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Abstract 

Recent decades have seen rapid urban growth worldwide. In general, association 
between land use, population and economy is well-known, but our understanding of the 
direct economic and demographic drivers responsible for the urban land expansion is 
limited to the local case studies. Identification of the cause-effect links at regional and 
global scales is non-trivial in nature due to the complex socio-economic context of the 
phenomenon and the spatial character of data. This study examines the association 
between regional urbanization processes over space using resampling methods in 
regression analysis. Our main goal is to summarize the knowledge about the spatial 
urbanization patterns, which had been shaped in different areas of the Province of 
Seville, Spain in the last years of the economic growth period before the global financial 
crisis of 2007-08. For this purpose, we collect the available spatial cartographic and 
panel data on the land use, demographic and economic factors, and conduct 
experimental significance testing and parameter estimation using methods of 
permutations and bootstrapping. The model is applied at the aggregate scale of regional 
administrative subdivision, followed by a discussion of its approximation accuracy on a 
GIS lattice. Our non-temporal analysis points out that the land use variable and the 
spatially explicit proxies of economic activity (i.e., distance to a road and distance to a 
commercial center) significantly contribute to the level of population densification in 
different areas of the region, although the process of regional urbanization cannot be 
solely explained by the studied drivers. 
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Exploratory Spatial Analysis of Regional Urbanization Patterns in the 
Province of Seville, Spain 
Anna Shchiptsova 
Richard Hewitt 
Elena Rovenskaya 
 

1 Introduction 

In recent decades, we have been witnessing rapid urban growth worldwide, especially in 
the developing countries, but also in Europe, US and Australia. The accelerated rate of 
non-urban to urban land conversion drives human-induced alterations of 
biogeochemical cycles, climate, hydrosystems and biodiversity (Grimm et al., 2008); 
furthermore, it is likely to impact the global environment in the long run. By 2030, we 
expect cities to grow 2.5 times in their territory, consuming some 1 million km2, or 
1.1% of the total land area of the countries (Angel et al., 2005). 

The conversion of land surface to urban uses is primarily caused by the original increase 
in the urban population. The UN estimates that the proportion of urban residents in the 
total population has grown from 37% in 1975 to 49% in 2005, and by 2030 this figure is 
expected to surpass 60% reaching 4.9 billion people (UN, 2005). Yet, we find evidence 
that economic constraints apparently influence the spatial urbanization patterns in 
different territories. For example, by 2030 the cities in developing countries are 
expected to increase their population by 50% and to triple their land area, with every 
new resident converting, on average, some 160 m2 of non-urban to urban land during 
this period. At the same time, the cities in developed countries are likely to increase 
their population by 20% and expand 2.5 times their land area, with every new resident 
converting, on average, some 500 m2 of non-urban to urban land (Angel et al., 2005). In 
general, association between land use, population and economy is well-known, but our 
understanding of the direct economic and demographic drivers responsible for the non-
urban to urban land change is limited to the local case studies (Veldkamp and Lambin, 
2001). At regional and global scales, we should consider urban expansion as an 
outcome of several types of human activities. Consequently, the complex socio-
economic context of the phenomenon hampers identification of the cause-effect links 
between urbanization processes. 

In Spain, intensive urban land expansion followed the country's entry into the European 
Union in 1986 and coincided with the boom in the liberalized economy before the 
global financial crisis of 2007-08. Artificial surfaces (i.e., surfaces with dominant 
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human influence but without agricultural land use) grew nationally by 52% from 1987 
to 2006 (OSE, 2012). The peak of this development came in the last years of the 
economic boom with a 21% increase in the artificial land between 2000 and 2006 years 
alone (OSE, 2012). This paper focuses on the urban land expansion in one of the fifty 
Spanish provinces, the Province of Seville. Our main goal is to summarize the 
knowledge about the spatial urbanization patterns, which had been shaped in this region 
by the end of the economic growth period. For this purpose, we collect available spatial 
cartographic and panel data on the land use, demographic and economic factors, and 
study their association over space using resampling methods in regression analysis. 

Empirical literature contains regional case studies on urban land expansion originating 
from different fields, such as urban economics, geography, landscape ecology and 
climate modeling (Table 1). Remote sensing and image processing methods allow 
scientists to consider land use change using high-resolution GIS-based maps of several 
years. Typically, studies of spatially explicit data involve exploratory methods of 
descriptive statistics, e.g., cross-tabulation analysis (Hewitt and Escobar, 2011; Dewan 
and Yamaguchi, 2009) and pairwise correlation analysis (Lo and Yan, 2002). On the 
other hand, more advanced econometric models use aggregate spatial data to study the 
amount of land surface converted to urban uses in response to socio-economic changes. 
The data is usually available at the level of a coarse administrative subdivision 
(McGrath, 2005; Seto and Kaufmann, 2003; Deng et al., 2008). With few exceptions 
(Kumar, 2009), these studies identify population, income and agricultural land value as 
significant factors contributing to the size of urbanized land area in an administrative 
unit (Brueckner and Fansler, 1983; Paulsen, 2012). 

However, conventional econometric approaches have some shortcomings in the context 
of urbanization processes. As a rule, researchers do not know all relevant variables, and 
the functional forms are chosen on the basis of convenience and familiarity (Freedman, 
1997). For example, social relations and market effects are not subjected to direct 
measurement and are usually substituted with some proxy variables in a model 
(Overmars et al., 2003). Verification of statistical assumptions should include testing 
spatial autocorrelation in the dataset (e.g., Seto and Kaufmann, 2003). Otherwise, 
aspatial analysis of spatial data can cause potentially misleading results and consequent 
misinterpretation of the model output (Fotheringham and Rogerson, 1993; Overmars et 
al., 2003). In these conditions, statistical techniques are useful tools for summarizing the 
knowledge about spatial dataset, but cannot serve as a basis for the causal inference and 
subsequent prediction. 
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Table 1. A list of case studies on urban land expansion. "Type 1": data analysis of the 
GIS-based maps over several time periods, "Type 2": econometric modeling, "Type 3": 
spatially explicit simulation modeling. 

