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PREFACE 

Methodologies for decision making with conflicting multiple objectives 

has attracted increasing attention since the early period of IIASA activity. 

In the System and Decision Sciences Area of IIASA, decision making processes 

with conflicting objectives as well as multiobjective optimization are main 

projects and many techniques have been developed. This paper intends to pro- 

vide a modest approach to such a research direction for decision sciences. 

The author is thankful to Professor A. Wierzbicki, Chairman of the System 

and Decision Sciences Area, for providing him with the opportunity to visit 

IIASA and to work on this project. The author expresses his gratitude to 

Professor F. Seo for discussions and comments, and is indebted to Professor 

Y. Sawaragi of Kyoto University for his constant encouragement. The numerical 

results were obtained while the author was at the Systems Engineering Depart- 

ment of Kobe University in Japan, and the author wishes to thank Mrs. T. Sasakura 

and K. Tazumi for their cooperation in this study. 



ABSTRACT 

In this paper, we propose a new interactive multiobjective decision 

making technique, which we call the Sequential Proxy Optimization Technique 

( SPOT ), in order to overcome the drawbacks of the conventional multiobjec- 

tive decision making methods. Our method combines the desirable features 

of both the Surrogate Worth Trade-off ( SWT ) method and the Multiattribute 

Utility Function ( MUF ) method. We can interactively derive the preferred 

solution of the decision maker efficiently by assessing his marginal rate 

of substitution and maximizing sequentially the local proxy preference func- 

tion. A numerical example illustrates the feasibility and efficiency of 

the proposed method. 



1. Introduction 

The development of decision making methodologies under multiple conflicting 

objectives has been one of the most active areas of research in recent years. 

Several techniques have been developed ; among them two rival methods, namely, 

the multiattribute utility function ( MUF ) method [ I ]  and the surrogate worth 

trade-off ( SWT ) method [2,31 use global and local utility ( preference ) 

modelling respectively. 

The MUF method developed by Keeney et al., global utility function model- 

Ling, uses two assumptions of preference independence and utility independence to 

limit the utility function to specialized forms - additive or multiplicative. 

Once the form is selected, a few assessments determine the free parameters. 

These global functions are mathematically simple and convenient, but they have 

disadvantages. Their assumptions are reasonable locally, but when assumed 

globally, they are very restrictive and may force the decision maker ( DM ) 

to fit a function not truly representing his or her preferences. 

The SWT method developed by Haimes et al., local utility function modelling, 

provides an alternative approach that avoids restrictive assumptions. Instead 

of specifying the utility function globally, their procedures construct a 

sequence of local preference approximations of it. 

The general philosophy taken in the interactive approach using the local 

utility function modelling is that the multiobjective decision making process 

should follow the following 3-step procedure. 

Step 1. Generate Pareto optimal solutions 

Step 2. Obtain meaningful information to interact with the DM 

Step 3. Use information obtained in step 2 to interact with the DM and select 



t h e  f i n a l  s o l u t i o n  based on t h e  DM'S p r e f e r e n c e  response .  

The i n t e r a c t i v e  Frank-Wolfe ( IFW ) method developed by Geof f r ion  e t  a l .  

[ 4 ] ,  put  s p e c i a l  emphasis on s t e p s  2  and 3. I n  s t e p  2,  t h e  DM i s  simply 

s u p p l i e d  w i t h  t h e  c u r r e n t  v a l u e s  of t h e  o b j e c t i v e  f u n c t i o n s  t o  which t h e  DM 

responds by p r o v i d i n g  t h e  marg ina l  r a t e  of s u b s t i t u t i o n  ( MRS ) v a l u e s  between 

two o b j e c t i v e s .  T h i s  i n f o r m a t i o n  is  t h e n  used t o  modify t h e  o b j e c t i v e  f u n c t i o n  

f o r  g e n e r a t i n g  a  new p o i n t  i n  s t e p  1 of t h e  n e x t  i t e r a t i o n  by a p p l y i n g  Frank- 

Wolfe a l g o r i t h m .  U n f o r t u n a t e l y ,  t h i s  method does  n o t  g u a r a n t e e  t h a t  t h e  

genera ted  s o l u t i o n  i n  each i t e r a t i o n  w i l l  b e  P a r e t o  o p t i m a l .  

