l  t o  t h e  t o t a l  demand a t t r a c t e d  i n  j .  The v a r i a b l e s  x can 
j 



thus be eliminated, and the resulting location problem, containing 

the variables sij and the subset L only, is as follows: 

min E 1 Sij Cij 
s,L i  EL 

subject to 

C ( a .  x + b . )  = B 
 EL j J 

The above problem is the standard budget-constrained location 

problem found in the operations research literature (ReVelle, 

Marks, Liebman, 1970; ReVelle and Rojeski, 1970; Hansen and 

Kaufman, 1976). It has thus been shown how, when the spatial 

discount rate ,!3 tends to infinity, the spatial-interaction-based 

location model tends to the plant-location model, and the induced 

limiting form in users' behavior follows the nearest-facility 

allocation rule. 

In the most meaningful cases, however, ,!3 will not be infinity, 

and the plant-location models cannot be used. The resulting non- 

linear combinatorial problems are discussed in Leonardi (1980), 

and results are forthcoming on efficient algorithms to solve 

these problems and make sensitivity analysis on the space discount 

rate and the budget level. 

However, without going into the technical details of the 

algorithmic problems (which are outside of the scope of this 

paper), much insight can be gained in understanding the structure 

of the spatial-interaction-based location model, if its combin- 

atorial part (that is, the set L) is held constant. If L is given, 

it can be dropped from the list of control variables, and the 

problem can be rewritten as: 

1 min - C s logs 
i j ij + Ca Sij Cij 

S I X  ' ij 1 I 



subject to 

where R is defined as: 

R = B - C b the remaining budget after the fixed costs 
j EL j for opening the facilities have been de- 

duced; with no loss of generality, R will 
also be called "the budget" from now on 

Problem (27)-(31) is a convex programming problem with linear 

constraints. (It can be easily shown that the objective function 

(27) is convex.) It therefore has a unique optimal solution, and 

the Kuhn-Tucker first order conditions are necessary and sufficient 

to identify it. The special structure of the objective function, 

together with the simplicity of the constraints, makes it possible 

to find explicit cl.osed-form solutions for the flow variables s 
i j 

and for the facility sizes x , and to analyze the sensitivity to 
j 

changes on the budget level R. Three cases can be given. 

1. The budget is more than is needed, so that constraint 

(30) is not binding. 

2. The budget is scarce, but enough to satisfy all the 

required capacity, so that constraint (30) is binding. 

3. The budget is not enough to satisfy all the required 

capacity, so that no solution to inequalities (29) can 

be found. 

In the first case constraint (30) can be dropped, and also 

constraints (29) and (31) lose meaning. The optimal values for 



the flow variables s i j  are the solution to the following mathe- 

matical programming problem. 

subject to 

BY using the standard Lagrange-multipliers method, we easily obtain 

for the optimal si j  : 

where 

We can now state the conditions under which ( 3 4 )  is actually 

the solution to ( 2 7 )  - ( 3 1  ) . The total size of the facility in j 

must be not less than the total demand attracted in j, so that 

its minimum feasible value is 

From ( 3 6 )  it follows that the total cost of our location plan 

cannot be less than 



Thus 

- 
if R > - 5 , x as computed by (36) is an optimal 

j 
solution to problem (27)-(31) 

if R < R , the budget constraint becomes binding and 

can no longer be neglected. 

The second case applies when the budget satisfies the 

inequalities 

where 5 is given by (37) . The meaning of the left-hand side of 

(38) is as follows: the lowest cost solution is to locate just 

one big facility in the cheapest location, regardless of travel 

costs for the users. We require that the budget be not less 

than the cost of the lowest cost solution. 

Because of (38), constraint (30)is now binding, so that it 

is always a strict equality. This will be true for constraints 

(2g)as well, since a slack capacity in the facilities could only 

be afforded if we had excess budget, or R > R ,  which contradicts 
condition (38) . 

The x variables can be eliminated, since the size of each 
j 

facility is equal to the number of users it attracts. Problem 

(27)-(31) reduces to 

min + C s  
i j 

i j 
ij 'ij 

sub j ect to 



and use of the Lagrange-multiplier technique yields for the 

general solution 

where 

X is the Lagrange multiplier for the budget constraint (41). 

Comparing. (42) and (34), we see that (34) reduces to (42) if we 

put X = 0 .  The term 

can thus be considered as a special attraction weight for each 

location, attractiveness being decreasing with the unit cost in the 

location. Each location has a different attraction weight and only 

when the budget constraint is not binding, that is when X = o, 
will all locations have equal weights. One remark is perhaps 

needed on these attractiveness weights. From the way they are 

built, one might argue that prices b are charged to the users. 
j 

But no pricing policy is assumed here. Constraints (29) have been 

dropped by algebraic manipulation only, but they are still acting. 

What users perceive is the capacity offered in j, x , and not the 
j 

unit cost b , which is paid by the public decision maker. Thus, in 
j 

spite of how it looks, (42) arises from a doubly-constrained 

spatial interaction behavior. 

It is useful to analyze the size of the facilities as a 

function of A, in order to find the sensitivity of the solution 

to changes in the available budget. Let us define 

-Xaj 
f.. e 



I t  can  be shown t h a t  t h e  d e r i v a t i v e  o f  ( 4 3 )  i s  g i v e n  by 

where sij and x a r e  g i v e n  by ( 4 2 )  and ( 4 3 )  , and ai i s  d e f i n e d  
j 

t h e  ave r age  u n i t  c o s t  weighted  w i t h  t h e  f l ows  coming frcm i .  

I?eriva+:ives ( 4 4 )  v a n i s h  i f  

and,  i f  ( b 5 1  h a s  a  s o l u t i o n ,  convex i t y  o f  ( 3 9 )  a s s u r e s  i t  a s  a n  

op t ima l  one  f o r  problem ( 3 9 ) - ( 4 1 ) .  

Other  e a s i l y  found r e s u l t s  a r e  

I 
Zipi  , i f  a = min a 

j k k 
x , (p) = 
3 

0 , i f  a :. min a 
j k k 



The above  q u a n t i t i e s  c a n  b e  used  t o  c l a s s i f y  l o c a t i o n s  i n t o  t h r e e  

main g r o u p s :  

1 .  I f  x ' ( O )  > 0 and a = min a t h e  g r a p h  o f  t h e  f u n c t i o n  
j j k k ' 

% . ( A )  h a s  t h e  s h a p e  shown i n  F i g u r e  1 3 .  T h a t  i s ,  t h e  s i z e  
I 

o f  t h e  f a c i l i t y  i n  t h e  l o c a t i o n  w i t h  minimum cost  i s  i n -  

c r e a s i n g  w i t h  X ,  and it a t t r a c t s  a l l  t h e  demand i n  t h e  

l i m i t ,  when X + w and  R a p p r o a c h e s  t h e  l e f t - h a n d  s i d e  o f  

( 3 8 ) .  I n  o t h e r  words ,  when r e s o u r c e s  become s c a r c e ,  t h e  

l o c a t i o n  c o s t  becomes t h e  main c r i t e r i o n  t o  d e c i d e  o n  s i z e  

and  l o c a t i o n ,  and  t h e  o p t i m a l  s o l u t i o n  t e n d s  t o  concen-  

t r a t e  i n  o n e  s i n g l e  l o c a t i o n  (namely ,  t h e  c h e a p e s t  o n e ) .  

F i g u r e  13 .  S i z e  o f  f a c i l i t y  a s  a  f u n c t i o n  o f  t h e  b u d g e t  
m u l t i p l i e r .  Case 1:  c h e a p e s t  l o c a t i o n .  



