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Abstract

In stochastic optimization models, the optimal solution heavily depends on the chosen model
for the scenarios. However, the scenario models are chosen on the basis of statistical estimates
and are therefore subject to model error. We demonstrate here how the model uncertainty
can be incorporated into the decision making process. We use a nonparametric approach for
quantifying the model uncertainty and a minimax setup to find model-robust solutions. The
method is illustrated by a risk management problem involving the optimal design of an insurance
contract.
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1. Introduction

Common approach in risk assessment and risk management is to base the risk estimates
on observed data and to use the statistically obtained estimates for finding the optimal risk
management strategies. However, the fact that statistical estimates can never give precise val-
ues of unknown parameters due to an estimation error, is quite often neglected. Moreover, the
choice of the probability model, i.e. the class of possible distributions, is typically chosen by
the statistician and is not further questioned.

In general, statistical estimation procedures do not allow to single out one specific probability
model, but only a whole set of models can be determined, in which the true model lies with a
prespecified probability. This confidence set can be taken as the set of models for a minimax
decision, where the best decision under the worst model in the model set is sought for. We call
such sets of models ambiguity sets. The minimax solution in this case is called distributionally
robust.

Modeling uncertainty. Economic decisions are made under some assumptions of the deci-
sion relevant parameters. In deterministic optimization, the parameters are considered to be
known and fixed. Already in the early days of optimization, this assumption was considered as
too narrow. Two possible setups have then been developed: (i) in robust optimization, a set
of possible parameters is determined, while (ii) in stochastic optimization the parameters are
considered to follow a certain probability distribution. In robust optimization, the parameters
are not weighted and one has to use minimax strategies (to find the best strategy under the
worst case). Probability models come with a lot more of possible strategies: expected utility
maximization or minimization of risk (shortfall risk, variance risk, tail risk, etc.). However,
probability models depend heavily on the chosen probability model, which is typically based

*Corresponding author
Email addresses: georg.pflugunivie.ac.at (Georg Ch. Pflug), timonina@iiasa.ac.at (Anna
Timonina), hochrain@iiasa.ac.at (Stefan Hochrainer-Stigler)

Preprint submitted to Elsevier February 8, 2016



on some ad-hoc assumptions (e.g. parametric families of distributions) and on statistical es-
timation procedures, which may contain estimation error. This dependency has been ignored
for quite a while, when most research was put into decision making under a given fixed prob-
ability model. However, if the model is completely fixed, only aleatoric uncertainty, i.e. the
uncertainty about the realizations is to be considered.

As already noticed, the model choice is typically based on assumptions and estimations, i.e. an
error in model choice cannot be excluded. The ambiguity in model selection is often referred
to as epistemic uncertainty. By including the epistemic uncertainty into the decision making
process, we can also to a certain extent reconcile this approach to the pure scenario approach.
While in the latter all scenarios are in principle possible, stochastic ambiguity models would
allow scenario probabilities to vary in order to accommodate for model uncertainty. In the ex-
tremal case that all probability distributions over the scenarios would be theoretically possible,
the ambiguity modeling coincides with pure scenario analysis. In most application areas we
know the importance or likelihood of scenarios at least to a certain extent, though we typi-
cally do not know the exact occurrence probabilities. This is why model ambiguity becomes
an important issue in decision making. In ambiguous modeling, the possible model error is
incorporated into the decision process, that allows to find robust decisions.

We summarize this as follows:

e If all parameters of an optimization problem are known, we call it deterministic.

e If some parameters are not exactly known, but known to lie in some set, then we have a
robust program

e [f for the unknown parameters a random distribution is specified, we call this a stochastic
program.

e [f the distribution of the random parameters is not known, but known to lie in some family
of distribution, then the problem is called ambiguity problem and its minimax solution is
called distributionally robust.