The SWT method u s e s  t h e  € - c o n s t r a i n t  problem a s  a  means o f  g e n e r a t i n g  

P a r e t o  o p t i m a l  s o l u t i o n s .  O b j e c t i v e  t r a d e - o f f s ,  whose v a l u e s  can b e  e a s i l y  

o b t a i n e d  from t h e  v a l u e s  of some s t r i c t l y  p o s i t i v e  Lagrange m u l t i p l i e r s  from 

s t e p  1 a r e  used a s  t h e  i n f o r m a t i o n  c a r r i e r  i n  s t e p  2. And i n  s t e p  3 ,  t h e  

DM responds by e x p r e s s i n g  h i s  d e g r e e  o f  p r e f e r e n c e  over  t h e  p r e s c r i b e d  t r a d e -  

o f f s  by a s s i g n i n g  numer ica l  v a l u e s  t o  each s u r r o g a t e  worth  f u n c t i o n .  T h i s  

method g u a r a n t e e s  t h e  g e n e r a t e d  s o l u t i o n  i n  each i t e r a t i o n  t o  be  P a r e t o  o p t i m a l  

and t h e  DM can s e l e c t  h i s  p r e f e r r e d  s o l u t i o n  from among P a r e t o  o p t i m a l  s o l u t i o n s .  

However, t h e  o r i g i n a l  v e r s i o n  o f  t h e  SWT method i s  n o n i n t e r a c t i v e  and some 

improvement, p a r t i c u l a r l y  i n  t h e  way t h e  i n f o r m a t i o n  from t h e  DM i s  u t i l i z e d ,  

must b e  made. 

Recen t ly ,  Chankong and Haimes [5,61 and Simizu e t  a1 .  , [ 7 1  independen t ly  

proposed a n  i n t e r a c t i v e  v e r s i o n  of t h e  SWT method on t h e  b a s i s  of t h e  SWT 

and t h e  IFW methods. T h e i r  methods f o l l o w  a l l  t h e  s t e p s  of t h e  SWT method 

up t o  t h e  p o i n t  where a l l  t h e  s u r r o g a t e  worth v a l u e s  cor responding  t o  t h e  

P a r e t o  opt2mal s o l u t i o n  a r e  o b t a i n e d  from t h e  DM. An i n t e r a c t i v e  o n - l i n e  

scheme was c o n s t r u c t e d  i n  such a  way t h a t  t h e  v a l u e s  o f  e i t h e r  t h e  s u r r o g a t e  



worth function or the MRS are used to determine the direction in which the 

utility function, although unknown, increases most rapidly. In their method, 

however, the DM must assess his preference at each trial solution in order to 

determine the step size. Such a requirement is very difficult for the DM, 

since he does not know the explicit form of his utility function. 

On the other hand, in 1978, Oppenheimer proposed a proxy approach [8] to 

multiobjective decision making. He introduced the local proxy preference 

functions in the IFW method. In his procedure the local proxy preference 

function is updated at each iteration by assessing a new MRS vector. Then 

the proxy is maximized to find a better point. Unfortunately, this method, 

like the IFW method, does not guarantee the generated solution in each itera- 

tion to be Pareto optimal. Furthermore, the systematic procedure to maximize 

the proxies is not mentioned, so it seems to be very difficult to do so in 

practice. 

In this paper, we propose a new interactive multiobjective decision making 

technique, which we call the sequential proxy optimization technique ( SPOT ) 

incorporating the desirable features of the conventional multiobjective decision 

making methods. In our interactive on-line scheme, after solving the €-constraint 

problem, the values of the MRS assessed by the DM are used to determine the 

direction in which the utility function increases most rapidly and the local 

proxy preference function is updated .to determine the optimal step size and 

Pareto optimality of the generated solution is guaranteed. A numerical example 

illustrates the feasibility and efficiency of the proposed method. 



2. Multiobjective Decision Making Problem 

2.1 Preliminaries 

The multiobjective optimization problem ( MOP ) is represented as 

MOP 

min 
X 

subject to 

N 
X E X =  ( X I  X E E  , gi(x)zO, i=1,2 ,..., m l  (2 

where x is an N-dimensional vector of decision variables, fl, ..., f are n district n 

objective functions of the decision vector x, gl, ...,g are a set of inequality m 

constraints and X is the constrained set of feasible decisions. 

Such a vector-valued index usually induces a partial ordering on the set 

of alternatives, one cannot speak of optimal solutions. Fundamental to the 

MOP is the Pareto optimal concept, also known as a noninferior solution. 

Qualitatively, a Pareto optimal solution of the MOP is one where any improvement 

of one objective function can be achieved only at the expense of another. 

Mathematically, a formal definition of a Pareto optimal solution is given below: 

Definition 1. 