2. I f  x : ( o )  > o and aj > min a t h e  g r aph  o f  t h e  f u n c t i o n  
3 k k ' 

x ( A )  has  t h e  shape  shown i n  F i g u r e  14. Equa t ion  (45)  
j 

h a s  a f i n i t e  s o l u t i o n  'Xk  s o  t h a t  t h e  s i z e  x  rises t o  
j 

a  maximum x! f o r  o < X  < A *  , and t h e n  f a l l s  a g a i n  f o r  
3 - 

h > A *  . I n  o t h e r  words, f o r  t h i s  k ind  of  l o c a t i o n  t h e r e  

i s  a  t h r e s h o l d  v a l u e  f o r  t h e  budget ,  above which it i s  

conven i en t  t o  i n c r e a s e  t h e  s i z e  of  t h e  f a c i l i t y  t h e r e ,  

and below which f a c i l i t y  must  b e  abandoned i n  f a v o r  o f  

cheaper  l o c a t i o n s .  

F i g u r e  14. S i z e  of f a c i l i t y  a s  a  f u n c t i o n  of  t h e  budget  
m u l t i p l i e r .  C a s e  2 :  i n t e r m e d i a t e  c o s t  
l o c a t i o n .  



3 .  If x:(o) < 0 and aj > min a k ,  the graph of the function 
I 

x (A) is shaped as in Figure 15. Equation (45) has no 
j 
finite solution in this case, so that the size x de- 

j  
creases monotonically with A. This is clearly the worst 

kind of location, as far as scarce resources are concerned. 

The size of the facility there decreases for any decrease 

in the budget. 

Figure 15. Size of facility as a function of the budget 
multiplier. Case 3: high cost location. 



The previous analysis, simple as it is, reveals two facts. 

Even with linear costs (that is, with no scale economies) 

concentration effects can be caused by low budgets. This 

is mainly due to the double-constrained nature of the 

model, and in particular to constraint (29), requiring 

demand not exceeding capacity for each facility. 

There is nothing like a fixed hierarchy among the sizes 

in each location. Changes in the total budget can turn 

the distribution of facilities upside down, so that what 

seemed to be a good location may be abandoned and what 

seemed to be a bad location may be chosen. 

Parametric formulas (43) can be used quite easily to get 

actual numerical solutions. We can build the total cost function: 

which can be easily shown to be monotonically nonincreasing for 

X > o and such that - 

T(c0) = imin a C P 
i 

i 
k 

where 

- 
R is defined by (37) . 

(The graph of T ( X )  is shown in Figure 16) Provided the actual budget 

R satisfies (38), the optimal value of the multiplier X is the 
root of the following eauation 

which can be solved quite easily by numerical methods. 



( m i  n 
k 

Figure  16. T o t a l  c o s t  a s  a  f u n c t i o n  of t h e  budget m u l t i p l i e r .  

I n  t h e  t h i r d  c a s e  w e  have: 

t h a t  i s ,  t h e  budget i s  n o t  even enough t o  c o n c e n t r a t e  a l l  t h e  

demand i n  t h e  cheapes t  zone. A s  can be seen i n  F igu re  16 t h e r e  

i s  no r e a l  s o l u t i o n  t o  (50)  i n  t h e  r eg ion  de f ined  by ( 5 1 ) ,  t h a t  

i s ,  t h e  f e a s i b l e  s e t  of problem ( 2 7 ) - ( 3 1 )  i s  empty. I n  a c t u a l  

a p p l i c a t i o n s ,  what we can do i n  t h i s  c a s e  i s  e i t h e r  t o  i n c r e a s e  

t h e  budget  o r  t o  s l acken  c o n d i t i o n  ( 2 9 )  by a l lowing  f o r  some 

overcrowding i n  t h e  f a c i l i t i e s .  This  can be done by fo rmula t ing  



the mathematical programming problem: 

1 min L s log Si + L S i j  C i j  
i j  i I 

subject to 

where 

p is the maximum allowable density, as measured by 

the ratio number of users/facility size. 

Problem (52)-(56) can be reduced to the same form as problem 

(39) - (41 ) . If we eliminate the x variables by means of (54) and 
j  

define 

we get the problem 

1 min - L S i j  log S i j  + S ' i j  i j  
i j  ' i j  

subject to 



which is the same as problem (39)-(Ul), if we replace a by a; . 
j 

A common question to be asked in applications is how big the 

density p must be in order to meet the budget constraint. The 

minimum value of P can be found by imposing the condition 

I R > ( E  p i )  rnin - - 
i j P 

which ensures a non-empty feasible set. Solving for P we get 

a .  Zipi 
p > min - (61 1 

j 

The right-hand term is the ratio between the cost of establishing 

a facility big enough to have no congestion and the actual 

resources we can use to establish the facility. When this ratio 

is greater than one even in the cheapest location, it gives us 

a measure of the least trade-off that is necessary between con- 

ge.s tion and 'resources. 

3 . 2 , 2  E l a s t i c  Demand Case  

It will now be shown how a special form of demand sensitive- 

ness to accessibility can be introduced, which is consistent with 

a general Neuburger consumer surplus function. 

The proposed general form is: 

1 min L ( P ~ - G ~ ) ~ o ~ ( P ~ - G . )  + 1 S i j l o g S  + 
1 

i i j 
i j 

sub j ec t to 



(the implicit constraints s i j  - > o an?, G P are automatically i -  i 
accounted for by the form of the objective function) where the 

definitions of the variables are the same as for the fixed-demand 

model (27)-(31), except for the new ones: 

Gi 
is the total actual demand in i (not fixed, but to 

be found) 

io is a parameter which can be interpreted as the 

"cost" associated with having no destination, that 

is, not being a user of any facility. 

It must be stressed that, unlike in the fixed demand model, 

here the total actual demand which will be generated in each 

demand location is not fixed and known in advance, but has to be 

determined as a function of the offered service itself. However, 

we still assume an upper bound pi is known for the demand in 

location i, and actual demand G~ will be generally less than pi. 

This upper bound can be interpreted as the potential demand in i t  

that is, the demand which would be generated with infinite acces- 

sibility to the service. The special form of the "entropy" term 

in the objective function (62) has been adopted to embed both the 

flow (or allocation) variables s  and the generated demands G . 
i j i 

The elastic demand assumption is probably not the best suited 

one for those services which satisfy real needs (for instance, 

primary schools or emergency medical care). It is surely sound 

in many other services, however, such as high schools, libraries, 

recreational services, and also some health care facilities such 

as hospitals. 

In analogy with the fixed-demand model, it can be shown how 

(62)-(65) is a general formulation which includes other models as 



special cases. - If, for example, only all-or-nothing values for 

the x variables and nearest-facility allocations are allowed, 
j  

we get a special form of the price-sensitive demand location 

models discussed in Wagner and Falkson (1975) and in Erlenkotter 

(1977). It is shown in these references how some changes of 

variables bring this problem back to the standard form of the 

plant-location mode1,so that the usual algorithms can be used. 

Let us now go back to the more general model (62)-(651, and make 

a very simple, but fundamental observation. 

Let us define the variables 

and assume 

Let, also, the summations over j start from 0 .  Then it is easily 

seen that problem (62)-(65) is equivalent to the following 

problem: 

I 
min L Sij  l o g s i j  + L S i j  C .  

i j  i j  1 j  

suhj ect to 



A c o ~ p a r i s o n  w i t h  problem ( 2 7 ) - ( 3 1 )  shows t h a t  t h e  two 

problems a r e  c o m p l e t e l y  i d e n t i c a l .  What w e  have  d o n e  i s  t o  i n t r o -  

d u c e  a  dummy l o c a t i o n ,  l a b e l e d  a s  j = 0 ,  where  a  dummy f a c i l i t y  

w i l l  b e  l o c a t e d  a t  no c o s t .  The dummy f a c i l i t y  w i l l  b e  made b i g  

enough t o  s e r v e  a l l  t h e  p o t e n t i a l  demand which i s  n o t  s e r v e d  by 

t h e  r e a l  f a c i l i t i e s .  

