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Abstract 

Negative consequences of intensive forest management on biodiversity are often mitigated 
by setting aside old forest, but alternative strategies have been suggested. We have 
compared with simulations the consequences of two of these alternatives − setting aside 
young forests or extending rotation periods − to that of current practice in managed boreal 
forest. In all scenarios we applied a constant conservation budget and predicted forest 
development and harvesting over 200 years. As a proxy for biodiversity conservation, we 
projected the extinction risk of a dead wood-dependent beetle, Diacanthous undulatus, in a 
50 km2 landscape in central Sweden, using a colonization-extinction model. During the 
first century, setting aside young forest stands rather than old stands increased extinction 
risk because young stands have lower habitat quality. However, habitat quality of young 
forests increased as they aged and they were much cheaper to set aside than old stands. 
Therefore, the strategy allowed a larger set-aside area (within the budget constraint), 
resulting in lower extinction risk and harvested timber volumes in the second century. 
Prolonging rotations also decreased the extinction risk but was in the long term less cost-
effective. The most cost-effective strategy in the long term (200 years) was to set aside a 
mixture of old and young forest. However, setting aside young stands rather than 
prolonging rotations or setting aside old stands delays both the benefits (lower extinction 
risk) and costs (lost harvest volumes), so the optimal strategy depends on the assumed 
societal values and hence discount rates. 
 

mailto:thomas.ranius@slu.se


2 
 

Keywords: conservation strategy, discounting, forest age, population viability, prolonged 

rotation, time horizon 

 

1. Introduction 

Intensive forest production has modified forests worldwide, often with strongly negative 

effects on biodiversity (Secretariat of the Convention on Biological Diversity 2010). Since 

maintenance of biodiversity is regarded as an important goal in sustainable forestry, efforts 

are made to mitigate these effects (Lindenmayer and Franklin 2002). The underlying 

policies often aim at maintaining species populations that are viable in the long term (e.g. 

in the Swedish Environmental objectives: Anonymous 2016). This is often done by 

establishing set-asides (i.e. conservation areas exempt from timber extraction), typically to 

protect biodiversity ‘hotspots’ in order to maximize current species richness within 

budgetary and other socio-economic constraints (e.g. Virolainen et al. 2000). However, 

especially in landscapes with little remaining unmanaged forest, such a strategy may result 

in small and isolated protected areas, often providing poor prospects for long-term viability 

of some species’ populations (Öckinger and Nilsson 2010). Thus, to evaluate the 

consequences of conservation strategies on biodiversity, it is important to adopt a long 

temporal perspective, meaning that more than one rotation should be included, which is 

typically more than a century in northern forests (Ranius and Roberge 2011). Furthermore, 

it is often crucial to recognize that habitats are dynamic, and that suitable habitats for forest 

species may occur not only in protected areas, but also in managed production forest 

matrices (e.g. Lindenmayer and Franklin 2002, Schroeder et al. 2007). Therefore, both 

species and habitat dynamics as well as both production and set-aside forests should be 

considered when evaluating effects of conservation strategies on biodiversity in forest 

landscapes. 

In the even-aged forest management systems dominating in many parts of the world, 

forest stands are harvested by clearcutting and then actively regenerated. In such managed 

forest landscapes, old forest covers smaller areas than in naturally-dynamic forest 

landscapes (Lindenmayer and Franklin 2002). This impairs biodiversity, because forests in 

later successional stages contain structures and species that are rare or absent in younger 

forests (Lassauce et al. 2013). Therefore, older forests have been traditionally prioritized 
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over younger ones when selecting set-asides (Gustafsson and Perhans 2010). However, 

results from two recent analyses suggest that it may be more cost-efficient, in terms of 

conservation benefits that can be obtained with a given budget, to set-aside young forests 

(Lundström et al. 2016; Mazziotta et al. 2016). This is mainly because timber products 

cannot be extracted from young forests for several decades, so they are much cheaper to set 

aside than mature stands. However, the cited studies did not address two factors which 

must be considered in comprehensive assessments of the consequences of setting aside 

young forests for biodiversity and forestry: (1) persistence of species’ populations and (2) 

future levels of harvestable timber volumes. 

Rotations are sometimes prolonged in managed forest in order to promote 

biodiversity (Lassauce et al. 2013). This increases amounts of habitats for species that 

require structures associated with old trees and large-diameter dead wood (Jonsson et al. 