A decision x* is said to be a Pareto optimal solution to the MOP, if and 

only if there does not exist another x so that f . ( y ) ~  f . (x*) , j=1,2,. . . ,n, with 
J - J  

strict inequality holding for at least one j. 

Usually, Pareto optimal solutions consist of an infinite number of points, 

and some kinds of subjective judgement should be added to the quantitative 

analyses by the DM. The DM must select his preferred solution from among 

Pareto optimal solutions. 

Definition 2. 



A preferred solution is a Pareto optimal solution which is chosen as the 

final decision through the preference ordering relation given by the DM. 

Thenwe can state the multiobjective decision making problem ( MDMP ) 

we wish to solve 

MDMP 

max U(fl(x),f2(~)y.--yfn(~)) 
X 

subject to X E X  P ( 4 )  
P where X is the set of Pareto optimal solutions of the MOP and U(') is the 

N 
DM'S overall utility function defined on F!{f(x) - (x EE and is assumed to exist 

and is known only implicitly to the DM. 

One way of obtaining Pareto optimal solutions to the MOP is to solve 

€-constraint problem Pk(€ ) -k 

min fk(x) 

subject to x E X n \(E-~) 

E-k Ek 

where E - ~  A ( E ~ , .  . . ,E k-l~Ek+l Y .  • Y E  1 n 

\(E-~) {x 1 f. (XI (cj , j=l,. . . ,n, jfk 1 
J 

Ek&{ E-k I \(E-~) f $ 1 

The following theorem is well known [5,61. 

Theorem 1. 

A unique solution P (E ), for any l ~ k ~ n ,  is a Pareto optimal solution of k -k 

the MOP. Conversely, any Pareto optimal solution of the MOP solves ( not 

necessarily uniquely ) Pk(~-k) for some E E E and for all k=l, ..., n. -k k 



2.2 Multiobjective Decision Making in Objective Space 

Let us assume that x*(E-~), an optimal solution to the P (E ) ,  be unique k -k 

for the given E And let AEk be a set of E - ~  such that all the €-constraint 
-k' 

(9) is active, that is 

k)) = L , j=l,. .. ,n, jZk 1 - j (11) 

Define the following active €-constraint problem AP k (E -k)' 

min fk(x) 
X 

(12) 

subject to X E X ~ X ~ ( E  ) -k 

€-k AEk 

If the Kuhn-Tucker condition for problem AP k (E -k ) is satisfied, the 

Lagrange multiplier Akj(~-k) associated with the jth active constraint can be 

represented as follows: 

A = - { afk(~-~) 1 / {  af. (E ) 1 
k j 

j=l,. . . ,n, jZk 
J -j 

The optimal values of the original decision variables, X*(E ) ,  and the 
-k 

corresponding values of the primal objective, f [x*(E ) I ,  determines the k -k 

trade-off surface by the repeated solution of AP (& -k)y with various values 

of the secondary objectives, c j=l,.. . ,n, j#k. 
j ' 

Substituting the optimal solutions of the AP (E 
k -k)' x*(E_~), given desired 

levels of the secondary objectives, E j=l, ..., n, jZk, the MODM can be restated 
j ' 

as follows: 

max U ( E ~ ,  . . . , ~ ~ - ~ , f ~ [ ~ * ( ~ - ~ ) l  y~k+ly 
E -k 

No constraints are involved in equation (16), since all constraints were 

considered in the solution of the active epsilon-constraint problem AP (E ) .  
k -k 



Restricting the MDMP to the Pareto optimal region simplifies the approach 

considerably. The decision variables are now the desired levels of the 

objectives, E j=l, ..., n, j#k, rather than the original decision variables, x. 
j ' 

n-1 
The optimization is carried on in the objective function space, E , not in 

the decision variable space, E ~ .  This is of course, a clear advantage since 

in most realistic problems, N >>n. 

Throughout this paper we make the following. 

Assumption 1 : U :F+R exists and is known only implicitly to the DM. 

Moreover, it is assumed to be concave, a strictly decreasing 

and continuously differentiable function on F. 

Assumption 2 : All fi, i=l, ..., n and all g j=l, ..., m are convex and twice 
j ' 

continuously differentiable in their respective domains and 

constraint set X is compact. 

Assumption 3 : For every feasible E E A E ~  the solution to AP (E ) exists -k k -k 

and is finite. 

Under Assumptions 1-3, the following theorem holds. 

Theorem 2. 