The above  o b s e r v a t i o n  means t h a t  a l l  t h e  t h e o r e t i c a l  and  com- 

p u t a t i o n a l  problems r e l a t e d  t o  model ( 6 2 ) - ( 6 5 )  c a n  be  s o l v e d  by 

t h e  same a p p r o a c h e s  d e v e l o p e d  f o r  t h e  fixed-demand model ,  w i t h  

o n l y  s l i g h t  c h a n g e s .  However, t h e  main r e s u l t s  w i l l  b e  r e s t a t e d  

i n  new t e r m s  f o r  c o n v e n i e n c e .  I n  what  f o l l o w s ,  summations o v e r  j 

w i l l  be a g a i n  w i t h  j  # 0 ,  

L e t  u s  d e f i n e  

-Aaj 
w = e t t h e  a t t r a c t i o n  w e i g h t  i n  l o c a t i o n  

j 
j  ( A  i s  t h e  Lagrange  m u l t i p l i e r  

f o r  t h e  b u d g e t  c o n s t r a i n t )  

-Bcio 
f = e  
i0 I 

where cio are g i v e n  c o n s t a n t s  

-6 C t j  f i j  = e t t h e  e x p o n e n t i a l  d e c a y  f a c t o r  f o r  

a  t r a v e l  c o s t  c 
i j  

I n . =  C f  w 
1 

t h e  Hansen (1959)  measu re  o f  a c c e s -  
i j  j  ' 

j s i b i l i t y  t o  t h e  s e r v i c e  f rom t h e  

demand p o i n t  i 

Then w e  have :  



We see from (66) how the elastic demand assumption works. 

The total actual demand generated in i, Gi, is a function of the 

accessibility to the service from i; it is zero for zero acces- 

sibility (which means no available facilities) and tends to the 

total potential demand pi for infinite accessibility. The shape 

of (66) is shown in Figure 17. (compare with Figure 7) . 
We conclude this section by noting that, unlike in the fixed 

demand case, here the feasible region is non-empty for any R > - 0, 
since the unsatisfied potential demand is automatically pushed 

out of the system by the elastic-demand mechanism implied by (66). 

Figure 17. Total demand in i as a function of accessibility. 



3 . 2 . 3  Models w i t h o u t  C a p a c i t y  C o n s t r a i n t s  

It has already been stressed that the models discussed in 

3.2.1 and 3.2.2 are doubly constrained, because they have con- 

straints both on the total demand coming from each location and 

on the total number of users that can be served at each location. 

Equality between attracted demand and available capacity in each 

location is always required. If this assumption is dropped, 

another family of location models is obtained. These models, 

first introduced for the location of retail trade (Harris, 1964; 

Lakshmanan and Hansen, 1965; Huff, 1964, 1966) assume that the 

users' behavior is described by a spatial-interaction model with 

no constraints on the destinations, where the attractiveness of 

the facilities is measured by a nondecreasing function of their 

size (usually a power function). Although these models were 

mainly used for retail trade location, it is argued that they 

might be useful for some kinds of public services too. 

Recently, mathematical programming formulations, related to 

the ones already discussed in Sections 3.2.1 and 3.2.2, have been 

developed for these models. They are briefly discussed here. 

The usual general form for these models is (Coelho and 

Wilson, 1976) : 

C1 max c s ( -  l o g x  - c . . )  - &  c s 104s 
i j  B j  I B i j  i j  i j  s,x i j  

subject to 



Anothe r  fo rm wh ich  h a s  been  shown t o  b e  e q u i v a l e n t  t o  ( 6 9 ) - ( 7 2 ) ,  

and  wh ich  c o n t a i n s  t h e  x v a r i a b l e s  o n l y ,  i s  g i v e n  by L e o n a r d i  
j 

(7973 ,  1978)  : 

-6 c max C P. l o g C  x a e  ij 
X i 1 j 

j 

s u b j e c t  t o  

I n  b o t h  cases, t h e  g e n e r a l  s o l u t i o n  m u s t  s a t i s f y  t h e  con- 

d i t i o n s  (see t h e  a b o v e  r e f e r e n c e s  f o r  t h e  p r o o f ) :  

whe re  

'i j 
i s  t h e  f l o w  o f  u s e r s  f rom i t o  j 

a n d  i s  g i v e n  by t h e  f o l l o w i n g  p r o d u c t i o n - c o n s t r a i n e d  s p a t i a l  

i n t e r a c t i o n  model :  



C o n d i t i o n  ( 7 6 )  s t a t e s  t h a t  t h e  budget  must be  a l l o c a t e d  t o  

l o c a t i o n s  i n  p r o p o r t i o n  t o  t h e  t o t a l  demand t h e y  a t t r a c t .  T h i s  

b a l a n c i n g  p r i n c i p l e ,  more o r  less e x p l i c i t l y  s t a t e d ,  h a s  been 

wide ly  used o v e r  a  l o n g  p e r i o d  o f  t i m e .  A r e c e n t  r ev iew o f  t h e  

c o n c e p t ,  i t s  a p p l i c a t i o n s ,  and e x t e n s i o n s  c a n  be  found i n  H a r r i s  

and Wilson ( 1 9 7 8 ) .  E q u a t i o n s  ( 7 6 )  c a n  be  e a s i l y  s o l v e d  by a  

f i r s t - o r d e r  i t e r a t i o n  t e c h n i q u e  o v e r  t h e  x . 
j 

I t  i s  i n t e r e s t i n g  t o  compare t h e  main f e a t u r e s  o f  problem 

(69)  - ( 7 2 )  w i t h  t h e  ones  of  problem ( 2 6 ) -  (30)  . I n  t h e  more mean- 

i n g f u l  c a s e  w e  have  t h a t  i n e q u a l i t y  (38)  h o l d s ,  s o  t h a t  f o r  ( 2 6 )  - 
(30)  it must be 

But t h i s  c o n d i t i o n  w i l l  n e v e r  be l i k e  ( 7 6 ) ,  u n l e s s  R = C 2 and 
i 

a l l  a ,  a r e  e q u a l ,  t h a t  i s ,  w e  have no d i f f e r e n c e s  amongi 
J 

l o c a t i o n  c o s t s .  

Another  i m p o r t a n t  d i f f e r e n c e  i s  found i n  t h e  s e n s i t i v i t y  

of  t h e  r e l a t i v e  s i z e  o f  f a c i l i t i e s  t o  changes  i n  t h e  budge t .  

Indeed,  model ( 6 9 ) - ( 7 2 )  i s  e a s i l y  s e e n  n o t  t o  be  s e n s i t i v e  a t  a l l ,  

s i n c e  i t  keeps  t h e  same r e l a t i v e  d i s t r i b u t i o n  o f  s i z e s  and l o c a -  

t i o n s  f o r  a l l  t h e  p o s s i b l e  budge t  v a l u e s ,  and no c o n c e n t r a t i o n  

o c c u r s  because  o f  t h e  s c a r c i t y  o f  r e s o u r c e s .  

3 . 2 . 4  Optimal Location with a Partially Existing Stock 

I n  t h e  models d i s c u s s e d  i n  t h e  p r e c e e d i n g  s e c t i o n s  no 

d i s t i n c t i o n  i s  made between d i f f e r e n t  t y p e s  o f  c o s t s .  W e  assume 

a  g e n e r a l  o v e r a l l  u n i t  c o s t  f o r  t h e  f a c i l i t i e s ,  which w i l l  

p o s s i b l y  i n c l u d e  b o t h  b u i l d i n g  and r u n n i n g  c o s t s .  W e  a l s o  assume 

t h a t  b o t h  c o s t s  a r e  a lways  m e t  f o r  e v e r y  f a c i l i t y ;  t h i s  i s  t h e  

same a s  assuming t h a t  w e  a lways  b u i l d  new f a c i l i t i e s  and d o  n o t  

t a k e  i n t o  a c c o u n t  e x i s t i n g  o n e s ,  i f  any.  

