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ABSTRACT

The purpose of this paper is to consider the most compli-
cated problem related to computer network design, and especially
to the so-called "gateways": the definition and estimation of
the logical correctness of protocols. While the simple terminal
connection of a computer to a computer system necessitates only
the emulation of the chosen terminal, the very complicated inter-
connection of several computer networks requires the definition
and implementation of a whole hierarchy of protocols. Naturally,
all the protocols of each level must be rigorously specified
and carefully verified before being implemented into soft-,
firm-, or hardware. In order to achieve this goal, a technique
based on a top-down approach, involving stepwise refinement and
verification of the protocol actions in various situations, is
proposed in this paper. This technique requires the formalism
of a special kind of Petri net: the Petri net with enabling

predicates.
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ON THE SPECIFICATION AND VERIFICATION
OF COMMUNICATION PROTOCOLS

A. Petrenko

1. INTRODUCTION

The formal specification and verification of communication
protocols would seem to be one of the most important and diffi-
cult tasks when considering the problem of computer network
design. The significance of this task is a consequence of
the fact that the correctness and proper implementation of
protocols determine the working capacity of the network ele-
ments and of the network as a whole. The difficulties which
arise in connection with the specification and verification of
protocols are due to the necessity of demonstrating both the

completeness and the consistency of the protocol. The com-

pleteness of a protocol means that all the possible situations
which could arise under specific conditions have been foreseen;
protocol consistency guarantees simple protocol implementation
and determinism of the behavior of the network elements. While
the last protocol property is ascertained fairly easily using
formal languages (as opposed to natural ones), the proof of
completeness involves a thorough analysis of numerous situ-
ations, which are supposed to occur in the real system, if all

of them can be predicted.



The whole spectrum of techniques: state transition
languages, programming languages and hybrid models, have
already been tested for protocol specification and verifi-
cation [1]. Those techniques using the total system state
transition graphs have weak representative means due to the
"state explosion" effect. Programming languages possess the
disadvantage that they burden the protocol description with
unnecessary details, from the verification point of view,
and a protocol specification of this kind differs slightly
from the software implementation of a protocol. Therefore
the hybrid models seem to have a wider perspective. Using
these models, both the connection control phase and the data
transfer phase of protocols can be described. The model used
in this paper belongs to this model class and is based on
Petri nets (PNs). PNs have already been used by the authors
of several previous papers [2,3,4,5,6]. These investigations
have shown the necessity of modifying the original PN for
protocol specification and verification purposes. At the
same time, the choice of this modification must not restrict
the modeling power of the PN, which has been carefully and
extensively studied and which would appear to be very rele-
vant to our goals.

This paper describes the techniques to be employed in
protocol specification and verification based on Petri nets
with predicates (PNP) and, unlike other papers (for example
[7]), a net for the whole system of communicating processes
has been constructed without imposing special restrictions
on the transition execution rules; this allows new properties
of protocols to be established, due to the full employment of
all the PN's means.

The proposed approach in this paper is described with
the help of a well-known example [8] in order to have a basis

for comparison with various other existing techniques.



2. GOALS OF PROTOCOL SPECIFICATION AND VERIFICATION

The main purpose of protocol verification is to demon-
strate that it fulfills the designer's intention, i.e., it
does give the service reguired to the user or higher level
protocol, and that it is logically correct. When verifying
protocols, the unreliability of the data transmission medium
(or lower level protocol) must be borne in mind, namely:
errors, messages lost, change in the order of messages, and
also possible situations arising in the communicating entities
such as wrong timeout expiration, arbitrary initiation of
entitites, and so on. A rigorous definition of protocol
correctness cannot be obtained without having a formal proto-
col specification; but the initial requirements for this are
usually postulated in a verbal description. Therefore, proto-
col verification comes down to demonstrating that the protocol
has (or does not have) certain properties. Of these properties,

the following [1] have been considered:

1. freedom from deadlocks;
2. self-synchronization;
3. correct termination;

4. progressiveness;

5. freedom from overflow.