Bibliographic remarks. The idea of optimal decisions under several stochastic models
(i.e., min-max solutions) appears for the first time in Scarf [15] in a linear inventory problem
seeking the stockage policy, which maximizes the minimum profit considering all demand dis-
tributions with given mean and given standard deviation. More thorough studies of ambiguous
decision problems than a minimax problems were initiated by Dupacova [3, 4] for the class of
stochastic linear problems with recourse under general assumptions for the ambiguity set. The
formulation is in a game theoretic setup, where the first player chooses the decision and the
second player chooses the probability model. There are alternative names used in literature for
the ambiguity problem, such as minimax stochastic optimization, model uncertainty problem
or distributional robustness problem. Many proposals for ambiguity sets in the two-stage case
have been made and analyzed. A list of popular classes of ambiguous models is presented by
Dupacova [5].

Literature dealing with ambiguity either from theory or application point of view is growing
rapidly. The situation when the ambiguity set consists of all probabilities with given first two
moments was studied by Jagannathan [9] for the linear case. Shapiro and Kleywegt [16] define
an ambiguity set as the convex hull of a finite collection of models; Ahmed and Shapiro [17] con-
sider sets of models given by moment inequalities; a similar approach is adopted by Edirishinge.
Calafiore [1]| uses the Kullback-Leibler divergence to define neighborhoods of a baseline model
as ambiguity sets. Thiele [18] considers the L; balls of densities as ambiguity sets. Delage and
Ye [2] consider ambiguity set given by inequalities for the mean and the covariance matrix.
Wozabal and Pflug [12] use for the first time ambiguity sets, which are balls with respect to the



Wasserstein distance, see also the recent book by Pflug and Pichler [13], which also deals with
the multistage case. Hansen and Sargent consider in their 2007 book [8] alternative models of
multistage stochastic optimization problems given by maximal deviation from a baseline model
in Kullback-Leibler divergence. Goh and Sim [7] study multistage ambiguity sets which are
defined by a mean, which must lie in some conical set, a given covariance matrix and some
upper bounds on the exponential moments and extend this to multistage.

In this paper, we investigate the problem to determine an optimal insurance portfolio under
model ambiguity. To simplify the approach, we consider only a single stage decision problem:
A government has to decide about investment in and insurance for infrastructure for the next
budget period. The infrastructure is subject to natural hazard such as earthquake, floods or
tropical storms and the problem is to find the best mix between investment and insurance,

i.e. between increased productivity and higher protection. The model is similar to the TTASA
CATSIM model.

2. Model description

To determine the optimal design of an insurance scheme is a typical problem of stochastic
optimization: Adoption of a robust approach would not make sense, as soon as it would mean
that very rare events would be considered as important as quite frequent events and this would
result in an overly pessimistic result. However, the probability model may be subject to error
and this gives an argument for distributionally robust decisions.

The total insurable infrastructure stock of the country under consideration at time 0 is Sp.
We assume that the country is under hight risk of natural hazards and we denote by L the
annual loss variable. We further consider a stop-loss insurance with exit level Y, its payment
function is min(L,Y"). It is well known that stop-loss insurance contracts are "optimal" (see
Raviv [14]). The stop-loss payment function is shown in Figure 1.

payment p
A .7

damage
| >
exit
level y

Figure 1: The payment function



The infrastructure S; at the end of the period (typically one year) is given by the previous
amount S; minus the random damage and the amount obtained as compensation from the
insurance plus the investment X.

Sl :SQ—L+IH1H(L,Y)+X

The premium for the stop-loss insurance is denoted by 7(L,Y"). There is a budget B available,
which may be used for investment and for infrastructure protection by insurance.

The decision problem considered here is to find the optimal mix between investment X
and insurance with exit level Y for the given budget B, the objective to be maximised is the
variance-corrected expectation of S;. The complete (yet unambiguous) model is

I’Il)E/lXE(Sl) - )\VCLT’(Sl) (21)

st. S1 =8 —L+min(L,Y)+ X
X +n(L,Y)=B
X >0,V >0.

To summarize, we have introduced the following symbols.

the (deterministic) infrastructure value at the beginning of the period

the (stochastic) infrastructure value at the end of the period

the stochastic loss variable

the budget foreseen for investment and insurance

the investment in infrastructure

the exit level for the insurance contract

the penalty parameter for the variance

m(L,Y) the premium of an insurance with relative loss variable £ and exit level Y.