I n  a  more r e a l i s t i c  s e t t i n g ,  however, l o c a t i o n a l  d e c i s i o n s  

a r e  made based on a n  a l r e a d y  b u i l t  envi ronment ,  where a n  e x i s t i n g  

s t o c k  o f  f a c i l i t i e s  i s  u s u a l l y  a v a i l a b l e .  I n  t h e  more g e n e r a l  



c a s e ,  d e c i s i o n s  have t o  be made on expanding t h e  e x i s t i n g  

c a p a c i t y  by b u i l d i n g  new f a c i l i t i e s ,  u s i n g  p a r t  o f  t h e  e x i s t i n g  

c a p a c i t y ,  and c l o s i n g  down some of t h e  e x i s t i n g  f a c i l i t i e s .  Each 

one of  t h e s e  a c t i o n s  i m p l i e s  d i f f e r e n t  k i n d s  o f  c o s t s ,  and i n  

what f o l l o w s  w e  w i l l  t r y  t o  t a k e  t h i s  i n t o  account .  

I t  shou ld  be  a l s o  s t r e s s e d  beforehand t h a t  l o c a t i o n  problems 

w i t h  p a r t i a l l y  e x i s t i n g  f a c i l i t i e s  l e a d  n a t u r a l l y  t o  dynamic 

fo rmu la t i ons .  The models d i s c u s s e d  i n  t h i s  s e c t i o n  can  t h u s  be 

looked upon as a  f i r s t  s t e p  towards dynamic g e n e r a l i z a t i o n s .  The 

t h i r d  k ind  o f  c o s t s  ( demol i t i on  c o s t s )  w i l l  n o t  be i n t roduced ,  

s i n c e  d e m o l i t i o n  i s  o n l y  j u s t i f i e d  i n  a  f u l l y  dynamic fo rmu la t i on  

o f  t h e  problem. However, most of  t h e  r e s u l t s  c a n  be e a s i l y  

g e n e r a l i z e d  i n  o r d e r  t o  account  f o r  t h i s  problem i f  t h e  o p t i o n  o f  

demol ishing p a r t  o f  t h e  unused c a p a c i t y  is  added. 

W e  p ropose  two main models: t h e  f i r s t  one w i t h  s imple  l i n e a r  

b u i l d i n g  c o s t s  added, and t h e  second one w i t h  f i x e d  cha rges  i n  

b u i l d i n g  c o s t s  added. 

1 .  For  l i n e a r  b u i l d i n g  c o s t s ,  and w i t h  a  g e n e r a l  o b j e c t i v e  

f u n c t i o n  a s  i n  (26), w e  have t h e  problem 

I min E log Sij  + 
i j  

" ' i j  'ij 
1 3  

s u b j e c t  t o  



where 

'j 
i s  t h e  e x i s t i n g  c a p a c i t y  i n  u s e  a t  l o c a t i o n  j 

z i s  t h e  newly b u i l t  c a p a c i t y  i n  l o c a t i o n  j 
j 

v i s  t h e  t o t a l  e x i s t i n g  c a p a c i t y  i n  l o c a t i o n  j 
j 

b i s  t h e  u n i t  b u i l d i n g  c o s t  i n  l o c a t i o n  j 
j 

d i s  t h e  u n i t  c o s t  f o r  h o l d i n g  unused c a p a c i t y  
j 

i n  l o c a t i o n  j 

The f o l l o w i n g  p r o p e r t i e s  of t h e  g e n e r a l  s o l u t i o n  t o  ( 7 8 ) -  

( 8 3 )  a r e  e a s i l y  proved by means of t h e  Kuhn-Tucker o p t i -  

m a l i t y  c o n d i t i o n s .  

a .  The s o l u t i o n  h a s  a lways  tlie form 

Tha t  i s ,  it i s  n e e d l e s s  t o  expand t h e  c a p a c i t y  of  t h e  

s e r v i c e  where t h e  e x i s t i n g  one i s  n o t  c o m p l e t e l y  used .  

b. I f  f o r  any l o c a t i o n  j we have 

t h e n  y must e q u a l  v . That  i s ,  wherever  h o l d i n g  unused 
j j 

c a p a c i t y  i s  more c o s t l y  t h a n  u s i n g  i t ,  t h e  t o t a l  e x i s t i n g  

c a p a c i t y  i s  f u l l y  used .  

c .  When c o n s t r a i n t s  ( 8 0 )  and ( 8 1 )  a r e  b i n d i n g ,  w e  have f o r  

t h e  f low v a r i a b l e s  



where 

and X is the Lagrange multiplier associated with the 
budget constraint (81 ) . 

d. Accordinq to (841, the total size of the facility In 

each locaticn is given by 

and we have also 

for the old and new stock, respectively. 

As for the simpler model (26) - (30) , the solution 
for nonbinding constraints is found by putting X = 0. 

The minimum value for R under which the feasible set is 

empty can be found by concentrating as much demand as 

possible in the locations with the lowest a values 
j 



(u s ing  t h e  e x i s t i n g  c a p a c i t y  a s  much a s  p o s s i b l e ) ,  and 

t h e  remaining demand i n  t h e  l o c a t i o n s  w i th  t h e  lowest  

b u i l d i n g  c o s t s .  

Formulas ( 8 4 ) - ( 8 8 )  can be u s e f u l l y  compared wi th  

formulas  ( 4 2 ) - ( 4 7 )  i n  Sec t ion  3.2.1. The g e n e r a l  form 

of t h e  s o l u t i o n  i s  b a s i c a l l y  t h e  same, t h e  on ly  d i f f e r -  

ence being i n  t h e  c o s t  terms ( 8 5 ) .  Unfor tuna te ly ,  we do 

n o t  know a p r i o r i  t h e  l o c a t i o n s  where c o n s t r a i n t  (82)  i s  

binding on t h e  r i g h t  s i d e ,  s o  t h a t  t h e  s e n s i t i v i t y  t o  

changes i n  t h e  t o t a l  budget i s  l e s s  easy  t o  be analyzed.  

For b u i l d i n g  c o s t  w i th  f i x e d  cha rges ,  and wi th  a  g e n e r a l  

o b j e c t i v e  f u n c t i o n  a s  i n  ( 2 6 ) ,  we have t h e  problem 

min ' L sij  log s 
f3 

i j  + L S i j  C i j  

i j  i j 

s u b j e c t  t o  

where 

h i s  t h e  f i x e d  charge  t o  b u i l d  new f a c i l i t i e s  
j 

i n  l o c a t i o n  j 



6 is a boolean variable, which is set to 1 when 
j 

capacity in j is expanded, and 0 otherwise 

M is a very large number. 

Model (89)-(95) looks very much like model (78) -(83), 

except for the new costs and the 6 variables. Provided 
j 

the values for the 6 are known, the model has the same 
j 

form and can be treated in the same way. Exact and/or 

heuristic methods to find the optimal 6 values are 
j 

therefore needed. This can be done with methods related 

to the ones developed for the classical plant-location 

problem. (The special structure of problem (89)-(95) has 

still to be exploited, however.) This is an area in 

which new research has still to be carried out. 

An elastic-demand version of (78) - (83) and (89)- (95) can be 
developed with the same approach used in model (69) - (72) . If (69) 

or (73) replace (78) and (63), it is easily shown that for the 

optimal solution we must have 

where 

X is a Lagrange multiplier. 

3.3 Nonlinear Budget Constraints 

3 . 3 . 1  The Basic Mode2 

If nonlinear cost functions replace the terms a. x in (30), 
I j 

the model (27)-(31) assumes the following form: 

1 min - 1  s logs + I S  c 
6 ij i j i j ij ij ij 



subject to 

where 

f . ( x . )  is the cost of a facility of size x  in 
I I j 

location j , with f  . ( 0 )  = 0 
3 

The functions f. ( - )  are assumed to be as smooth as needed and to 
1 

be concave nondecreasing. This means that scale economies are 

introduced in the model. 