Type Study Region Technique/model 
1 Lo and Yang, 

2002 
Atlanta, Georgia, US Correlation analysis 

Multiple regression 
1 Dewan and 

Yamaguchi, 2009 
Dhaka, Bangladesh Cross-tabulation analysis 

Multiple regression 
1 Hewitt and 

Escobar, 2011 
Madrid region, Spain Cross-tabulation analysis 

2 Brueckner and 
Fansler, 1983 

40 urban areas in 1970, US Monocentric model of 
Alonso-Muth-Mills 
Multiple regression 

2 Seto and 
Kaufmann, 2003 

Pearl River Delta, China Random coefficient 
regression 

2 McGrath, 2005 33 largest urban areas from 
1950 to 1990, US 

Monocentric model of 
Alonso-Muth-Mills 
Multiple regression 

2 Deng et al., 2008 coterminous China Monocentric model of 
Alonso-Muth-Mills 
Multiple regression 

2 Paulsen, 2012 329 largest urban areas in 
1980,1990 and 2000, US 

Monocentric model of 
Alonso-Muth-Mills 
Multiple regression 

3 White et al., 1997 Cincinnati, Ohio, US Cellular automata 
3 Clarke et al., 1997 San Francisco Bay area, US Cellular automata 
3 Schneider and 

Pontius, 2001 
Ipswich Watershed, 
Massachusetts, US 

Binary logistic regression 
Multi-criteria evaluation 

3 Pijanowski et al., 
2002 

Michigan Grand Traverse 
Bay Watershed, US 

Artificial neural network 

3 Song et al., 2015 Beijing, China Artificial neural network 
1/2 Kumar, 2009 Delhi, India Multiple regression 
1/3 Wear and Bolstad, 

1998 
Southern Appalachians, US Poisson regression 

Binomial logit regression 
1/3 Braimoh and 

Onishi, 2007 
Lagos, Nigeria Binary logistic regression 

The coarse sampling scale does not allow econometric models to consider landscape 
heterogeneity and predict locations of change on a GIS-based map. Thus, spatially 
disaggregate effects of land use policies cannot be examined (Bocstael and Irwin, 2000). 
As alternative, empirical studies in geography and landscape ecology have been focused 
on the spatially explicit simulation modeling of land use change using local transition 
rules at the level of a cell or at the level of an individual land parcel of the landscape. 
Different approaches to model transition of a cell (or a parcel) from one land use state to 
another have been adopted in the literature. In general, the methods include statistical 
estimations (Schneider and Pontius, 2001; Wear and Bolstad, 1998; Braimoh and 
Onishi, 2007), machine learning techniques (Pijanowski et al., 2002; Song et al 2015) 
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and cellular automata models, such as SLEUTH (Clarke et al., 1997) and models of the 
Metronamica family (White et al., 1997). Additionally, the simulation modeling 
approach has been extended with GIS data analysis in the "hybrid models of land 
use/cover change" (Irwin and Geoghagen, 2001). In particular, the exploratory analysis 
of the GIS-based maps over several years provides parameters for the transition rules in 
a model (Wear and Bolstad, 1998; Braimoh and Onishi, 2007). Overall, simulation 
models establish that the hypothesized interaction among cells is a possible explanation 
of the historic changes in the land use (Irwin and Geoghagen, 2001) by replicating these 
changes (White et al., 1997; Schneider and Pontius, 2001). However, such models do 
not include in-depth statistical testing against actual data. 

We develop a regression model using the non-temporal spatial data to deduce conditions 
associated with the level of population densification in different areas of Seville 
Province at the end of the economic growth period. Thus, this work aims to complement 
existing models of land use change by analyzing cumulative output of urbanization 
processes over a single economic phase. To address limitations of previous research, we 
sample data at the lowest level of administrative subdivision, for which population 
density records were available; subsequently, we assess model approximation accuracy 
at the level of a GIS lattice. At the same time, we expect some relevant variables to be 
omitted in the dataset of available landscape attributes and socio-economic indicators of 
the region, and therefore, the exact distribution of regression error terms might be 
difficult to specify. In this connection, we conduct experimental significance testing 
using the method of permutations (Fisher, 1935; Fotheringham and Rogerson, 1993) 
and apply a non-parametric bootstrap scheme for parameter estimation (Efron, 1979). 

The rest of the paper is organized as follows. In section 2, we introduce a regression 
model and define resampling methods for its estimation. The study area of Seville 
Province and available cartographic and panel data are described in section 3. Section 4 
presents outcomes of spatial data analysis. We discuss results and model limitations in 
section 5. Some final remarks are given in the conclusion in section 6. 

2 Methodology 

Let us consider urbanization processes in a geographic region consisting of 𝑛𝑛 
administrative units. Such administrative units are, in general, heterogeneous in shape 
and size. We define a GIS lattice in the geographic space by putting a regular grid of 
cells on a study area. By assumption, administrative subdivision of a region is 
equivalent to partitioning its GIS lattice into disjoint polygons of cells. Suppose that 
statistical records per administrative unit describe demography and economy of a 
region. Additionally, we recognize landscape attributes to be an integral part of local 
economic attractiveness. We assume that natural and man-made features of relief, 
including type of land use, are registered on a GIS lattice using remote sensing 
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technologies. In general, we want to relate the population density to land use and 
economy in an administrative unit based on the reported cartographic and panel data. 