Under Assumptions 1-3, the utility function U ( rl, . . . , E ~ - ~ , ~ ~ [ x * ( E - ~ ) ] , E ~ + ~ ,  

..., E ) is concave with respect to E E A E ~ .  n -k 

Proof 

By the convexity of fi and X, the setE is convex and the function k 

fk[~*(~-k)] is convex with respect to E Furthermore, by the monotonicity 
-k ' 

and concavity of U with respect to fk, the following relations hold for any 

- 
E E E AE and OZe_<l. -kY -k k 

( (l-e)SkYfk( (l-e)<k) ) 



> u ( er-k + (l-e)Bk , efk(~-k) + (l-e)fk(;-k) - - 

- - 
= u  ( e('-k,fk(8-k) ) + (I-') ( '-k,fk('-k) ) 

> e u ( E-k,fk(~-k) ) + (I-') ('-k,fk(F-k) ) - - 

where 

fk(~-k) n f k k *  ( E - ~ )  I 

u ( E - ~ , ~ ~ ( E - ~ )  ) ( E ~ ,  , €  k-1' f k [x*('-~)] ,Ek+l,...,E n ) 

Thus U ( E - ~ , ~ ~ ( E  ) ) i s  concave with respect  t o  E - ~ E A E ~ .  
-k 



3. Marginal Rate of Substitution 

Now, before formulating the gradient, aU(.)/a~, of utility function U, 

we introduce the concept of the marginal rates of substitution ( MRS ) of the 

DM. 

Definition 3. 

At any f, the amount of f that the DM is willing to sacrifice to acquire i 

an additional unit of f is called the MRS. Mathematically, the MRS is the 
j 

negative slope of the indifference curve at f: 

where each indifference curve is a locus of points among which the DM is 

indifferent. 

The decision analyst assesses MRS by presenting the following prospects 

to the DM 

for a small fixed Af small enough so the indifference curve is approximately 
j ' 

linear but large enough so the increment is meaningful, the analyst varies Af 
i 

until the DM is indifferent between f and f'. At this level, m (f)rAfi/Af i j j ' 

in Fig.l,df.=-Afi and df = Af . 
I. j j 



curve 

Figure 1. Assessing the Marginal Rate of Substitution. 

4. Gradient Method in Objective Space 

Now, we can formulate the gradient aU(.)/a~. of utility function U('). 
J 

Applying the chain rule 

Using the relations (15) and (171, we have the following 

From the strict monotonicity of U with respect to fk, k=l, ..., n, aU(-)/afk 
is always negative. Therefore - (mkj - Akj ) ( j=l, . . . ,n, j#k ) decide a 

direction improving the values of U(-) at a current point. 

Under the assumptions 1-3, the optimality conditions for a maximization 

point E - ~  are aU(.)/a~-~ = 0, that is 

q. = A, j=l,. . . ,n, j#k J j 
(20) 

This is a well known result that at the optimum the MRS of the DM must 

be equal to the trade-off rate. 



I f  t h e  o p t i m a l i t y  cond i t i on  (20) i s  no t  s a t i s f i e d  a t  t h e  Rth i t e r a t i o n ,  

R R 
t h e  opt imal  d i r e c t i o n  of search  s and t h e  corresponding d i r e c t i o n  of bf a r e  

j k 

given by : 

Then, we must determine t h e  opt imal  s t e p  s i z e  a which maximizes 

R R R R 11 R R 
U ( + a b ~  f + abf ) along t h e  d i r e c t i o n  bf' = ( A E ~ , .  . . , b ~ ~ - ~ , b f ~ , b ~ ~ + ~ ,  . . . , B E  ) -kY k k n 

To so lve  t h i s  l i n e a r  search  problem, t h e  fol lowing two problems a r i s e .  

Problem 1. 

R R 
The DM must a s s e s s  h i s  preference  a t  each t r i a l  s o l u t i o n  (E' + a b c R  f + a b f k )  -k -k' k 

f o r  s e v e r a l  va lues  of a ,  i n  o rde r  t o  determine t h e  b e s t  s t e p  s i z e .  Such 

requirement is very  d i f f i c u l t  f o r  t h e  DM, s i n c e  he does not  know t h e  e x p l i c i t  

form of h i s  u t i l i t y  func t ion .  

Problem 2. 