By using the Lagrange-multiplier method it is found that the 

general solution to ( 9 7 )  - (1  0 0 )  when constraints ( 9 9 )  and ( 1  0 0 )  

are binding satisfies the following equations: 

for the flow variables, where we have defined 

f  ' ( x . )  is the first derivative of f . ( x . )  
j I I I 



X is the Lagrange multiplier associated with 

constraint ( 1  0 0 )  . 
Equations ( 1  01 ) can be compared with ( 4 2 )  for the analogy; however, 

( 1 0 1 )  is not a closed-form solution, since the right-hand side is 

a function of the x variables. For these we can write the 
j 

equations 

where 

and x is the Ex. vector. The right-hand side of ( 1  0 1  ) can be 
3 

rearranged in a more meaningful way 

where we have defined 

a term which does not depend on x . ( 1 0 4 )  is a logistic in £ ! ( . )  , 
j 3 

so that we have for the derivatives 



where 

I, 

g .  (x.) = - f .  ( x . )  are the second derivatives of the 
3 3 3 3 

cost curves, changed in sign; g ( 0 )  

is always nonneqative because of 

the concavity assumption. 

The derivatives of the functions F.(o) defined by (103) are thus 
3 

given by 

S F .  

A further requirement has to be met by the functions f .  ( . ) ,  
I 

Of course we must have 

(104) shows that this happens only if 

that is, the cost curves have to be infinitely steep at the origin. 

This is a kind of smooth version of fixed-charge costs, which 

introduce scale economies by means of an infinitely steep initial 

jump. When condition (108) is not met, we can never have a 

solution with x.= o for some j; the linear-cost models are a 
3 

particular example of this general fact. 

Research has to be carried out to find convenient numerical 

solution methods to (102), possibly with special assumptions on 

the functions The simplest assumption that can be made is 
J 

that of constant elasticities, so that the f. ( o )  will be power 
3 

functions. They can be written in the following form: 



so that 

The following set of equations for the variables x and the 
j 

multiplier X should be solved: 

- h a j /  
h,, e 

This approach can be also used to build a nonlinear-cost version 

of models (69) - (72) and (73) - (75) , with size-dependent utility 
functions. One easily obtains for the optimal point the condi- 

tions 

which can be usefully canpared with (76). Elastic demand can be 

introduced as in Secticn 1.2, and needs no new formal tools. 

However, it must be recalled that the assumption of concavity 

for the cost functions destroys the uniqueness property of solu- 

tions to (97)-(loo), and multiple non-optimal solutions may be 

found. The usefulness of (110) and (111) to find numerical 

solutions is therefore limited, and must still be explored. 



3 , 3 . 2  Nonlinear Cost Functions with Partially Ezisting Stock 

The p roposed  model i s  ana logous  t o  t h e  o n e s  i n t r o d u c e d  i n  

S e c t i o n  3.2.4 : 

m i n i ;  sij l o g s  i j  + C sij c i j  
1 J 

s u b j e c t  t o  

where t h e  v a r i a b l e s  a re  d e f i n e d  a s  i n  S e c t i o n  3.2.4,  and:  

f . ( - )  i s  t h e  r u n n i n g  c o s t  f u n c t i o n  f o r  l o c a t i o n  j ,  
3 

g j  ( - 1  i s  t h e  b u i l d i n g  c o s t  f u n c t i o n  f o r  l o c a t i o n  j ,  

h . ( - )  i s  t h e  unused c a p a c i t y  c o s t  f u n c t i o n  f o r  
3 

l o c a t i o n  j .  

The c o s t  f u n c t i o n s  a r e  assumed concave  n o n d e c r e a s i n g ,  s o  

t h a t  s c a l e  economies are  i n t r o d u c e d .  

The f o l l o w i n g  p r o p e r t i e s  of t h e  g e n e r a l  s o l u t i o n  t o  ( 1 1 2 ) -  

(1 1 7 )  a r e  e a s i l y  p roved .  



i. The solution has always the form 

as in the linear-cost case. 

ii. If the inequality 

holds, that is, if the cost for holding the empty stock 

v is greater than the cost for using it, then we 
j 

always have 

so that location j will always have a facility size at 

least as great as the existing stock. 

iii. If the inequalities 

hold, then the equation 

has a root in (0,v.I: 
3 



and in location j we will have either 

iv. If the inequalities 

hold, in location j we will have 

v. When constraints ( 1 1 4 )  and ( 1 1 5 )  are binding, we have for 

the flow variables 

where 

X is the Lagrange multiplier associated with 

constaint ( 1  1 5 )  
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x i s  t h e  t o t a l  s i z e  of  t h e  f a c i l i t y  i n  l o c a t i o n  j 
j 

If we r e p l a c e  f . ( x  . ) w i t h  u . (x . ) as d e f i n e d  i n  ( 1  1 9 ) ,  equa- 
3 3  I 3  

t i o n s  (1 0 2 )  - ( 1 0 7 )  s t i l l  h o l d .  The n e c e s s a r y  c o n d i t i o n  t o  have a 

zero- . s ize  f a c i l i t y  f o r  some l o c a t i o n  j i s  s t i l l  

and it i s  i n t e r e s t i n g  t o  n o t i c e  t h a t  t h i s  depends  on r u n n i n g  

c o s t s  o n l y .  

The above model c a n  be s p e c i a l i z e d  by i n t r o d u c i n g  e x p l i c i t  

forms f o r  t h e  c o s t  f u n c t i o n s ,  as  i n  e q u a t i o n s  ( 1 0 9 ) - ( 1 1 1 ) .  

3 . 4  Towards a More G e n e r a l  Family o f  L o c a t i o n  Models 

3 . 4 , 1  T h e  General  Model 

The models  d i s c u s s e d  s o  f a r  have a  r a t h e r  s p e c i a l i z e d  o b j e c -  

t i v e  f u n c t i o n ,  r o o t e d  i n  Neuburger consumer s u r p l u s  maximizing 

and s p a t i a l  i n t e r a c t i o n  t h e o r y .  I t  h a s  been shown t h a t  t h i s  

form i s  g e n e r a l  enough t o  i n c l u d e  l i n e a r - i n t e g e r  p l a n t - l o c a t i o n  

models  as s p e c i a l  c a s e s .  I t  h a s  a l s o  been shown t h a t  t h e  i n t r o -  

d u c t i o n  of  a p p r o p r i a t e  new v a r i a b l e s  a l l o w s  f o r  a p a r t i c u l a r  

form o f  e l a s t i c  demand. 

L e t  u s  now i n t r o d u c e  a new form f o r  t h e  o b j e c t i v e  f u n c t i o n ,  

i n  which t h e  e n t r o p y  t e r m  i s  r e p l a c e d  by a more g e n e r a l  u s e r s '  

b e n e f i t  f u n c t i o n .  W e  assume t h a t  t o t a l  b e n e f i t  i s  made up o f  

t h r e e  terms a s  f o l l o w s :  

a t e r m  depend ing  on t h e  f l o w s  

between i and j o n l y  



a  t e r m  depending on t h e  t o t a l  

demand coming from i ( G~ = L s .  . ) 
i 1 I  

a  t e r m  depending on t h e  s i z e  of 

t h e  f a c i l i t y  x and on t h e  t o t a l  
j 

demand i t  a t t r a c t s  ( D  = L s i j ) .  
j 

Adding up a l l  t h e  above t e r m s  o v e r  i and j and s u b t r a c t i n g  t h e  

u s u a l  t r a v e l  c o s t  g i v e s  u s  a  t o t a l  n e t  b e n e f i t  f u n c t i o n  of  t h e  

f o l l o w i n g  form: 

I f  w e  i n t r o d u c e  t h e  o b j e c t i v e  f u n c t i o n  (121)  i n  a  g e n e r a l  model 

w i t h  p a r t i a l l y  e x i s t i n g  s t o c k  and n o n l i n e a r  c o s t  f u n c t i o n s ,  w e  

g e t  t h e  f o l l o w i n g  mathemat ica l  programming problem. 

max L F~~ (s .  . )  + 1 E ~ ( G ~ )  + H. (Y. + z  rD.1 
11 I J I  - B L S i j  C i j  (122)  

i j  i j i j  

s u b j e c t  t o  

L P .  (y. + L . )  + L q i ( z , )  + L h j ( v j  - Yj) 2 R 

j 
I 1  3  

j j 



where the usual definitions and assumptions hold. (The con- 

straints (1 23) and (1 24) are actually redundant, since the 

variables ci and D can be eliminated.) 
j 

It can be shown that the general solution to (122)-(129) 

has the same properties as those in 1 to iv listed in Section 

3.3.2. 