Some of these can be formulated easily if the formal tools
are available, but others involve the interpretation of the
protocol specification by the designer. For instance, the
progressiveness of the protocol means the absence of cyclic
behavior, during which no useful activity takes place. How-
ever, the usefulness of the activity can only be estimated
after an analysis of a particular situation has been made.
Consequently, it is the opinion of the author that a rigorous
definition of the protocol properties should be made, only with
the features of the specification tools and the protocol itself

in mind.




The specification tools to be used must describe con-
current processes, because a verified protocol involves the
interaction of at least three subsystems, two communicating
entities and a transmission medium. These tools then have to
permit the representation of the system in a top-down fashion
at various levels of abstraction and detail. It is also
desirable that these tools be oriented toward further proto-
col implementation into soft-, firm-, or hardware. The Petri

net formalism largely meets these requirements.

3. PROPERTIES OF PROTOCOLS AND PETRI NETS

Petri nets are widely used tools for representing con-
current systems in a top-down fashion at various degrees of

interpretation [8].

A Petri net (PN) can be defined as a bipartite directed

graph N = (T,P,A), where
T = {t1,t2,...,tn} is a set of transitions, repre-
sented by bars;
P = {p1,p2,...,gn} is a set of places, represented

by circles;
AC{T x P}U{P x T} is a set of directed arcs.
A marking M of a PN is the mapping M:P -+ {0,1,2,...1}.
M assigns tokens to each place in the net. A marking M is

represented by a vector M, where M(pi) represents the number

of tokens assigned to P;-

Let I(t) = {p|(p,t) €EA} be a set of input places, and

Oo(t) = {p| (t,p) €A} be a set of output places of a transition t.

A transition t is said to be activated under a given
marking M of M(p) > 0 for all p€I(t). The activated



t
transition t can fire, changing the marking M -~ M':

M(p) + 1, if p€0(t), pe&I(t)
M'(p) = {M(p) - 1, if peI(t), p<€0(t)
M(p), otherwise

In this case we say that M' is reachable from M. In a system

of communicating processes: the transitions of PN refer to

certain events or actions, such as arrival of commands and messages,
and timeout expiration; the places of PN correspond to cer-

tain conditions; and a marking refers to a particular control

state of the system. Thus, if R(M) is a set of markings
which are reachable from M, then it must also be a set of all

the control states of the modeled system.

Marked PN, N = (T,P,A,M) is live if, for all M'€ R(M),
there exists an activated transition. A live PN of a proto-
col shows the absence of protocol deadlock. It is convenient

to represent R(M) by means of a marking graph G, the arcs of

which are labeled by corresponding transitions.

If graph G has a final node, this node represents a final
control state of the system. Therefore it is possible to

establish the termination property of the protocol. When

analyzing the cycles of graph G, we are also able to study

other properties of the protocol, such as progressiveness

and self-synchronization.

A marked PN is said to be k-bounded if M'(P) < k for all
M' € R(M) and all p€P. PN is safe if k = 1. An unbounded PN
implies that the corresponding communication system has an
infinite number of states. This property of PN is very useful

for analyzing the overflow of the protocol.
t1 t2
Let M1 -+ M2, and M1 -> M3(M2 # M3). It is assumed, however,

that t, is not activated under M neither is t., activated under

1 37 2
M,. In this case we refer to the transitions t1 and t2 as being
in conflict. How to resolve this conflict depends on the inter-

pretation of PN. Since R(M) of PN represents a set of control



states of the system, such a conflict must be resolved by
means of data (values of context variables) to be used by the
protocol. With the transitions ti'tj in conflict, we associ-

ate enabling predicates P. and Pj' where P. /\Pj = false;

Pi VP. = true. The introduced predicates depend on certain
variables, the values of which can be determined by actions
associated with the transitions. Applying the firing rule,

it follows that a transition t will in this case be activated,
under the additional condition that'its enabling predicate is

true.

Let the transitions in conflict be t1,t2,...,tk, and the
enabling predicates which resolve this conflict be P1,P2,...Pk.‘
For completeness and consistency, the following conditions

require to be satisfied:

true

P1 VPZ (VRIS VPk

Py AP, false, for all i # j (1 < i, j < k).