Even i f  i t  is p o s s i b l e  f o r  t h e  DM t o  a s s e s s  t h e  u t i l i t y  va lue ,  t h e r e  remains 

R R 
a problem. I n  F ig .  2,  new t r i a l  po in t  f  + a b f R ,  where bf i s  a d i r e c t i o n  

v e c t o r ,  i s  not  a Pa re to  opt imal  s o l u t i o n  f o r  any a s a t i s f y i n g  O5a5a2 - - ; t h a t  is ,  

f o r  a=a t h e r e  is a Pa re to  opt imal  po in t  P which i s  obviously b e t t e r  than T 1 ' 1 1 ' 

Furthermore, f o r  any a s a t i s f y i n g  a > a  t h e  t r i a l  p o i n t , l i k e  poin t  T3,becomes 
2 ' 

i n f e a s i b l e  and t h e  assessment a t  such a poin t  is meaningless.  

R R R 
I n  order  t o  r e so lve  problem 2 ,  we Adopt (E' +an& f ( ~ - ~ + a A t - ~ ) )  -k -kY k 

R 11 
a s  a t r i a l  po in t  i n  t h e  process  of l i n e a r  search  i n s t e a d  of (E' -k +%A€' -kY f k +aAfk) .  



( Trade-off curve 

Figure 2. Gradient Method in Objective Space. 

Our trial point becomes a Pareto optimal solution by solving the active epsilon 

constraint problem AP (E k -k)* Although it is necessary to solve APk(~ -k ) for 

several values of a, the generated solution in each iteration becomes a Pareto 

optimal solution and the DM can select his preferred solution from among Pareto 

optimal solutions. 

Concerning the problem 1, it is necessary to.construct some kind of 

utility ( preference ) function, so we introduce local proxy preference 

functions like Oppenheimeris method [ 8 ]  as explained in the following. 



5. Local Proxy Preference Functions 

Using the deterministic additive independence condition P (f) = 1 p . (f i) 
1 

of Keeney et al. [I], together with assumptions about a marginal rate of 

substitution variation, Barrager and Keelin [g], [lo] derive the following 

three global utility functions: 

(1) sum-of-exponentials 

1f [-amij (f)/afjl /mij(f) = uj then P(f) = - 1 aiexp (-uifi) (23) 

It implies that if the DM is indifferent between any f1 and f2, then he 

1 2 
is also indifferent between f +A and f +A where A = (A,A, ..., A). 
(2) sum-of -powers (a. #o) 

J a 
i 

If [-amij(f)/afj]/mij(f) = (l+a.)/f. thenP(f)=-1 aifi (24) 
J J  

It implies that as the DM accumulates more of each attribute, he becomes 

less sensitive to substitutions among them. 

(3) sum-of-logarithms 

If [-amij (f)/afjl /mij (f) = 1/(M-f .) then P(f) = lail,(~-fi) 
J 

(25) 

where M is a sufficiently large positive number. 

This utility function can be viewed as the additive form of the Cobb- 

Douglass function. It implies that if the DM is indifferent between any 

1 2 1 2 M-f and M-f , then he is also indifferent between b(M-f ) and b(M-f ) for 

any positive constant b. 

Although these utility functions are very restrictive globally, they 

are reasonable when assumed locally. We use these utility functions as 

local proxy preference functions to determine the optimal step size because 

they seem to be a very good model locally. 



In the following, we deal with the sum-of-exponentials as an example of 

a local proxy preference function, but for other types of proxy functions 

similar discussions can be made. 

For the sum-of-exponentials function, the constant al can arbitrarily be set 

equal to one in P ( f )  = - 1 aiexp(-w . f .) . The remaining parameters, a2,. . . ,an, 
1 1  

w~,w~,...,w can be calculated from MRS assessment. At any f, there are n-1 n 

MRS at each of two points plus a single MRS at third point are required to fit 

the 2n-1 parameters. 

The numerical MRS actually assessed relate to the sum-of-exponential 

parameters a and w in the following way; i i 

mk j (f) = [a~(f)/af.]/[ap(f)/af~] = [w.a.exp(-w.f .)l(ukakexp(-w f )I (26) J J J  J J  k k  

j=l,.. . ,n, j#k 
By taking the logarithm and solving a set of linear equations, the proxy 

parameters a and w are uniquely determined from the 20-1 assessment of rnkj(f). 

If the equations are linearly dependent, an additional assessment at the third 

point is required. 



6. Consistency of Marginal Rate of Substitution Assessment 

We have assumed up to this point that at each iteration the DM provides 

MRS consistent with a continuously differentiable deterministic utility func- 

tion, But, it is a question whether the DM can respond precise and consistent 

values of MRS through the whole searching process. In this section, we relax 

the assumption and examine techniques for checking MRS consistency following 

Oppenheimer [ 8 ] .  

Two types of consistency tests are employed, the first testing MRS consis- 

tency at a single point, and the second testing consistency at successive points. 