Model (1 22) - (1 29) can be specialized in many ways. Here we 

will try to show what can be done, with no claim of generality. 

What will be developed is just one of the ways of looking at 

(122)-(128), which in our opinion is a useful one for some 

applications. 

Suppose we have: 

l. 
-F ( S i j )  = ~ S ~ ~ l o g S  the usual entropy term 

i j i j 

a term similar to the one 

introduced in the elastic 

demand model (62) - (65) ; it 
can be interpreted as a cost 

associated with unsatisfied 

potential demand 

a 
-H. (D.) = B ( X  - D . 1 1 ~  ( X  - D . )  + b , 

I I j I j I j 

a cost term associated with 

the deviation between usable 

capacity and actual demand 



S u b s t i t u t i o n  i n  ( 1 2 2 )  y i e l d s  t h e  m a t h e m a t i c a l  programming 

problem 

s u b j e c t  t o  

where 

The c o n s t r a i n t  ( 1 3 1 )  i s  a c t u a l l y  r e d u n d a n t  i f  a > 0 ,  b u t  i t  w i l l  

be  u s e f u l  t o  keep  i t  i n  o r d e r  t o  o b t a i n  t h e  c o r r e c t  form f o r  t h e  l i m -  

i t i n g  cases. .Assuming t h a t  c o n s t r a i n t  (132)  i s  a c t i v e  and  p r o c e e d i n g  

a s  u s u a l ,  w e  o b t a i n  t h e  f o l l o w i n g  r e s u l t s  f o r  t h e  g e n e r a l  s o l u t i o n :  



where 

For an optimal x we further have: 

where ~ ( 0 )  are the functions defined by ( 1 1 9 ) .  A comparison with 

some earlier results is useful. Equations ( 1  3 5 )  and ( 1 3 6 )  look 

like ( 6 6 )  and ( 6 7 ) ,  implying that an elastic demand behavior is 

embedded in the model. Equation ( 1 3 9 )  is basically the same as 

( 1 1 8 ) .  This means that the solution to ( 1 3 0 ) - ( 1 3 4 )  is indis- 

tinguishable from the solution to ( 1  1 2 )  - ( 1  1 7 )  , as far as the sizes 
and locations of facilities are concerned. However, a different 

behavior is implied for the users. From ( 1 3 7 )  it is seen that the 

attraction weight w is proportional to a power of the difference 
j 

between capacity and attracted demand, and by changing the values 

of the parameters a and b we get a different sensitivity to the 
j 

deterrence effect of congestion. As a special case, if it can 

be assumed that D is always small, compared to x and all b are 
j j j 

equal to b, the attractiveness weights are given approximately by: 

with k = e  
a B b  



This assumption implies that the system never produces congestion, 

so that we get models related to the ones discussed in Section 

3.2.3. If, on the other hand, a = 0 ,  the terms in x and D 
j j 

disappear from the objective function (1 30) and constraint (1 31 ) 

usually becomes active. The problem thus reduces to an elastic- 

demand version of model ( 1 1 2 ) - ( 1 1 7 ) . 
In short, we see that model (130)-(134) yields all the 

previously discussed models as special cases, including models 

with elastic demand and models with size-dependent utility func- 

tions. Furthermore, when its parameters do not assume limiting 

values, its general solution is fairly flexible in fitting users' 

behavior, although still consistent with the Neuburger consumer 

surplus formalism. 

4. CONCLUDING COMMENTS AND ISSUES FOR FURTHER RESEARCH 

4.1 General Comments 

A general framework for future research has been outlined 

in Section 2 in broad nontechnical terms. The purpose of this 

section is to add a few technical notes on problems of a less 

general nature, but of some importance to applications. 

Single period (or static), single-level optimal location 

problems are usually supposed to be rather well known and solva- 

ble. However, it can be seen in the preceeding sections how 

poorly solved or unsolved problems can. still be found. This is 

even more true if we give the term "problem" a wider ineaning than 

"optimization problem" and the term "solution" a wider meaning 

than "optimal solution" to a.possible mathematical program. 

Indeed problems of content, form, and algorithms must be solved. 

Problems o f  c o n t e n t  include such topics as physical, behavior, 

and economic assumptions and interpretations; and consistency 

between the models and the aggregation levels they are used for. 

Problems o f  form are concerned with the mathematical tools we use 

to formulate the problems. They range from continuous (rather 

than discrete) to nonlinear (rather than linear) to existence and 

uniqueness analyses. Problems o f  a l g o r i t h m s  are concerned with 



the best ways to solve, or nearly solve, the problems stemming 

from content and form. 

Surprisingly enough, it seems as though people working on 

location problems actually tend to group themselves according to 

the three categories above, with little exchange of information 

among the groups. 

Unification, rather than new models or algorithms, is thus 

the main need, and Sections 3.1 to 3.4 in this paper were guided 

by this idea. However, it must be said that unifying features 

have been sought mainly in the form of problems, while we have 

intentionally been vague about their contents. This happens 

mainly because unifying forms is a realatively easy task, while 

carrying out a satisfactory analysis of contents is the real 

challenge, and it needs a substantial amount of time and effort. 

This is not to say that the models we discussed are useless. 

Indeed, we believe that static, single-level optimal-location 

problems not falling within our models in some way are hard to 

find. What is needed from now on is just to find where each 

problem falls, and how and why. 

The stress placed on contents does not mean there are no 

algorithmic problems. Actually, the most sensible general- 

purpose models, like the ones discussed in Section 3, basically 

need new algorithms. More than this, they need a lot of coordin- 

ation effort with both existing and possibly new algorithms. 

As far as the purely formal problems are concerned, we 

believe that no really new mathematical effort is needed for 

static, single-level problems. If we change from static to 

dynamic and from single to multilevel (or multifacility) problems, 

this is no longer true. However, dynamic multilevel problems 

fall outside the purpose of this paper, and will be the subject 

of future studies. 

Let us now discuss the first two problems posed above in 

greater depth, in order to draft a framework for future research. 

The problem of algorithms is too technical for an introductory 

paper like this. It will be, however, the subject of some forth- 

coming work. 



4.2 Contents 

An optimal location model is made up of an objective function, 

some constraints and, of course, some decision variables. Since 

there is no general agreement on what these components are, a 

brief discussion is necessary, For this purpose it is easier 

to take them in reverse order. 

4 . 2 . 1  The Dec i s ion  V a r i a b l e s  

All location problems have size and location of facilities 

among the decision variables. Some of them also have commodity 

or users' flows. All of them may be different depending on what 

is meant by "location", "facility", and "flows". Because of this 

we believe that research effort is needed in order to: 

I d e n t i f y  t h e  c o r r e c t  d e f i n i t i o n  o f  l o c a t i o n s  f o r  each 

problem. This issue is closely related to the aggrega- 

tion level problem, and particular care must be placed 

on distinguishing the problems with pointwise locations 

from the ones where locations are zones, or subregions 

of a region. 

I d e n t i f y  t h e  c o r r e c t  d e f i n i t i o n  o f  f a c i l i t y  f o r  each 

problem.  his problem is tied with the one above, so 

that the "size" of a "facility" in a given location has 

different meanings depending on what the location is. 

It is usually a plant, a building, or a single piece of 

equipment for pointwise locations, while it is an aggre- 

gate of usually many plants, or buildings, or many 

pieces of equipment in zone-like locations. 