We call the above defined PN the Petri Net with Predicates (PNP).

Clearly, at a high level of abstraction, it is sufficient
to use pure PN to construct a net for the modeled system. Using
this kind of PN, the set R(M) represents a set of the total
states of the system. If conflicts arise at the lower level
specification, then a total state will be determined by a

control state and by the values of the variables used in the PNP.

The introduction of predicates into the PN does not
restrict its power, but on the contrary permits a large class
of protocols to be modeled. Using the PNP it is possible to
represent, not only the connection control phases, but also the

data transfer phase.

An explanation of our approach to the problem using the
PNP is given below, based on a well-known simple protocol [8].
This protocol has been used in a number of papers [4,9,10];
therefore it is possible to compare the technique adopted in

this paper with previous ones.



4, SPECIFICATION AND VERIFICATION OF THE
ALTERNATING BIT PROTOCOL

4.1 The Alternating Bit Protocol

This protocol is a point-to-point protocol which uses a
communication medium alternating in both directions. If we
consider the data transfer from the Sender subsystem to the
Receiver subsystem, the procedure is as follows: the Sender
sends a message containing the user's data and the sequence
number seq € {0,1}. The Receiver, having obtained the message,
compares its number with the expected one exp € {0,1}, and then
sends an acknowledgement ack € {0,1}, which is equal to the
received message number. The Sender waits for an acknowledge-
ment before the next piece of data is sent. The system
recovers from transmission errors detected by means of a
redundancy check, and from lost messages by means of a timeout

in the Sender. 1In both cases retransmissions are involved.

The PN (Figure 1) depicts this protocol from the point of
view of the service it provides to the users or to the higher
level protocol and is less suitable for an analysis of its

properties.

4.2 Normal Operation

If we consider a reliable transmission medium with neither
losses nor errors, we can obtain a PN describing the whole sys-
tem (Figure 2). 1In this net, the transition t1 represents a
message transfer; t2 - its reception; t3 corresponds to the
following actions of the Receiver: transference of the data
to the user, alteration of the value of the variable
exp: = (exp + 1)mod2’ and transference of an acknowledgement
to the Sender ack = exp; tu corresponds to the arrival of the
acknowledgement; t5 corresponds to the change of the sequence
number seq: = (seq +1)mod2’ and also to the reception of the
next piece of data to be transmitted from the Sender's user

to the Receiver's user.



Let the control state (p1,pu), which is the marking
(1001000) be the initial state of the system. The variables
have the following values: seq = 1, exp = 0. The marking
graph G (Figure 3) depicts all the control states reachable,
assuming a reliable transmission medium. This graph is a
simple loop; every place has no more than one token, there-
fore this PN is live and safe. The graph of the control
states can easily be transformed into the total state graph
(Figure 4), which gives a detailed description of the
dynamics of the system. However it is sufficient only to
have the marking graph of the PN in order to verify the

following properties of the system working on this protocol:

-- absence of deadlocks;

-- proper termination (from every control state,
the system arrives at (p1,pu));

-- absence of undesirable cycles (the only loop
goes through the transitions t5 and t3);

-- absence of overflow (PN is safe).

It should be borne in mind that the above properties only
hold true under a reliable transmission medium and under

proper initialization of both entites.

4.3 Error Recovery

Let us now analyze .the system assuming that the medium
does not lose messages but can distort the message being trans-
mitted. In this case the protocol is adequately described by
the PN of Figure 5, and thus differs from the PN of Figure 2
in that it has two transitions t6,t7. Their actions correspond
to those of the Sender and Receiver when errors in the data or
numbers arise. The transition t6 stands for keeping the wvalue
of the variable seq and ignoring the received acknowledgement;
t7 stands for excluding the received message and sending the

acknowledgement ack=exp. The transitions t5 and t, are pro-

6
duced under the same condition P (acknowledgement has been
received); hence they are in conflict. To resolve this, we

associate the enabling predicates P6[Error V (ack # seq)] with




In the same way, we associate the
)] with t

t6 and P5 ='1P6 with t5.
enabling predicates P7[Error V(seq # (exp + 1)

and finally, the predicate P3 ='1P7 with t3.