For this purpose, we put forward a multiple regression model in the following form 

𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝜀𝜀
𝜀𝜀1, … , 𝜀𝜀𝑛𝑛 ~ 𝐹𝐹(0,𝜎𝜎2) (1) 

where 𝑦𝑦 is a 𝑛𝑛 × 1 vector of observable population density, 𝑋𝑋 is a 𝑛𝑛 × (𝑝𝑝 + 1) matrix of 

explanatory variables and 𝑋𝑋 = �𝑋𝑋0,𝑋𝑋1, … ,𝑋𝑋𝑝𝑝�
𝑇𝑇
 is a (𝑝𝑝 + 1) × 1 vector of the unknown 

model parameters to be estimated from the data using the ordinary least squares method. 
Here, each column 𝑋𝑋𝑖𝑖 consists of observations on a single explanatory variable. By 
assumption, 𝑋𝑋1 is identically 1, so that the regression equation has an intercept 𝑋𝑋0. For a 
GIS-based variable, an average value over cells belonging to the same administrative 
unit is considered to be a single observation on this variable in 𝑋𝑋. The error term 𝜀𝜀 is a 
𝑛𝑛 × 1 vector of independent identically distributed errors with common distribution 𝐹𝐹 
having mean 0 and finite constant variance 𝜎𝜎2. Both 𝐹𝐹 and 𝜎𝜎2 are unknown. 

We search for a minimum combination of available variables, which produces 
statistically significant output in model (1) in terms of the method of permutations 
(Fisher, 1935). A permutation test computes the probability for a null hypothesis being 
tested, whether the original test statistic of interest is a typical element of the set of 
statistics derived from the given observations by an appropriate class of data reordering. 
The basic idea of the test is free of the assumption on the exact distribution of the test 
statistic; rather the reference distribution is generated from the drawn permutation 
sample. We run a permutation test with the test statistic 𝑅𝑅2 to assess the overall 
significance of model (1). The null hypothesis of the test states that response variable 
has no linear relationship with the given explanatory variables, that is, 𝐻𝐻0: 𝑋𝑋𝑖𝑖 = 0 for all 
𝑖𝑖 = 1 … 𝑝𝑝 and the alternative hypothesis in the case of the two-tailed test is 𝐻𝐻1: ∃𝑖𝑖 𝑋𝑋𝑖𝑖 ≠
0 (𝑖𝑖 = 1 … 𝑝𝑝). If the null hypothesis holds, the observations on the response variable 𝑦𝑦 
could have been observed in any order relative to the fixed value tuples in 𝑋𝑋. Therefore, 
we need to recalculate the test statistic for each of the possible permutations of 𝑦𝑦, 
leaving 𝑋𝑋 fixed. In practice, the permutation test is usually approximated by reshuffling 
𝑦𝑦 𝑘𝑘 times and each time selecting a permutation randomly from the set of all possible 
permutations (Efron and Tibshirani, 1993). Accordingly, we calculate the approximate 
p-value of the test as 

𝑝𝑝�-value(𝑅𝑅2) =
#�𝛾𝛾 = 1 … 𝑘𝑘 | 𝑅𝑅�𝛾𝛾2 ≥ 𝑅𝑅�2�

𝑘𝑘
, (2) 

where 𝑅𝑅�𝛾𝛾2 is a coefficient of determination from permutation 𝛾𝛾 of 𝑦𝑦, and 𝑅𝑅�2 is a value of 
the test statistic for the original sample. 
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Further, we test significance of each individual coefficient in model (1). The null 
hypothesis 𝐻𝐻0: 𝑋𝑋𝑖𝑖 = 0 states that there is no linear relationship between 𝑦𝑦 and 𝑋𝑋𝑖𝑖 over 
and above any influence of the values in other explanatory variables. Thus, we need to 
eliminate variation caused by remaining variables and permute the obtained error terms 
in the reduced model without 𝑋𝑋𝑖𝑖. The vector of coefficients 𝑋𝑋 is not known a priori, and 
consequently, it is impossible to carry out the exact permutation test (Anderson, 2001). 
Instead, we use an approximate permutation method (Freedman and Lane, 1983) as 
follows: 

1) The test statistic �̂�𝑡𝑖𝑖 is computed from the coefficient t-statistic, when we regress 
𝑦𝑦 on 𝑋𝑋. 

2) We compose a 𝑛𝑛 × 𝑝𝑝 matrix 𝑋𝑋′, which contains all specified explanatory 
variables except 𝑋𝑋𝑖𝑖. The residuals from the regression of 𝑦𝑦 on 𝑋𝑋′ are subjected 
to permutation. For every permutation 𝛾𝛾, we calculate a 𝑛𝑛 × 1 vector 𝑦𝑦′ from the 
permuted residuals and the fixed value tuples in 𝑋𝑋′. The permutation t-statistic 
(�̂�𝑡𝑖𝑖)𝛾𝛾 is obtained from the regression of 𝑦𝑦′ on 𝑋𝑋. 

3) After 𝑘𝑘 replications, an approximate p-value is calculated from the generated 
reference distribution of 𝑡𝑡𝑖𝑖: 

𝑝𝑝�-value(𝑡𝑡𝑖𝑖) =
#�𝛾𝛾 = 1 … 𝑘𝑘 | (�̂�𝑡𝑖𝑖)𝛾𝛾 ≥ �̂�𝑡𝑖𝑖�

𝑘𝑘
 (3) 

The permutation hypothesis testing does not avoid the assumption on the observations 
to be independent and identically distributed. For completeness, we verify the absence 
of spatial autocorrelation in the residuals of model (1). In general, a pair of residuals 𝑟𝑟𝑖𝑖 
and 𝑟𝑟𝑗𝑗 is considered to be spatially dependent, if administrative unit 𝑖𝑖 is located in close 
proximity to administrative unit 𝑗𝑗 and the covariance of  𝑟𝑟𝑖𝑖 and 𝑟𝑟𝑗𝑗 is non-zero. We define 
a row-normalized 𝑛𝑛 × 𝑛𝑛 matrix of spatial proximity 𝑊𝑊 such that 𝑤𝑤𝑖𝑖𝑗𝑗 = 0, if 
administrative units 𝑖𝑖 and 𝑗𝑗 have no common boundary, i.e., they are not contiguous; 
otherwise, 𝑤𝑤𝑖𝑖𝑗𝑗 is inverse proportional to the total number of contiguous administrative 
units to administrative unit 𝑖𝑖. Here, the Moran's I (Moran, 1950) and Geary's C (Geary, 
1954) coefficients are used to measure spatial autocorrelation based on the sample of 
residuals and the matrix of spatial proximity 𝑊𝑊. These coefficients equal 