I d e n t i f y  t h e  c o r r e c t  d e f i n i t i o n  o f  f lows  f o r  each 

problem. As stressed many times through Sections 2 and 

3.1 to 3.4, there is a fundamental difference between 

problems where displacements of goods and people are 

charged to the users and the ones where displacements are 

controlled by the locational decision maker, While in 

the latter case the well known OR plant-location models 

apply (with possible slight variations for each problem), 

in the former case models based on spatial interaction 



t h e o r y  a r e  needed.  R e g r e t t a b l y  enough,  m i s t a k e s  a r e  

o f t e n  made i n  c h o o s i n g  t h e  model t o  be  used .  Even more 

r e g r e t t a b l e  i s  t h e  t endency  o f  p e o p l e  who l i k e  one  

approach  t o  d i s l i k e  t h e  o t h e r  o n e ,  r e g a r d l e s s  o f  t h e  

n a t u r e  o f  t h e  problem b e i n g  s o l v e d .  A c t u a l l y ,  w e  need 

t o  known which approach  i s  best  s u i t e d  f o r  e a c h  problem,  

and n o t  which i s  "good" o r  "bad". 

4 , 2 , 2  The C o n s t r a i n t s  

A g e n e r a l  agreement  e x i s t s  on t h e  main set  o f  t y p i c a l  con- 

s t r a i n t s  f o r  a  l o c a t i o n  problem. Most o f  them have an  o b v i o u s  

p h y s i c a l  meaning and need n o t h i n g  new. The o n l y  one r e q u i r i n g  

f u r t h e r  p h y s i c a l  and /o r  economic i n s i g h t  i s  t h e  c o n s t r a i n t  on 

t o t a l  budge t .  * 
T h i s  i s  main ly  a  problem of  d e f i n i n g  t h e  c o s t s  f o r  a  s i n g l e -  

p e r i o d  l o c a t i o n  p l a n .  The two main r e s e a r c h  i s s u e s  seem t o  be :  

The problem o f  d e f i n i n g  r u n n i n g  and b u i l d i n g  c o s t s ,  

Most l o c a t i o n  models pay l i t t l e  a t t e n t i o n  t o  t h e  

d i f f e r e n c e  between c o s t  components which have  t o  be 

summed and d i s c o u n t e d  o v e r  t i m e  ( r u n n i n g  c o s t s  f o r  a 

f a c i l i t y ) ,  and t h e  c o s t  components found once  i n  a 

w h i l e  ( b u i l d i n g  a  new o r  expanding an o l d  f a c i l i t y ) .  

Obv ious ly  enough,  t h i s  ma in ly  happens  b e c a u s e  of  t h e i r  

s t a t i c  n a t u r e .  However, s i n c e  most  s i n g l e - p e r i o d -  

l o c a t i o n  models  have t o  be used  a s  s t e a d y - s t a t e  

a p p r o x i m a t i o n s  t o  dynamic p rob lems ,  it may w e l l  happen 

t h a t  c o n t i n u o u s l y  d i s c o u n t e d  r u n n i n g  c o s t s  p r e v a i l  o v e r  

b u i l d i n g  c o s t s ,  as  f a r  a s  l o c a t i o n a l  and /o r  r e l o c a t i o n a l  

d e c i s i o n  are concerned .  T h e r e f o r e  a  d e e p e r  a n a l y s i s  o f  

r u n n i n g - c o s t  components i s  needed.  

Another  i s s u e  r e l a t e d  t o  t h e  t o t a l  c o s t  problem 

i s  t h a t  of  d e m o l i t i o n .  I n  many l o c a t i o n - r e l o c a t i o n  

problems,  where d e c i s i o n s  have t o  b e  t a k e n  on e x i s t i n g  

* I n  many models  t h e r e  i s  n o t h i n g  l i k e  a  b u d g e t  c o n s t r a i n t ,  s i n c e  
t h e  t o t a l  c o s t  i s  p a r t  o f  t h e  o b j e c t i v e  f u n c t i o n ,  However, t h e r e  
i s  no d i f f e r e n c e  between t h e  two f o r m u l a t i o n s ,  a s  f a r  a s  t h e  
meaning o f  t h e  c o s t  f u n c t i o n s  i s  concerned.  



stock, it may be meaningful to ask whether demolition 

is better than keeping unused stock. This problem needs 

a dynamic setting to be solved; therefore, a deeper 

analysis of this cost component is needed. 

The  p r o b l e m  o f  s c a l e  e c o n o m i e s .  Introducing convex 

nondecreasing cost functions is usually realistic for 

problems with pointwise locations, where it can be 

certain that "a facility" is actually a single facility, 

or plant, or piece of equipment. It is not so sensible 

for problems where locations are zones or subregions, 

since in this case we do not know how total size alloca- 

ted to each zone is spread across it, how many single 

facilities it is made up of, how big each single 

facility is, and so on. In this case, linear costs and 

no fixed charges are probably the best compromise. 

Another issue related to scale economies is the tendency 

toward concentration that these economies usually induce 

in the models. This is a controversial point, since we 

have people thinking that a few big facilities are the 

best solution, and those thinking that social welfare 

and equity require evenly distributed facilities across 

space. 

4 , 2 , 2  The O b j e c t i v e  F u n c t i o n  

As discussed earlier, different kinds of objective functions 

can be found, Two important ones are: 

Functions where costs (benefits) charged to the loca- 

tional decision maker are minimized (maximized) 

Functions where costs (benefits) charged to the users 

are minimized (maximized) 

While the first kind of function poses no really new problem, 

the second kind does. Provided we accept the embedding approach, 

by which maximizing is used both to optimize (a decision maker's 

task) and to induce the appropriate users' behavior, much can be 

told about what appropriate users' behavior is, and how we have 

to embed it in the model. 



The models which embed t h e  l o g i t - c h o i c e  behav ior  a r e  p a r t i c -  

u l a r l y  impor tan t  examples. How t h e s e  can be  g e n e r a l i z e d  and s t i l l  

remain w i t h i n  t h e  o v e r a l l  l o g i t  s t r u c t u r e  has  been b r i e f l y  

p r e s e n t e d  i n  S e c t i o n  3.4. I t  cou ld  be  u s e f u l  t o  f i n d  more 

g e n e r a l  f u n c t i o n a l  forms,  i n c l u d i n g  t h e  l o g i t  a s  a  s p e c i a l  c a s e ,  

b u t  a l l owing  f o r  d i f f e r e n t  behav io r s  a s  w e l l .  

A more g e n e r a l  i s s u e  concern ing  t h e  o b j e c t i v e  f u n c t i o n  i s  

t h e  r e l a t i o n s h i p  between t h e  way t h e  p u b l i c  f a c i l i t y  l o c a t i o n  

problem i s  posed and t h e  economy of t h e  coun t ry  where it i s  posed. 

Although s i m i l a r  i n  t h e  mathemat ica l  form, problems may have ve ry  

d i f f e r e n t  c o n t e n t s  i n  t h i s  r e s p e c t .  The economic i n t e r p r e t a t i o n  

o f  b e n e f i t s ,  f o r  i n s t a n c e ,  c an  be some k ind  of  consumer ' s  s u r p l u s  

a s  w e  have done, t h u s  implying t h e  e x i s t e n c e  o f  p r i c e s .  These 

a r e  u s u a l l y  nonmonetary p r i c e s ,  exp re s sed  i n  t e r m s  o f  u s e r s '  

pe r ce ived  u t i l i t i e s  ( o r  d i s u t i l i t i e s ) .  Th i s  i s  imp l i ed  i n  t h e  

random u t i l i t y  i n t e r p r e t a t i o n  o f  models based on t h e  l o g i t -  

behav ior  assumpt ion (see Neuburger,  1971; MacFadden, 1973, 1974; 

Wil l iams,  1977; and Van L ie rop  and Nijkamp, 1979 among o t h e r s ) .  