mod?2 77

The introduced transitions (or events) do not change the
structure of the control state graph (Figure 6), and therefore
the main protocol properties remain even, if transmission
errors arise. In fact, undesirable cycles of operation, i.e.,
those which do not have the sequence of the main transitions
t3 and t5,
true (this should be compared with the invariant in [11]):

can only exist when the following assertion holds

P6[Error V (ack # seq)]\/P7[Error\/(seq # (exp+1) = true.

mod 2)]

From this it follows that undesirable cycles of operation can
repeat themselves as long as transmission errors exist. The
only way of terminating such a cycle is to establish a maximum
number of retransmissions and to notify the user that correct

data transmission is impossible.

This protocol is also self-synchronizing. In fact, if
the entitites have not been properly initialized, i.e., (p1,p2)
is still the initial state, but seq = exp, then according to
the graph in Figure 6, the system loses only the first trans-
mitted message, and after that, the action of the entitites

is synchronized.

4.4 Message Recovery

We now consider the operation of the system, assuming
that the transmission medium can lose the messages trans-
mitted through it. The PNP of Figure 7 is a suitable abstrac-
tion of the medium. The transition t* represents the message
transmission with or without errors, and leads to the con-
dition P, (data sent); t corresponds to message lost and has
no output places, because the medium is not able to inform
anyone of the data lost. These transitions are in conflict
and it is impossible to associate any deterministic enabling

predicates with them, since the result of the transmission
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depends on the medium properties and other factors. For
analysis purposes, we assume that the event t is possible
if P(loss) = true, and that t* is possible if P* = "1P(loss) =

true.

If we incorporate the medium models (transitions t8,t9)
and the timeout model (t10) into the PNP of Figure 5 and, if
for simplification of the net, we combine the transitions
t2,t with t*, the resultant PNP will be as shown in Figure 8.

4
In order to resolve the conflict, we introduce the predicates:

P8(loss), P9(loss), P, = 7P8(loss), P10(T=0), P4 = 1P9(loss) A

2

7P10(T=0) ='1[P9(loss)V'P10(T=0)]

We first assume that the timeout value T can be
chosen in such a way that the transition tio will only occur
after a transmission loss has occurred (transitions t8,t9).
It should be noted that in [4] this protocol has only been
verified with such a constraint; later on we consider the

operation of the system without it.

As can be seen from the marking graph of the PNP in
figure 9, the transitions t8 and t9 lead the system into the
control state (p3,pa), which would be a deadlock state, if
there were no timeout mechanism. The timeout expiration allows
the system to return to the initial state; hence the PNP in

Figure 8 is safe and live.

From Figures 6 and 9, it follows that the system has
additional undesirable cycles (1,2,6) and (1,2,3,4.6) until
the following condition is satisfied:

[P8(loss)V'P9(loss)] A P10(T=O) = true

These cycles, just as those mentioned in Section 4.3, cease
after transmission improvement, or after the maximum number

of retransmissions has been exceeded.
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4.5 Operation with Wrong Timeout Expiration

When the timeout value in the Sender is not properly
adjusted, or the arrival of the acknowledgement has been
delayed, it is possible that the timeout transition of the
Sender will occur in state (p3,p5) or (p3,pu,p6), i.e., before
the expected response of the Receiver actually arrives. For
a clear analysis, we assume that the Sender retransmits the
message only once, due to timeout expiration of this kind.