𝐼𝐼 =
𝑛𝑛∑ 𝑤𝑤𝑖𝑖𝑗𝑗𝑟𝑟𝑖𝑖𝑟𝑟𝑗𝑗𝑖𝑖,𝑗𝑗=1…𝑛𝑛

∑ 𝑤𝑤𝑖𝑖𝑗𝑗𝑖𝑖,𝑗𝑗=1…𝑛𝑛 ∑ 𝑟𝑟𝑖𝑖2𝑖𝑖=1…𝑛𝑛
, (4) 

𝐶𝐶 =
(𝑛𝑛 − 1)∑ 𝑤𝑤𝑖𝑖𝑗𝑗(𝑟𝑟𝑖𝑖 − 𝑟𝑟𝑗𝑗)2𝑖𝑖,𝑗𝑗=1…𝑛𝑛

2∑ 𝑤𝑤𝑖𝑖𝑗𝑗𝑖𝑖,𝑗𝑗=1…𝑛𝑛 ∑ 𝑟𝑟𝑖𝑖2𝑖𝑖=1…𝑛𝑛
 (5) 

In the context of model (1), we apply the bootstrap hypothesis test (Efron and 
Tibshirani, 1993) with the null hypothesis of no spatial autocorrelation. That is, we test 
whether neighboring residuals take values that are more similar or less similar than 
expected if they were arranged randomly. The test statistic is calculated for original data 
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(𝑦𝑦,𝑋𝑋). After that, the data is resampled with replacement 𝑘𝑘 times to get the reference 
test distribution. For every bootstrap replication, we change the matrix of spatial 
proximity 𝑊𝑊 by including repetitive observations with the same weights as the original 
one and adjusting the spatial weights of neighbors accordingly. The approximate equal-
tail p-value in the two-tailed test is defined as (Lin et al., 2011) 

𝑝𝑝�-value�𝜃𝜃�� = 2 min�
#�𝜎𝜎 = 1 … 𝑘𝑘 | 𝜃𝜃�𝜎𝜎 ≤ 𝜃𝜃��

𝑘𝑘
,
#�𝜎𝜎 = 1 … 𝑘𝑘 | 𝜃𝜃�𝜎𝜎 > 𝜃𝜃��

𝑘𝑘
�, (6) 

where 𝜃𝜃� is a test statistic of interest and 𝜃𝜃�𝜎𝜎 is a bootstrap statistic in run 𝜎𝜎. In the two-
tailed test, we define a probability of obtaining a result equal to or more extreme than 
the original test statistic 𝜃𝜃� as a probability of obtaining a result outside of the equal-
tailed interval, where one of the end points coincides with 𝜃𝜃�. An equal-tailed property 
means that the probability of a value to be from the left side of an interval is the same as 
the probability of a value to be from the right side of an interval (Efron and Tibshirani, 
1993). In fact, we do both one-tailed tests and double the lowest p-value from these 
trials. 

After that, we suppose that the specified model (1) is a correct one, and use the non-
parametric bootstrap method (Efron, 1979) for parameter estimation (Freedman, 2009). 
Suppose that we want to estimate distribution of some statistic 𝜃𝜃 in model (1) with the 
specified matrix 𝑋𝑋 and unknown distribution 𝐹𝐹 on the basis of observed data (𝑦𝑦,𝑋𝑋). 
Consequently, we use the percentile bootstrap method (Efron and Tibshirani, 1993) to 
construct a confidence interval for the parameter of interest. Here, we perform the 
following steps to bootstrap a regression model: 

1) The original data (𝑦𝑦,𝑋𝑋) is subjected to resampling with replacement. At first, a 
random sequence of indexes (𝑗𝑗1, … , 𝑗𝑗𝑛𝑛) is drawn from the set {1, … ,𝑛𝑛}. We 
compose a 𝑛𝑛 × 1 vector 𝑦𝑦′ and a 𝑛𝑛 × (𝑝𝑝 + 1) matrix 𝑋𝑋′ by taking the selected 
pairs ��𝑦𝑦𝑗𝑗1 ,𝑋𝑋𝑗𝑗1�, … , �𝑦𝑦𝑗𝑗𝑛𝑛 ,𝑋𝑋𝑗𝑗𝑛𝑛��. For the sample (𝑦𝑦′,𝑋𝑋′), we calculate bootstrap 
statistic 𝜃𝜃�𝛾𝛾. 

2) After 𝑘𝑘 replications, we arrange a sequence 𝜃𝜃�∗ by taking bootstrap values 
�𝜃𝜃�𝛾𝛾�𝛾𝛾=1…𝑘𝑘

 in ascending order. For the given level of confidence 𝛼𝛼, we find the 

⌊(1 − 𝛼𝛼) 2⁄ 𝑘𝑘⌋ and ⌈(1 + 𝛼𝛼) 2⁄ 𝑘𝑘⌉ quantiles in 𝜃𝜃�∗ and set them as the lower and 
upper borders of the 100× 𝛼𝛼-% percentile confidence interval respectively. 
Here, ⌊(1 − 𝛼𝛼) 2⁄ 𝑘𝑘⌋ denotes the largest integer not greater than (1 − 𝛼𝛼) 2⁄ 𝑘𝑘 and 
⌈(1 + 𝛼𝛼) 2⁄ 𝑘𝑘⌉ stands for the smallest integer not less than (1 + 𝛼𝛼) 2⁄ 𝑘𝑘. 