%

[y

> e

For further use we introduce some relative values

¢ the relative loss variable, £ = L/Sy
y the relative exit level, y = Y/Sy

and
m, = m(min(L, ySo)/So.
The insurance premium. We assume that the insurance premium is calculated according
to a combination the distortion and the utility principle (see [10]): Suppose that F* is the

distribution function of the loss variable L. Using a distortion function g on [0,1]|, which satisfies
g(u) > u, g(0) =0, g(1) = 1, the loss distribution is distorted to the new loss distribution

Flu) =1 - g(1 — F(u)).

Under the monotonic and convex (dis)utility function V', the premium for the distorted loss L
is

n(L) =V [ / "V dlt - (1 — F¥(u)

where V71 is the inverse (dis)utility.
If the coverage is capped at Y, then the distribution function of the damage variable
min(L,Y) is
Fmin(L,Y) (U) — { FL(U) if u < Y

1 otherwise.



Assuming that F; has a density f, the premium for the loss capped at Y is
v
rnin(z. ) =V | [ @5/ = PH)fH) dut V) g1 - FE)]
0

with ¢'(u) = Zg(u).

The relative loss variable £ = L/Sy has distribution function F*(w) = F*(w/Sy), w € [0,1]
with density f(w) = 1/Sy f¥(w/Sp). For the relative exit level y = Y/Sy, one gets for the
premium 7, of the contract with this exit level

(&) = n(min(ySo, 50) = V! [ [ vtwsog@ - Fewsw) du} FV(So)g(l - FE(y))]

y
= st | [Tt - P ) du]
0
with Vi(w) = V(Sow).

For the Example below, we have chosen the power distortion function g(u) = u”" for 0 < r < 1
and the (dis)utility function V(u) = (a —u/Sp)™? —a™9, i.e. Vi(w) = (a — w)~9 — a7 With
this choice, the premium formula can be concretized to

Y —1/q
() = a- [ [ o= = - P ) o [0 )7 - a0 Fﬁ@))’}

(2.2)

For the Madagascar Example (with a pointmass at 0 and a piecewise constant density, see

below) and the parameter choice a = 0.2, ¢ = 1.1, r = 0.95, the function y — 7, is depicted in
Figure 2.

Figure 2: The relative premium 7, as function of the relative exit level y. The dashed curve is the expected
relative loss to be covered by the stop-loss contract.

Notice that
S1 = 8o(1 = &) + Somin(§, y) — Somy(§) + B.

Since E[Sy(1 — & +min(&, y))] = SoE[1 — & + min(, y)] and Var(S;) = SZVar[l — & +min(&, y)]
the following program is equivalent to (2.1)

max E[1 = €+ min(, )] - ,(€) — 7Varll — €+ min(€, ) (2.
s.t. my (&) < SE;
y=>0



with v = A - Sy. Notice, that this is a one-dimensional optimization problem.
For the Madagascar Example, the objective function with the setting v = 100 and B/Sy =
0.0182 is shown in the Figure 3 below.
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Figure 3: The objective as function of the relative exit level y

For the formulation of the distributionally robust problem, we assume that ¢ has a point
mass F} at z; = 0 and for z € (0, 1] a density which is constant in the intervals (z;, z;11) for
i=1,...,k — 1. The distribution function is a linear interpolation between the points (z;, F;),
1 =1,...,k, where F; are the cumulative probabilities. Notice, that Fj = 1.

3. Alternative models

As we have introduced it, the baseline damage distribution is given by a discrete list of
breakpoints 21, .. ., z; together with a list of cumulative probabilities Fl, el F}.. The alternative
models will have the same interval boundaries z; and differ only in the cumulative probabilities
F;. A simple ambiguity set P is given by

P={F:) |F—F/|<¢

or

P=A{F:|F,—F| <eVi}

However, such a neighborhoods do not take into account the values z; and are therefore not
appropriate.

We use the Wasserstein distance as the basic metric for loss distributions. It has not only
the advantage of taking the values z; into account, but it is based on a distance on the real
line, which may be adapted to the needs of the problem at hand. For instance, we may use the
basic distance

dist(z,w) = |2° —w’| (3.1)

for some s > 1, meaning that the higher relative damages get higher distances, because they
are more relevant for the insurance prices. However, in this paper we have set s = 1.