The proposed technique does enable the modeling of more
complicated situations; however this case is of most practical
interest. All the possible control states of the system are
represented by the graph in Figure 10. It can be deduced from
the graph that the PNP in Figure 8 is live; therefore it will
not indicate deadlock situations. The system only returns to

the initial state (p1,pu) if
P8(1oss)\/P9(loss) = true

In the situation under consideration, the probability of message
loss in the transmission medium is much higher than that in

the normal operation, since after wrong timeout expiration,

the system moves definitely into the state 7 (p2,p3,pu,p6),
which characterizes duplex transmission; however, in accordance
with the protocol requirements, the entities should use the
transmission medium alternatively. If such usage of the medium
leads to loss of the message (the transitions t8.or t9), then
the system returns to the normal cycle of operation. Here we
have the rather éxceptional case that the loss of the message

actually improves the operation of the system.

If after wrong timeout expiration the medium does not
lose the transmitted messages, then the operation of the sys-
tem can be represented by the simpler marking graph without
tgrtg
the event t10, the system can remain for an infinitely long

(Figure 11). It follows from this graph that, after
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period in the states 6,7,8,...,16, passing through one of the

following cycles:

(6,7,8,9,10),(6,7,8,12,10),(6,7,11,12,13),(7,11,12,13,1“),
(6,7,11,12,13¢(,(7,8,12,13,14) ,(6,7,11,12,10) ,(7,11,12,13,14),
(6,7,8,12,13)

The Sender retransmits every message twice over these cycles,
even if transmission errors do not take place. Figure 12
illuminates the situation. This kind of operation is in fact
an operation with overflow or with double traffic. The
states (p3,pu,p6,p6) and (PZ'Pz'p3'Pq) are the other indi-
cations of overflow, since the places Pg and P, have two
tokens (PNP is not safe). We do not have a more adequate
transmission medium model than the one drawn in Figure 7;
therefore we may presume that the transmission mediqm would
not be able to manage this traffic, and loss probability

would be near to one.

4.6 Self-Synchronization

In Section 4.3 it was mentioned that wrong initial values
of the variables exp and seq would lead to normal operation,
except for the loss of the first message. With regard to
arbitrary initial states other than (p1,pu), these can be
up to 27, assuming that every place has no more than one
token. All of these states could, of course, never occur in
the real system; only a limited set of states can be initial
states. We will presume that the transmission medium is empty
at the beginning of the operation (conditions P, /P are not
valid), and will analyze the possible combination of the other
conditions. The Sender can stay in one of three initial states:
Pq/P3 Or Pq, and the receiver in one of two: Py Or Pg-. Thus
the initial state of the system can be one of the following:
(PqsPy) s (PqsP5) s (P3/Py) s (P3/P5) s (PysP4) s (P5,P4) . The states
(p1,pu),(p3,p5),(pu,p7) are incorporated into the normal cycle
of operation; the system leaves the state (p3,pu) due to time-

out expiration. If the system has been initiated in the
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states (p1,p5) or (p5,p7), then under certain conditions
(see Section 4.5) it will operate with double traffic.

5. CONCLUSIONS

In this paper we have analyzed a system designed in
accordance with the alternation bit protocol in the following

situations:

~-— normal operation;

-- error transmission;

-—- message loss;

-- wrong timeout expiration;

-— arbitrary initial state.’

The technique adopted has allowed us to establish that
the protocol shows undesirable properties (operation with
double traffic) only in the last two situations, and only
if certain conditions are valid. It should be noted that
this operation mode has not been rigorously specified in

previous papers [4,9,10].

Our approach has been based upon a top-down specification,
which refines the protocol step-by-step. At every step in the
iterative process of specification and verification, new situ-
ations have been taken into consideration. The enabling predi-
cates have allowed us to find out the conditions under which
the protocol will show certain properties. Our reachability
analysis has dealt only with the control states of the system.
This has the advantage over the state machine models that the
number of control states in the system is much less than the
number of total states. Thus the technique we have proposed
combines the advantages of assertion proof methods and state
machine languages, it does not burden the description protocol
with unnecessary details, and it is subject to a lesser degree
to the state explosion effect. The above can be proved when

more sophisticated protocols are taken into consideration.
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The formalism adopted is useful, not only for proving
the logical correctness of the protocol, but also for making
a performance analysis of the system designed under the
protocol. It is also possible to estimate the timeout value
and certain parameters which characterize the protocol

performance [12].
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