Additionally, we treat model (1) as a stochastic approximation to the values on a GIS 
lattice. By assumption, the values of population and economic variables remain constant 
in the cells, which belong to the same administrative unit. Thus, we use the existing 
observations in a unit as a proxy for the true value at the level of a cell in this unit. 
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At first, let us consider approximation to the true value in an individual cell. Suppose 
that we have data (𝑋𝑋′,𝑦𝑦′), where 𝑋𝑋′ is a 𝑁𝑁 × (𝑝𝑝 + 1) matrix of explanatory variables 
and 𝑦𝑦′ is a 𝑁𝑁 × 1 vector of population density values at the level of a cell; 𝑁𝑁 is a total 
number of cells on a GIS lattice. For the given cell 𝑗𝑗, we define accuracy 𝜌𝜌𝑗𝑗 of the 
response value from model (1) to the true value 𝑦𝑦𝑗𝑗′, observed in this cell, as a distance 
between the expected model response and the true value. That is 

𝜌𝜌𝑗𝑗 = �𝑦𝑦𝑗𝑗′ − 𝑦𝑦�𝑗𝑗′�, (7) 

where 𝑦𝑦�𝑗𝑗′ = 𝑋𝑋𝑗𝑗′𝑋𝑋 and 𝑗𝑗 = 1, … ,𝑁𝑁. 𝑦𝑦�𝑗𝑗′ is the fitted value of the response in model (1) for 
the observed values 𝑋𝑋𝑗𝑗′ = �𝑥𝑥𝑗𝑗1′ , … , 𝑥𝑥𝑗𝑗𝑝𝑝′ � of explanatory variables in cell 𝑗𝑗. 

For the given subset of cells 𝑆𝑆, we measure the (100 × 𝑘𝑘)-th percentile of the accuracy 
of the response values from model (1) to the true values �𝑦𝑦𝑗𝑗′�𝑗𝑗∈𝑆𝑆, observed in the cells 

belonging to this subset, as a minimum value below which at least the 𝑘𝑘-th fraction of 
the cell accuracy values fall, and denote it by 𝜌𝜌(𝑘𝑘, 𝑆𝑆). To summarize the sample of 
accuracy values in subset 𝑆𝑆, we examine maximum accuracy value 𝜌𝜌(1, 𝑆𝑆) and the 
sample quartiles, which coincide with the values of 𝜌𝜌(0.25, 𝑆𝑆), 𝜌𝜌(0.5, 𝑆𝑆) and 
𝜌𝜌(0.75, 𝑆𝑆). For the convention with standard notations, we denote the selected 
descriptive statistics by 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆), 𝜌𝜌(𝑄𝑄1, 𝑆𝑆), 𝜌𝜌(𝑄𝑄2,𝑆𝑆) and 𝜌𝜌(𝑄𝑄3, 𝑆𝑆) respectively. 

Note that, we cannot directly compute approximation accuracy in model (1). Instead, we 
bootstrap data (𝑦𝑦,𝑋𝑋) to get the reference distribution for an accuracy statistic. The 
values of 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆), 𝜌𝜌(𝑄𝑄1,𝑆𝑆), 𝜌𝜌(𝑄𝑄2, 𝑆𝑆) and 𝜌𝜌(𝑄𝑄3,𝑆𝑆) are simply treated as model 
parameters, and therefore, we follow the percentile bootstrap scheme described above. 
Specifically, we calculate accuracy values for an estimated vector of coefficients �̂�𝑋𝜎𝜎 and 
summarize the sample by the selected percentiles in every bootstrap replication 𝜎𝜎. Thus, 
we obtain separate bootstrap samples for 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆), 𝜌𝜌(𝑄𝑄1, 𝑆𝑆), 𝜌𝜌(𝑄𝑄2,𝑆𝑆) and 𝜌𝜌(𝑄𝑄3, 𝑆𝑆), and 
find 100× 𝛼𝛼-% percentile confidence intervals for these statistics. 

3 Study Area and Data 

The Province of Seville is located in the Mediterranean region of Andalusia in the 
southwestern part of Spain. It contains the region’s capital, Seville and is the largest of 
Andalusia’s eight provinces, both by surface area (14000 km2) and by population (1.9 
m. inhabitants). The Andalusia region as a whole has recently seen strong urban 
expansion, with more growth between 2000-2006 than in the preceding 13 years (OSE, 
2012). The high proportion of the discontinuous urban fabric with respect to the total 
urban fabric (see Figure 1) indicates that the majority of new urban development has 
been of low density. 

Though the province has not suffered from the sprawling suburbanization as happened 
in Spanish coastal areas (e.g., Malaga), notable growth of built-up areas and 
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infrastructures has occurred around Seville city, especially to the south (Dos Hermanas, 
Alcala de Guadaira) and northwest (Bormujos, Tomares, Mairena de Aljarafe) of the 
city. On one hand, urban land has expanded near the urban cores with high population 
density. On the other hand, there has been a marked tendency for urban and industrial 
land parcels to become less concentrated and dispersed across a wider area, particularly 
along transportation routes. 

Figure 1. Urban growth in Andalusia, years 1990-2006. New discontinuous urban 
fabric as a percentage of new total urban fabric (Source: EEA, 2015). 

 

We use spatial cartographic and panel data from the regional government (REDIAM, 
2015; SIMA, 2015; IECA, 2015) and national government sources (INE, 2015). In 
general, we rely on the available data at the end of the booming period in Spanish 
economy. The population density data (number of people per cell, Source: INE, 2015) is 
available for 2001 at the lowest level of administrative subdivision for the census data in 
Spain, called sections. At the same time, land use mapping (Source: REDIAM, 2015) is 
obtained for the year 2003. The land use data is converted to raster by the cell-center 
method at a resolution of 200x200 m. We reclassify the more than one hundred original 
land use categories into urban land class (including all artificial surfaces) and non-urban 
land class (including vegetation, wetlands, agricultural land and water). Figure 2 
illustrates the resultant urban/non-urban land distribution in the region. 
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Figure 2. Land use distribution in the Province of Seville (Spain), year 2003 
(Source: REDIAM, 2015). 

 

Additionally, we take the number of cells with urban land use in a cell neighborhood, 
including the cell itself, as a cell value on the GIS lattice in the sample. Here, we 
consider the Moore neighborhood, which comprises the eight cells surrounding a central 
cell on a two-dimensional square lattice. 