The Wasserstein distance between the two relative loss variables & resp. é with distribution
functions F resp. F is defined as the optimal value of the (seemingly infinite) linear program

min E[dist (£, €)]

s.t. &~ F
i
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The minimum is taken over all joint distributions with given marginals F' resp. F'. Denote the
optimal value of this program by d(F, F’). If the distance is chosen as in (3.1), then

d(F, F) /\F (t)|st**dt

which is a slight extension of a result by Vallander (citeVall74). If the two distribution functions
are piecewise linear with the same breakpoints z;, then one finds after some calculation that
the Wasserstein distance is given by

k—1

F) = 5 S+ 1) = 20) - h(F ~ i s — Fin)
i=1
where
a+ b, ifa>0,0>0
h(a,b) (a®>+0%)/(a—0b), ifa>0,b<0
’ (a* +b*)/(b—a), ifa<0,b>0
—a — b, ifa<0,0<0

Notice that h is a convex function and that the sets {F} : d(F,F) < ¢} are convex in the
parameters F;’s.

The distributionally robust solution of our optimal insurance problem is the solution of
max  min  Ep[l - &+ min(€,y)] - 7,(¢) — 7Vare[l — € + min(€,y)]  (35)
Y {Fd(FF)<e}
s.t. £~ F
F has a density in (0, 1], which is piecewise constant in [z;, z; 1]
m(y) < B/So
y = 0.

Here Er resp. Varg denote the expectation resp. the variance, when the distribution function

of £is F.

4. A case study: Madagascar

Madagascar has one of the highest cyclone risks worldwide, especially the east coast, which
is located in the path of destructive cyclones coming from the Indian Ocean (NOAA 2012).



The public sector plays an important role in financing losses after destructive cyclone events
but usually falls short in providing adequate resources. Consequently, there is a keen interest in
possible insurance mechanism (or a regional insurance pool) that could help financing disasters
in a proactive manner. However, for such kind of assessment an annual loss distribution for
cyclone events on the country level has to be estimated first. To estimate the damage potential
of cyclones, different techniques can be used, e.g. stochastic or engineering approaches for
estimating physical vulnerability of the assets exposed and combining them with hazard impacts
and corresponding probabilities of given events (see Woo 2012 for a detailed discussion on
catastrophe modeling approaches). However, as this kind of detailed information is not yet
available yet historical losses have to be used for the risk assessment instead. There are two
databases available that can be used for such kind of analysis. One is the open-source EMDAT
disaster database (EM-DAT, 2012) maintained by the Centre for Research on the Epidemiology
of Disasters at the Université Catholique de Louvain. EMDAT currently lists information on
people killed, made homeless, and affected as well as overall financial losses for more than 16,000
sudden-onset (such as floods, storms, earthquakes) and slow-onset (drought) events from 1900
to present. Data are compiled from various sources, including UN agencies, non-governmental
organizations, insurance companies, research institutes and press agencies. The second one
is the newly produced time-series loss data by Malagasy officials based on the "Damage and
losses assessment methodology" (from now on called MLoss). It consists of past public sector
loss estimates for the Analanjirofo region from 1980 to 2012 separated into different sectorial
impacts. Furthermore, the results for the Analanjirofo were upscaled to the national level by
assuming the same exposure and vulnerability levels in other areas. The estimates are based on
the assumption that losses belong to the maximum domain of attraction of an extreme value
distribution (and as losses are always a downside risk) the Frechet type distribution was chosen
as the basic loss distribution. For estimating the shape as well as the location parameter,
a non-linear optimization model was built, which best fits the curve with the data at hand.
Furthermore, to increase the robustness of the results, other models - such as the Generalized
Pareto model - were tested and improved in a step-based manner to satisfactory levels (based on
graphical tests such as P-P plots and Q-Q plots, see Embrechts et al. 1997 for more information
on these techniques). The parameters obtained with this method were used to calculate annual
loss return periods.

The same approach was used for the MLoss dataset. This dataset includes losses of the public
sector, which are separated into different dimensions including damages to schools, hospitals,
the telecommunications system, the environment, and transportation from 1980 to 2012. In
total 4 different loss distributions were estimated all with different assumptions as well as
different estimation techniques or datasets used, see Table 1.