The single point test requires a second set of assessments at each point 

and checks whether the MRS of the DM satisfies the chain rule, i.e. mkj =mkimij 

i, j 1 ,  . . n ,  i ,  k ,  k j . Since only n-1 unique MRS among the objectives 

exist at any point, the second set can be used to measure the discrepancy E: 

E = [ (nfk/nfj) - (Af,/~f,) (Afi/Af . ) ] / (Afk/Af .) (2)  
J J (27)  

Certainly we would not expect exact agreement. Instead, we set a reasonable 

tolerance level; if the discrepancy exceeds the tolerance, the analyst should 

explain the inconsistency to the DM and reassess the MRS until the discrepancy 

is resolved. 

The second test checks for decreasing marginal rates of substitution of 

the proxy. In assumption 1, we assumed the utility function U ( f )  is 

strictly concave, satisfying a strictly decreasing marginal rate of substitution. 

So, we must check the concavity and monotonicity of the proxy P(f). The 

necessary and sufficient condit.ion for the three types of proxy P(f) to be 

strictly decreasing and concave can be shown using the parameter values con- 

dition. 



The following theorem can be easily proven by constructing the Hessian 

matrix of P(f). 

Theorem 3. 

( 1 )  The sum-of-exponentials proxy P(f) is strictly decreasing and concave if 

and only if all the parameters ai and wi are strictly positive, i.e., 

a. > 0 and w. > 0, i=l, ..., n 
1 1 

(28) 

(2) The sum-of-powers proxy P(f) is strictly decreasing and concave if and 

only if 

a. > 0; ai > 1 i=l,. .. ,n 
1 

(29) 

(3) The sum-of-logarithms proxy P(f) is strictly decreasing and concave if 

and only if 

a. > 0 i=l,.. . ,n 
1 

(30) 



7. Algorithm of the SPOT 

Following the above discussions, we can now construct the algorithm 

of the sequential proxy optimization technique ( SPOT ) in order to obtain 

the preferred solution of the DM for the 'MDMP. 

Step 1 Choose initial point EAE and set R=1. -k k 

Step 2 Set E - ~  = E 
R R 

solve an active €-constraint problem AP (E ) for E 
R 

-k ' k -k -k 

and obtain a Pareto optimal solution x*(rR ) , a Pareto optimal value 
-k 

R R R R R 
f = (E-~,~~[x*(E-~)] ) and corresponding Lagrange multiplier A ( j= k j 

I,.. . ,n, j#k 1. 

Step 3 Assess the MRS of the DM at fey where Af ( j=l,. . . ,n, j#k ) must be 
j 

fixed small enough so the indifference curve is approximately linear 

but large enough so the increment is meaningful. 

Step 4 For MRS at fey evaluate discrepancy E. If E < go to step 5, where 

the tolerance is a prescribed sufficiency small positive number. 

If E exceeds the tolerance, the DM reassess the MRS until the tolerance 

condition is satisfied. 

R R Step 5 If I mkj - A  1 < 62 for j=l,. . . ,n, j#k, stop, where the tolerance 6 
k j 2 

is a prescribed sufficiency small positive number. Then a Pareto 

R R R 
optimal solution (E-~,~~[x*(E-~)] ) is the preferred solution of the 

R DM. Otherwise, determine the direction vector AE by -k 
R R R R s = - (mkj-Ak.) = AE ( j=l, .. . ,n, j#k ) j J j 



2 R 
S tep  6 Obtain two Pa re to  opt imal  p o i n t s  I f R  and f i n  t h e  neighbourhood 

of f R  and a s s e s s  n-1 MRS nfj a t  a po in t  I f R  p l u s  a s i n g l e  MRS a t  a 

t h i r d  po in t  2 fR .  I f  t he  cons is tency  check a t  s t e p  4 i s  passed,  

s e l e c t  t h e  form of t h e  proxy func t ion  t h a t  w i l l  be  used a t  each 

i t e r a t i o n  by t h e  measure about MRS v a r i a t i o n .  I f  t h e  parameter va lue  

cond i t i ons  of theorem 3 a r e  passed go t o  t h e  next  s t e p .  Otherwise,  

t h e  DM r e a s s e s s e s  t h e  MRS u n t i l  t h e  parameter va lue  c o n d i t i o n s  a r e  

s a t i s f i e d .  