Statistical records on social and economic activity in the region are available at the level 
of a municipality, which is a coarser scale of administrative subdivision than the scale 
of sections. In this connection, we extend data to the level of a section by assigning the 
value in a given municipality to every section that belongs to this particular 
municipality. The group of general economic variables includes the data on income per 
capita (2003, Euros, Source: SIMA, 2015), people employed (2001, number of people, 
Source: SIMA, 2015), and economically active population (2001, number of people, 
Source: SIMA, 2015). Population factors consist of the percentage of population 
younger than 20 years old, the percentage of population between 20 and 64 years old, 
and the percentage of population older than 65 years (2001, number of people, Source: 
IECA, 2015). Land economic variables include data on real estate transactions (2004, 
number of transactions, Source: AEPS, 2015) and number of dwellings built (2001, 
number of houses, Source: INE, 2015). Finally, social factors are represented by the 
number of secondary schools (2005, number of centers, Source: SIMA, 2015). To avoid 
multicollinearity in the data, we transform these factors using the principal component 
analysis (Jolliffe, 2002). 

We collect GIS-based data on physical proximity of a cell to different infrastructure 
objects, landscape features and geographic locations. These factors represent spatially 
explicit proxy measurements of economic activity in the region (Veldkamp and Lambin, 
2001). The first part of topographic data comprises the distance to the nearest road 
(2005, km, Source: CNIG, 2015), the distance to the nearest area of commercial or 
industrial land use (2006, km, Source: EEA, 2015) and the distance to the nearest 
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airport (2006, km, Source: EEA, 2015). Landscape data describes distance to the nearest 
waterfront (2005, km, Source: CNIG, 2015) and distance to the nearest area of forest 
(2006, km, Source: EEA, 2015). Lastly, we collect data on proximity to a city center 
with more than 10,000 inhabitants (2011, km, Source: INE, 2015) and on proximity to a 
city center with more than 50,000 inhabitants (2011, km, Source: INE, 2015). 

Before statistical modeling, we clean and rescale the source GIS-based maps of the land 
use and topographic variables. At first, we exclude cells from the sample, which either 
contain an undefined value or have undefined values in their Moore neighborhood in 
any of the given maps in the dataset. After that, we apply normalization by bringing cell 
values of an individual variable into the range [0,1]: 

𝑥𝑥′ =
𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛
, (8) 

where 𝑥𝑥 is an original cell value, 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 and 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 denote the minimum and maximum 
values among all cell values of the variable on a regional GIS lattice. Finally, we drop 
cells, which fall into protected natural areas in Seville Province (REDIAM, 2015), or 
cells whose Moore neighborhood contains cells belonging to these areas, as urban 
development is not possible in these territories. Note that protected natural areas include 
UNESCO World Heritage sites, Ramsar wetland sites, Nature network 2000 sites, 
biosphere reserves and European Diploma sites. 

4 Results 

After carrying out principal component analysis, we are able to reduce the number of 
economic factors gathered from statistical records to two variables. The first principal 
component represents the average yield of 9 out of 10 collected economic variables. The 
remaining 10th factor correlates with the second component. Overall, both principal 
components explain 99% of the total variance of the aggregate economic data in 
municipalities. After data preprocessing, we compose a list of regression variables, 
which is shown in Table 2. 
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Table 2. Regression variables. 

Variable Name Type of original data 
𝑋𝑋1 Number of cells with urban land use in 

the Moore neighborhood 
GIS-based map 

𝑋𝑋2 Distance to a road GIS-based map 
𝑋𝑋3 Distance to a commercial center GIS-based map 
𝑋𝑋4 Distance to an airport GIS-based map 
𝑋𝑋5 Distance to waterfront GIS-based map 
𝑋𝑋6 Distance to forest GIS-based map 
𝑋𝑋7 Distance to a city (> 10 ths inh.) GIS-based map 
𝑋𝑋8 Distance to a city (> 50 ths inh.) GIS-based map 
𝑋𝑋9 First principal component of economic 

data 
Statistical records per 
municipality 

𝑋𝑋10 Second principal component of economic 
data 

Statistical records per 
municipality 

𝑦𝑦 Logarithmic population density Statistical records per section 

The sample contains 836 points (sections), which fall into 99 municipalities. In total, the 
section's territory comprises 235,678 cells on the GIS lattice. As a useful summary, 
Figure 3 illustrates the range of sample observations. 

Figure 3. Box plots of the sample observations at the level of a section. 
Scale on y-axis: 𝑋𝑋1 - 1:1 [cell], 𝑋𝑋2 - 1: 19.36 [km], 𝑋𝑋3 - 1:22.56 [km], 𝑋𝑋4 - 1:109.05 
[km], 𝑋𝑋5 - 1:55.42 [km], 𝑋𝑋6 - 1:29.01 [km], 𝑋𝑋7 - 1:62.55 [km], 𝑋𝑋8 - 1:103.25 [km], 
𝑋𝑋9,𝑋𝑋10 - 1:1 [-], 𝑦𝑦 - ln(people per cell). 

    

We fit model (1) to the combinations of explanatory variables described in Table 2. In 
permutation hypothesis tests, we compute p-values for 𝑅𝑅2 and 𝑡𝑡1, … , 𝑡𝑡10 statistics using 
formulas (2) and (3) respectively. We calculate a 95%-normal approximation interval 
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around the estimated p-value, which equals 𝑝𝑝� ± 1.96�𝑝𝑝�(1 − 𝑝𝑝�)/𝑘𝑘 and defines 
approximation precision at the given level of confidence. Estimations suggest that the 
land use variable (𝑋𝑋1), the distance to a road (𝑋𝑋2) and the distance to a commercial 
center (𝑋𝑋3) represent the minimum combination of explanatory variables in model (1), 
for which the null hypothesis of no relationship is rejected in the permutation tests of 
overall model significance and individual coefficients significance at the level 0.05 
(Table 3). 

Table 3. Approximate p-values with 95% normal approximation confidence intervals. 
"Model 1": model (1) specified with all explanatory variables, "Model 2": model (1) 
specified with 𝑋𝑋1, 𝑋𝑋2 and 𝑋𝑋3 explanatory variables. The ** symbol indicates 
significance at the level 0.05. 