For these loss distributions, extreme value distributions were fitted and then the relative
losses were approximated by piecewise linear df’s with knots at

z = [0,0.0018,0.0027,0.0036, 0.0055,0.0091,0.0137, 0.0182, 0.0365, 0.0547,
0.0730,0.0912, 0.1095, 0.1460, 0.1825].



Scenario Maximum Baseline Minimum MLoss

No loss 0.406 0.607 0.406 0.406
20 2655 114 372 149.0
20 3991 409 510 204.2
80 4773 775 281 232.5
100 o172 1046 614 245.9
150 5943 1802 676 270.4
200 6530 2646 719 287.7
250 7010 3562 752 301.1
300 7419 4541 780 312.1
400 8097 6657 823 329.4
500 8651 8954 857 342.9

Table 1: Source: Based on Hochrainer 2014. Estimated loss return periods for public cyclone risk based on
different estimation methods. Losses (constant 2000) in million USD, public sector losses

5. Solving the Madagascar problem

If we consider the EMDAT model as the one and only model, we are faced with a standard
stochastic optimization problem with just one real decision variable y. The pertaining objective
function is shown in the Figure 4 below. The optimal exit level is y* = 0.1188, i.e. to cap the
insurance at 6510 mill. USD with a premium of 92.0 mill. The expected insured losses are 51.6
mill.
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Figure 4: The objective function.
If FU) j=1,...,¢1is a finite set of different possible loss distributions, we solve

max_ min Epg) [1 =&+ min(&,y)] — m,(§) —vVargs[1 — € + min(, y)]

S.t. 7T(§1,?/) S B/SQ
y = 0.

Notice that F(! is the basic model, on the basis of which all insurance premia are calculated.
In the Madagascar case, there are 3 possible loss distribution which are plotted in Figure 5
below

It turns out that the inclusion of the alternative models does not change the optimal exit points
(y* = 0.1188), since the EMDAT loss distribution dominates the other models. The minimal
objective function is the objective function of the EMDAT case.

However, we solved the full maximin problem for different radius of the ambiguity set, we
found the following dependency of the optimal exit point in on the size of the ambiguity set.
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Figure 5: Loss distributions.

ambiguity radius € optimal exit level in mill.

0 6,510
0.001 6,788
0.005 6,943

0.01 7,073
0.03 7,471
0.05 7,774
0.07 8,044
0.1 8,711
0.15 9,221
0.2 9,331

The relative values of optimal exit points are shown in Figure 6 and the pertaining worst
case models are depicted in Figure 7. Together with the optimal solutions, they describe the
saddlepoints of our problem.

0.18 ; —— ; ————ry

optimal exit point

0_1273 . . ““th . . ““Hxil . .
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Figure 6: Dependency of the optimal exit point on the size of the ambiguity set.

The worst case models are ordered in the first order stochastic dominance sense.
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Appendix

Convexity of h. If 4 is a nonnegative 1-homogeneous function on R" (i.e. h(Ax) = \h(x)
for A > 0 such that its level sets are closed convex. Then h is convex.

Let C be the epigraph of h. C is a cone. For each element (x, h(x)) # (0,0) on the boundary
of C, let (proj(z),1) be the element (ﬁx, 1) on the 1-level set. Suppose that (x,h(x)) and
(y, h(y)) are in the boundary of C, but an element (z,«) on the line segment joining them is
not in C. Then also (proj(z),1) is not in C, but it is on the line segment joining (proj(x),1)
and (proj(y),1). But since these points are in the same level set, this is a contradiction to the
assumption.

The solution algorithm.

Notice that the objective function

Ep[l =&+ min(§, y)] — my () — 7Varp[l — €+ min(¢, y)]

is convex in the probability measure P and hence the inner problem

minEp{l — &+ min(E, y)] — 7, (€) = 7Varg[l — £+ min(&, y)]
F has a density in (0, 1], which is piecewise constant in [z;, z;41]

d(F,(F)) <e
is a convex optimization problem in RF.

The minimax problem is solved in a stepwise manner, for the details of see Algorithm 7.2
on page 221 in [13].
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