S tep  7 Determine t h e  s t e p  s i z e  u which maximizes t h e  proxy p re fe rence  

L R R R R 
f unc t ion  P ( E + a A ~ - ~ , f ~ [ x * ( ~ - ~ + a A ~ - ~ ) l  ) P(a)  a s  fo l lows .  -k 

Change t h e  s t e p  s i z e ,  o b t a i n  corresponding Pa re to  op t imal  va lues  

and sea rch  f o r  t h r e e  a va lues  a A,aB and a which s a t i s f y  
C 

a < a  < a  
A B C  

p (aA) ' p (aB) ' P(ac) 

Then a l o c a l  maximum of P(a)  i s  i n  t he  neighbourhood of a = a  
B ' 

R I f  u(fa+') > f  ) where 

R R R  R R R R  
f R + l  = (E  +a A E - ~ , ~ ~ [ x * ( E - ~ + ~ ~ A E - ~ )  ] ), s e t  R = R + l  and r e t u r n  t o  -k B 

1 1  s t e p  2. Otherwise reduce u t o  be ?, z... u n t i l  improvement i s  
B 

achieved.  

Remark. Under t h e  assumption of i d e a l  DM, t he  proposed SPOT a lgor i thm i s  

nothing bes ides  a f e a s i b l e  d i r e c t i o n  method t o  so lve  MDMP. Thus, t he  conver- 

gence of  t h e  SPOT can be  demonstrated by t h e  convergence of  t h e  modified 

f e a s i b l e  d i r e c t i o n  method. 



8. An Illustrative Example 

We now demonstrate the interaction processes of the SPOT by means of an 

illustrative example which is designed to test the method under the assumption 

of an ideal DM. 

Consider the following multiobjective decision making problem. 

min f (x) = (fl (x) , f2 (XI, f3 (4 
X 

subject to 

2 2 
< lo 1 X E X =  {X I x1+x2+x: 5 100, O~x1.x2,x3= 

where 

2 2 2 
fl(x) = 565 (x + ~ ~ + 1 0 x ~ + ~ ~ - 1 2 0 x ~ + 8 0 0 )  1 

2 2 
f (x) = (x1+40) +(x2-224) +(x3+40) 2 

2 
f 3 (x) = (xl-224) '+(x2+40) +(x3+40) 2 

For illustrative purposes, we shall assume that the DM'S structure of 

preference can be accurately represented by the utility function U(f f ,f ) 1' 2 3 

where 

U (f) = -180f - (f 2-40000) - (f 3-45000) 2 (36) 

However, it should be stressed that the explicit form of utility function as 

in (36) is used in this example purely for simulating values of MRS. 

To be more specific, mkj will be obtained through the following expression: 

( f  = [au(f)lafj] 1 [au(f)lafkl j=I,. .. ,n, j#k (3 7 

% obtained this way are as if they had been obtained from the ideal DM 

directly. 

Let us now choose fl(x) as our primary objective and formulate the 

corresponding €-constraint problem P (E 1 -1)- 



min fl(x) 
X 

subject to x E X n X1 

where X1 (E-~) = {X 1 f . (x) 5 E j=2,3 1 
J - j' 

(40) 

In applying the SPOT, (36) will be used to simulate our imaginary DM. 

To be more specific, m12 and m at the ith iteration will be obtained through 13 

(37). 

To understand how the SPOT actually work, we give the following description 

of the iterations. 

Iteration 1 

Choose initial =(E:,E:) = (54000,50000) and solving P (E ) by the -1 1 -1 

generalized reduced gradient ( GRG ) algorithm [Ill yields 

1 1  1 (f2,f3) = (54000,50000), fl = 203889.082 and Xi2 = 76.321, Xi3 = 206.654. 

From this information, the DM, by giving values (ml m1 ) = (155.555,55 -555) 12' 13 

( as simulated by (36)) determines the direction of search (s:,s:) to be 

Update (c2,c3) by the formula 

Construct the proxy preference function P(f) to determine the optimal step size. 

Adopt the following sum-of-exponentials. 



Obtain two Pareto optimal solutions 'fl, 2f1 in the neighbourhood of f1 and 

assess MRS yields 

Using these values together with fl, mi2 and rnl 13 , P(f) becomes 

where all the parameters are positive, the parameter values condition is satis- 

fied. Calculate Pareto optimal solutions and corresponding P(f) for each 

step size a = 1,2,4,8,16,24 yields the following. 

a Pareto optimal solutions P(f) 

This result shows the maximization point of P(f) is in the neighbourhood of 

a = 16, set optimal step size a1 = 16 and go to the next iteration where 

The same procedure continues in this manner. In this example, at the 

5th iteration optimality condition is satisfied. 

In the following, we roughly show the main results for each iteration. 