(number of replications 10,000) 

 Model 1 Model 2 
𝑝𝑝�-value (𝑡𝑡1) 0.000 (0.000, 0.000)** 0.000 (0.000, 0.000)** 
𝑝𝑝�-value (𝑡𝑡2) 0.000 (0.000, 0.000)** 0.000 (0.000, 0.000)** 
𝑝𝑝�-value (𝑡𝑡3) 0.004 (0.003, 0.005)** 0.008 (0.006, 0.010)** 
𝑝𝑝�-value (𝑡𝑡4) 0.726 (0.717, 0.735) – 
𝑝𝑝�-value (𝑡𝑡5) 0.296 (0.287, 0.305) – 
𝑝𝑝�-value (𝑡𝑡6) 0.959 (0.955, 0.963) – 
𝑝𝑝�-value (𝑡𝑡7) 0.262 (0.254, 0.271) – 
𝑝𝑝�-value (𝑡𝑡8) 0.551 (0.541, 0.560) – 
𝑝𝑝�-value (𝑡𝑡9) 0.161 (0.154, 0.168) – 
𝑝𝑝�-value (𝑡𝑡10) 0.375 (0.366, 0.385) – 
𝑝𝑝�-value (𝑅𝑅2) 0.000 (0.000, 0.000)** 0.000 (0.000, 0.000)** 

Results of bootstrap tests show that model (1) specified with 𝑋𝑋1, 𝑋𝑋2 and 𝑋𝑋3 variables is 
consistent with the null hypothesis of no spatial autocorrelation in the residuals at the 
significance level 0.05. Table 4 shows a mean estimate with a 95% percentile 
confidence interval for the Moran's I coefficient specified by (4) and the Geary's C 
statistics given in (5) used as measures of spatial autocorrelation. The p-value in 
hypothesis testing is computed from formula (6). 

Table 4. Bootstrap estimates and approximate p-values for the measures of spatial 
autocorrelation in model (1) specified with 𝑋𝑋1, 𝑋𝑋2 and 𝑋𝑋3 explanatory variables. 

(number of replications 10,000) 

Statistic Mean 95% percentile confidence interval p-value 
Moran's I 0.005 (-0.074, 0.085) 0.689 
Geary's C 0.993 (0.850, 1.144) 0.972 

After permutation testing, we specify model (1) with the statistically significant 
combination of 𝑋𝑋1, 𝑋𝑋2 and 𝑋𝑋3 variables, and bootstrap regression parameters (Table 5). 



 14 

The bootstrap estimates of model coefficients indicate that the population density is 
higher in the cells with more urbanized neighborhoods and is lower in the cells which 
are far away from the transportation routes. The closer a cell is to a commercial center, 
the higher the population density is, but this variable has a lesser impact. The 𝑅𝑅2 
estimate in Table 5 suggests that about 85% of the total variance in the logarithmic 
population density is explained by 𝑋𝑋1, 𝑋𝑋2 and 𝑋𝑋3 variables. 

Table 5. Bootstrap estimates in model (1) specified with 𝑋𝑋1, 𝑋𝑋2 and 𝑋𝑋3 explanatory 
variables. (number of replications 10,000) 

Coefficient Mean 95% percentile 
confidence interval Statistic Mean 

95% 
percentile 
confidence 

interval 

𝑋𝑋1 0.414 (0.370, 0.454) 𝑅𝑅2 0.851 (0.829, 
0.872) 

𝑋𝑋2 -34.415 (-45.704, -25.389) MSE (mean 
square error) 0.754 (0.654, 

0.859) 

𝑋𝑋3 -3.700 (-5.889, -1.416)    

𝑋𝑋0 2.966 (2.656, 3.301)    

In the end, we derive how accurate model (1) with 𝑋𝑋1, 𝑋𝑋2 and 𝑋𝑋3 variables 
approximates population density values at the level of a cell on the GIS lattice. Table 6 
demonstrates results for the cells in the entire GIS-based map and for the cells grouped 
by the number of cells with urban land use in the cell Moore neighborhood including 
the cell itself. We consider that model (1) is weakly accurate, if the accuracy estimate is 
less than the interquartile range (IQR) of the population density sample, which equals 
1.76 people per cell. For the entire GIS-based map, the expected accuracy drops from 
185% of IQR for 𝑄𝑄3 to 119% for 𝑄𝑄2, and then, to 60% of IQR for 𝑄𝑄1. The same 
tendency (178%-115%-59%) is detected, when we examine expected approximation 
accuracy for the group of cells with no urban cells in the Moore neighborhood. 
However, this result is expected as the cells in the group compose 92% of the total cell 
amount in the sample. Overall, model (1) is weakly accurate only for 25% of cells in 
each group. Note that approximation precision measures the degree of variation in the 
model response under the fixed values of explanatory variables and coincides with the 
variance in the error terms in model (1). Its estimate is given by the mean square error in 
Table 5. 
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Table 6. Bootstrap mean with 95% percentile confidence intervals for the accuracy 
percentiles (people per cell) in the cells grouped by the number of cells with urban land 
use in a cell Moore neighborhood in model (1) specified with 𝑋𝑋1, 𝑋𝑋2 and 𝑋𝑋3 
explanatory variables. "All": the sample of the entire GIS-based map, "non-urban": the 
sample of cells with no urban cells in the Moore neighborhood, "urban": the sample of 
cells with at least one urban cell in the Moore neighborhood (including the cell itself) 
(number of replications 10,000). 