A c l o s e l y  r e l a t e d  problem i s  whether p u b l i c  f a c i l i t i e s  

shou ld  cha rge  a c t u a l  d i r e c t  money p r i c e s  t o  t h e  consumers,  i . e . ,  

shou ld  t hey  be prof i t -making,  s e l f - f i nanc ing ,  o r  shou ld  t hey  j u s t  

e x p l o i t  a  g iven  budget  t o  maximize s o c i a l  b e n e f i t  on ly .  I n  t h i s  

s e n s e ,  having t o t a l  c o s t  i n  t h e  o b j e c t i v e  f u n c t i o n  r a t h e r  t h a n  i n  

a  budget  c o n s t r a i n t  makes a  d i f f e r e n c e ,  a l t hough  t h e  Lagrangian 

f u n c t i o n s  f o r  t h e  two problems look  t h e  same, 

A t h i r d  impor t an t  i s s u e  r e l a t e d  t o  t h e  o b j e c t i v e  f u n c t i o n  i s  

t h e  problem of e m p i r i c a l l y  f i t t i n g  t h e  impl ied  consumers '  behav ior  

models on a c t u a l  d a t a .  Th i s  problem i s  sha red  by a l l  t h e  formu- 

l a t i o n s  where some k ind  of  e l a s t i c  o r  p r i c e  s e n s i t i v e  demand i s  

assumed, whether  t h e s e  models embed consumers'  behav io r  by 

Neuburger ' s  consumer s u r p l u s  maximizing ( t h u s  producing s t and -  

a r d  s p a t i a l  i n t e r a c t i o n  mode l s ) ,  whether t hey  have demand func- 

t i o n s  i n  t e r m s  o f  a c t u a l  money p r i c e s ,  o r  whether  t hey  u s e  any 

o t h e r  t h e o r e t i c a l  approach.  



4.3 Form 

A s  p r e v i o u s l y  s t a t e d ,  t h e r e  a r e  no r e a l l y  new problems a s  

f a r  a s  t h e  m a t h e m a t i c a l  form of  a  s t a t i c  l o c a t i o n  model i s  con- 

c e r n e d .  T h i s  i s  e s p e c i a l l y  t r u e  f o r  t h e  c l a s s i c a l  ( n o n - s e n s i t i v e -  

demand) p l a n t - l o c a t i o n  p rob lems ,  f o r  which a l a r g e  amount o f  

t h e o r e t i c a l  and c o m p u t a t i o n a l  work h a s  been c a r r i e d  o u t ,  and 

r e f e r e n c e  c a n  be made t o  v e r y  good e x i s t i n g  s t a t e - o f - t h e - a r t  

and b i b l i o g r a p h i c a l  works on t h a t  t o p i c  (see R e V e l l e  e t  a l .  1 9 7 0  

and Lea, 197 9,  f o r  i n s t a n c e )  . 
There  a r e ,  however some t e c h n i c a l  problems t o  b e  s o l v e d  f o r  

t h e  more g e n e r a l  models  d i s c u s s e d  i n  S e c t i o n s  3.3.1,  3 .3.2,  and 

3.4,  which i n c i d e n t l y ,  t u r n  o u t  t o  be t h e  most  i n t e r e s t i n g  and 

u s e f u l  ones  i n  my o p i n i o n .  They a r e  l i s t e d  and b r i e f l y  d i s c u s s e d  

below 

N o y ~ c o n c a v i t y  and u n i q u e n e s s  p rob l ems .  U n f o r t u n a t e l y ,  

t h e  b e n e f i t  f u n c t i o n  ( t o  b e  maximized) i s  u s u a l l y  con- 

c a v e * ,  and t h e  c o s t  f u n c t i o n s  a re  a l s o  concave ,  T h i s  

r e s u l t s  i n  a nonconcave programming problem,  whose 

s o l u t i o n  may n o t  be u n i q u e  (and u s u a l l y  it i s  n o t )  and 

whose Kuhn-Tucker p o i n t s  need n o t  be  o p t i m a l  o n e s ,  Some 

e x i s t e n c e  and u n i q u e n e s s  work c o u l d  be  u s e f u l ,  b o t h  f o r  

t h e  g e n e r a l  model and f o r  i t s  v e r s i o n s  assuming meaning- 

f u l  s p e c i a l  s t r u c t u r e s ,  

Dual f o r m u l a t i o n  and a n a l y s i s .  The development  o f  t h e  

d u a l s  o f  o u r  g e n e r a l  n o n l i n e a r  models  s h o u l d  be c a r r i e d  

o u t  i n  o r d e r  t o  f u l l y  e x p l o r e  t h e i r  p r o p e r t i e s .  T h i s  

s h o u l d  g i v e  n o t  o n l y  m a t h e m a t i c a l  i n s i g h t  and computa- 

t i o n a l  h i n t s ,  b u t  a l s o  b e t t e r  p h y s i c a l  and economic 

i n t e r p r e t a t i o n s .  

E x p l o i t a t i o n  o f  s p e c i a l  s t r u c t u r e s .  P r o v i d e d  enough 

f l e x i b i l i t y  i s  p r e s e r v e d ,  some mean ingfu l  s p e c i a l  

s t r u c t u r e s  s h o u l d  be i n t r o d u c e d  i n  t h e  g e n e r a l  f u n c t i o n s ,  

* I f  t h e  problem i s  f o r m u l a t e d  i n  t e r m s  o f  c o s t  min imiz ing ,  
t h e  u s e r s '  c o s t  f u n c t i o n  i s  u s u a l l y  convex,  w h i l e  t h e  c o s t  
f u n c t i o n s  i n  t h e  budge t  c o n s t r a i n t  a r e  concave .  T h i s  r e s u l t s  
i n  a  nonconvex programming problem. 



both in the objective function and in the budget con- 

straint. "Entropy" terms and power functions are an 

example (which has to be fully analyzed as yet). Some 

effort should be made towards finding other useful 

functional forms for users' benefits, or costs (other 

than the entropy form), as well as other functional 

forms which can best model the scale-economies' effect. 

Anyway, the theoretical work on special structures 

should be carried out in close conjunction with the 

empirical work of fitting actual data to users' 

behavior (as discussed in Section 4.2). 

4.4 Issues for Further Research 

The main conclusion which can be drawn from Sections 2 and 

3 is that some model-building work is needed to account for some 

important features of real facility location problems. 

The question of demand sensitiveness to accessibility and 

congestion is the new leading d e s c r i p t i v e  issue. The unsatisfac- 

tory state of the theory and the relevance in applications ask 

for developing new effective approaches to this issue. It is 

therefore proposed as one of the next steps in PFL research. 

The problem of finding exact and approximate solution tech- 

niques to the newly posed location problems is the leading a p p l i e d  
I 

issue. Expected results in this direction are outlined below: 

Efficient ways of handling nonlinear objective functions 

(based on the spatial-interaction embedding approach) 

Efficient procedures to cope with nonsmooth features 

arising from real problems (such as fixed charges, 

bounds on feasible sizes, and indivisibilities) 

Computational schemes to analyze sensitivity of loca- 

tional patterns to benefit/cost trade-off changes and 

travel cost changes. A comparative analysis of numer- 

ical results with some real cases will be carried out, 

in order to test the procedures and techniques outlined 

above 



The problem of modeling new dimensions in location problems, 

like those in multilevel multiactivity and multistage (dynamic) 

systems, is the main new theoretical issue. It will also be of 

great applied value, since multiactivity dynamic models are the 

best ones suited for real urban service systems. A promising 

contribution along these lines should be the development of a set 

of spatial-interaction based indicators, monitoring the changes 

in the system and pointing out management policies (including 

capacity expansion, demolition, and relocation) for the stocks 

of urban service facilities. Of course, this development is not 

a short-term one, and it also tends to stretch the boundaries of 

the PFL Task. It is felt therefore, that the development of these 

approaches will lead to suggestions for new interdisciplinary 

research on urban systems, which are hoped to be useful for 

possible future tasks within an urban management theme. 
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