Iteration 2 



P(f) = - exp (0.167094~16~f~)-0.123431x10-~ex~ (0.643129~10-~f 2) 

- 0.40928xl0-~~ex~(0.129212x10-~f 3) 

a2 = 16 

Iteration 3 

3 
82, = (E:, 8:) = (51847.671,52428.516), f = 76325.022 

Iteration 4 

4 €4, = (E: , E:) = (51565.217.52885.796) , f = 70717.521 

4 4 4 s2= - (m12-X12)= -0.5598, s3 4 = - (m13-X13) 4 4 = - 5.0054256 

0 P(f) = - exp (0.726055~10-~f - 0.136163~10 exp (0.220701~10-~f 2) 

- 0.959876~10-~exp (0.119558~10-~f 3) 

cr4 = 12 

Iteration 5 

5 
= (E: , E:) = (51558.499,52825.731) , f = 76622.752 

Optimality test ( 6 = 2 ) is satisfied at this iteration at which 
2 

f5 = (76622.752,51558.499,52825.731) , x5 = (3.785588 ,6.185648,6.885281), 

5 8 U = -2.0863306~10 . This result compares favorable with the true optimum 

8 which is x*= (3.870271,6.136885,6.881835) and U*= -2.08624446~10 . 



9. Conclusion 

In this paper, we have proposed an interactive multiobjective decision 

making technique, which we call SPOT, incorporating the desirable features of 

both the SWT and the MUF method. In our interactive on-line scheme, after 

solving the epsilon constraint problem, the values of MRS assessed by the DM 

were used to determine the direction and the local proxy preference function 

was updated to determine the optimal step size. Of course, Pareto optimality 

of the generated solution in each iteration is guaranteed in our technique. 

An illustrative example demonstrated the feasibility and efficiency of the 

SPOT. 

Although we have assumed the convexity of the objective functions and 

the constraint set, it is possible to extend our technique to the nonconvex 

problems by introducing the concept of local Pareto optimality. Furthermore, 

extentions to the non-smooth Pareto surface is also possible by utilizing the 

directional derivatives. Applications of the SPOT to environmental systems 

will be reported elsewhere. 



References 

[I] Keeney, R.L., and Raiffa, H., Decision Analysis with Multiple Conflicting 

Objectives : Preference and Value Tradeoffs, John Wiley & Sons, New York, 

New York, 1976. 

[2.] Haimes, Y.Y., Hall, W.A., and Freedman, H.T., Multiobjective Optimization 

in Water Resources Systems : The Surrogate Worth Trade-off Method, Elsevier 

Scientific Publishing Company, Amsterdam, Amsterdam, 1975. 

[31 Haimes, Y.Y., Hierarchical Analyses of Water Resources Systems, McGraw-Hill, 

New York, New York, 1977. 

[4] Geoffrion, A.M., Dyer, J.S., and Feinberg, A., An Interactive Approach for 

Multicriterion Optimization with an Application to the Operation of an 

Academic Department, Management Science, Vol. 19, No. 4, 1972. 

[51 Chankong , V. , and Haimes , Y .Y . , The Interactive Surrogate Worth Trade-off 
(ISWT) Method for Multiobjective Decision-Making, Multiple Criterion Problem 

Solving, Edited by S. Zionts, Springer-Verlag, Berlin, Berlin, 1977. 

[61 Haimes, Y .Y. , and Chankong, V., Kuhn Tucker Multipliers as Trade-offs in 

Multiobjective Decision-Making Analysis, Automatica, Vol. 15, No. 1, 1979. 

[71 Shimizu, K., Kawabe, H., and Aiyoshi, E., A Theory for Interactive Preference 

Optimization and Its Algorithm - Generalized SWT Method - , The Transactions 

of the Institute of Electronics and Communication Engineering of Japan, 

Vol., J61-A, No., 11, 1978. 

[81 Oppenheimer, K.R., A Proxy Approach to Multi-Attribute Decision Making, 

Management Science, Vol. 24, No. 6, 1978. 



[9] Barrager, S.M., Preferences for Dynamic Lotteries: Assessment and Sensitivity, 

Stanford University, PhD Thesis, 1975. 

[lo] Keelin, T.W., A Protocol and Procedure for Assessing Multi-Attribute 

Preference Functions, Stanford University, PhD Thesis, 1976. 

[I11 Lasdon, L.S., Fox, R.L., and Ratner, M.W., Nonlinear Optimization Using 

the Generalized Reduced Gradient Method, Revue Francaise dfAutomatique, 

Informatique et Recherche Operationnelle, 8 annee, V-3, 1974. 