𝑆𝑆 
number 

of  
points 

𝜌𝜌(𝑄𝑄1, 𝑆𝑆) 𝜌𝜌(𝑄𝑄2, 𝑆𝑆) 𝜌𝜌(𝑄𝑄3, 𝑆𝑆) 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚(𝑆𝑆) 

Group "non-
urban" 216,729 

1.04 
(0.92, 
1.15) 

2.02 
(1.81, 
2.29) 

3.14 
(2.85, 
3.50) 

15.95 
(11.92, 
20.97) 

Group "urban" 18,949 
1.74 

(1.65, 
1.84) 

3.34 
(3.20, 
3.48) 

4.56 
(4.41, 
4.71) 

10.72 
(9.96, 14.18) 

Group "all" 235,678 
1.06 

(0.95, 
1.18) 

2.10 
(1.88, 
2.34) 

3.26 
(3.00, 
3.61) 

15.95 
(11.92, 
20.96) 

5 Discussion 

In this paper, we have performed a non-temporal analysis of spatial land use, population 
and economic data to analyze cumulative output of these urbanization processes in 
different areas of Seville Province. The outlined algorithm of statistical modeling and 
estimation focuses on several inherent aspects of the spatial phenomenon under study. 
First and foremost, we recognize that some relevant variables can be omitted in the 
collected dataset. Consequently, we have conducted experimental significance testing 
using permutations and bootstrapping to summarize the partial knowledge about spatial 
dependencies. In the second place, we have chosen to sample data at the lowest level of 
administrative subdivision, which is simultaneously the most accurate spatial measure 
available for the population density data in Seville Province. Furthermore, the 
methodology is not directly applicable at the level of the GIS lattice, where the 
necessary assumption of independent observations does not hold due to the presence of 
spatial autocorrelation. 

Our results suggest that some important drivers of land use change are indeed missing 
from the dataset. The following thought experiment may help to illustrate this outcome. 
Let's assume that conversion of land is being caused only by some changes in the 
selected demographic and economic variables from the very start of urbanization 
process. Then it is reasonable to expect association between population, economic 
indicators and land use distribution in the resultant cumulative land use map after 
several years of conversion. However, our regression model shows low precision in 
comparison with the spread of population density values. The expected mean square 
error makes 43% of the IQR in the density sample with the 95% confidence interval 
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from 37% to 49%. Results indicate that distribution of the error terms contains 
substantial information about population growth. For that reason, we cannot argue that 
cumulative change can be solely explained by the studied drivers. 

The scale dependence of the reported results is examined using approximation accuracy 
of the model at the higher resolution of a GIS lattice. In general, the model is accurate 
(relative to the IQR of the population density sample) in 25% of cells in the entire GIS-
based map and in any of the cell groups studied. Moreover, accuracy estimates exceed 
model precision, which points out significant variation in the values of explanatory 
variables from the section average. On the other hand, we do not consider landscape 
heterogeneity by excluding slope and elevation from the dataset. We expect these 
variables to correlate with the remaining ones in the regression model. However, 
application of the both landscape features can further refine in what spatial conditions 
aggregate results are biased at the fine scale. In general, we anticipate that smaller 
sections have higher urbanization rate and better approximation accuracy. 

In the case study of Seville Province, we have come to the conclusion that economic 
variables from statistical records provide little or no information about the population 
density. Possibly, non-relevance of these factors is caused by the scale at which 
observations were sampled. The sampling has been done in 99 municipalities, which is 
approximately 10 times less than the number of sections. Even so, economic activity is 
represented by the proxy GIS-based variables in the model. Inclusion of these variables 
agrees with many studies on land use drivers (Veldkamp and Lambin, 2001). We found 
it interesting that significant proxies (i.e., distance to a road and distance to a 
commercial center) are the same location variables which often used in the investigation 
of land use change on a GIS lattice (e.g., Wear and Bolstad, 1998). In contrast, our 
research has examined a static snapshot of urbanization processes and was conducted at 
the scale of administrative subdivision. 

Note that, the urban land variable (i.e., number of cells with urban land use in the Moore 
neighborhood) has a limited range of values and proxy variables enter into the 
regression equation with negative signs. Immediately, we can deduce an upper bound on 
the predictions from model (1). Formally, the expected logarithmic density in a section 
is less or equal than 9×0.454+3.301=7.387 people per cell with the right border of the 
95% percentile confidence interval around this expected value equal to 8.246, as results 
in Table 5 suggest. Besides, we draw attention to the limited applicability of the proxy 
measurements. In the areas with high population density, the distance proxies take zero 
values, but evidently, cannot become negative. On the other hand, raw economic 
variables, e.g., income per capita, do not have such constraint on their value range. This 
can be an argument for a land use modeler to introduce a new condition into a model of 
land use change, such that sections in which population density exceeds the calculated 
upper bound should have a totally urbanized territory. 
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6 Conclusion 

The outcomes of our study are somewhat discouraging for the goals of land use 
modeling. On one hand, statistical analysis at the fine aggregate scale points out that the 
economic panel data should be substituted with the spatially explicit proxy 
measurements. At the same time, the model with proxy variables is imprecise and 
simultaneously inaccurate (even in the rough estimation) at the cell level. Therefore, we 
have concluded that non-temporal spatial analysis of land use, population and economy 
provides partial knowledge about drivers standing behind urbanization phenomenon. 
Besides, if we assume that cumulative land use change can be inferred from a set of 
measurable variables, then not all of these urbanization driving forces are reflected in 
the collected dataset. 

To our understanding, this conclusion shows methodological difficulties at modeling 
socio-economic processes with high spatial resolution. After all, no conventional 
guidelines exist on how to measure these variables at the level of a GIS lattice. We 
come out with the recommendation for a land use modeler to necessarily incorporate 
uncertainty associated with economic drivers in a model of land use change. In this 
case, the quantified interdependence between population densification and urban land 
distribution can help to refine the probability of change in different areas of the land use 
map. We view this direction as a promising one for future research. 

Software 

All computations were done using Clojure v.1.8.0 and Incanter v.1.5.7, a Clojure-based, 
R-like statistical computing and graphics environment for the JVM. The software 
components with data can be accessed through the link 
http://www.iiasa.ac.at/web/home/research/researchPrograms/AdvancedSystemsAnalysis
/land-use-spatial-analysis.html at the International Institute For Applied Systems 
Analysis (IIASA). The input GIS-based maps are stored in an ESRI ArcInfo ASCII 
raster file format. The census data is given as tabular records in a csv file format. 
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