2006; Lassauce et al. 2013), especially if the prolonged rotations are not accompanied by 

extra thinnings (Roberge et al. 2016). Thus, prolonging rotations increases landscape-scale 

habitat availability for various taxa that might otherwise be threatened (Jonsson et al. 2006; 

Juutinen et al. 2014; Mönkkönen et al. 2014). Moreover, prolonged rotations increase the 

length of the temporal window when conditions are suitable for these species, which may 

strongly improve their persistence by favorably changing the relationship between 

colonization and extinction rates (Keymer et al. 2000). However, we are not aware of any 

published analysis of prolonging rotations’ effects on colonization-extinction dynamics 

and hence population persistence. 

The aims of this study are to elucidate the long-term biodiversity consequences of 

setting aside young forests and prolonging rotations in managed forest landscapes, 

including hitherto neglected effects on population persistence and levels of harvestable 

timber volumes. By projecting forest development and population dynamics over 200 years 

in a managed forest landscape in central Sweden, and comparing outcomes with those of a 

scenario with no conservation efforts, we evaluate the following four strategies for 

conserving biodiversity: setting aside old stands, young stands, or mixtures of old and 

young stands, and prolonging the rotations. We consider three responses: timber 

production (i.e. the total harvested volume of trees), habitat availability, and population 

persistence of a focal species. The budget, in terms of net present value of timber (NPV), is 
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kept constant in all scenarios. The focal species is a previously red-listed beetle, 

Diacanthous undulatus, which inhabits dead wood. Its population persistence is projected 

using a colonization-extinction model that we developed from presence/absence data 

collected in the considered landscape. Diacanthous undulatus occurs both on clear-cuts 

and in old (managed and unmanaged) forests, but 10-60 year-old managed forests offer 

little or no habitat for the species. Hence, by using this focal species we acknowledge that 

both managed and unmanaged forests, and young as well as old forests, may be important 

for the conservation of forest species. Since the species model used is dynamic, the 

outcome reflects not only habitat availability but also effects of colonization-extinction 

dynamics. 

 

2. Methods 

2.1. Study landscape 

The simulations were based on data collected in the Delsbo area, central Sweden (62º N, 

16º E). We used D. undulatus (formerly Harminius undulatus) occurrence data collected in 

68 forest stands in a 28 × 28 km² block of land including a 4 km wide buffer zone 

(Schroeder et al. 2007). Our predictions of species persistence and forest production 

considered a 50 km2 square located within that block of land. Most (80%) of the Delsbo 

area is covered by productive forests (i.e. forests with annual wood volume growth 

exceeding 1 m³/ha). The landscape is typical for the Swedish boreal region, with Scots pine 

(Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karsten) being the dominant tree 

species. The height above sea level varies from 140 m to 530 m. Currently, most forest 

stands in the area are constituents of the first generation of even-aged forest created by 

clear-cut harvesting. The average volume of dead wood in the managed stands is 13.8 m3 

ha-1, about twice as high as the Swedish average (Ekbom et al. 2006). The industrial forest 

owners (Holmen Skog AB and Bergvik Skog AB) have been FSC-certified since the late 

1990s, and thus follow the requirements to set aside ≥5% of the forest land at the scale of 

whole stands (Forest Stewardship Council 2010). 
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2.2 Study species 

Diacanthous undulatus is a representative of the species-rich insect community dwelling 

under bark of dead wood, which is negatively affected by reductions in the amount of dead 

wood due to forestry (Jonsell et al. 1998). It was previously classified as near threatened 

(NT) on the Swedish red list (Gärdenfors 2010), but its status has recently been changed to 

least concern (LC) (Swedish Species Information Centre 2015). It is a predatory beetle 

occurring in dead wood from both coniferous and deciduous trees (Nilsson and 

Baranowski 1996) in unmanaged forest, old managed forest, and clear-cuts (Schroeder et 

al. 2007). In managed forest landscapes, this species seems to occur as habitat-tracking 

metapopulations, since (i) local populations can go extinct both due to stochastic events in 

small populations and habitat patches becoming unsuitable (during a rotation, a managed 

forest stand will have periods of both suitability and unsuitability for the species), (ii) the 

probability of occurrence increases with the time since the stand became suitable, which 

suggests a dispersal limitation, and (iii) predictions from a habitat-tracking metapopulation 

model were significantly correlated with the current occurrence patterns (Schroeder et al. 

2007). 

The information about current populations of D. undulatus used in this study was 

drawn from a presence/absence dataset obtained from a field study carried out during 

2001-2003, described in detail by Schroeder et al. (2007). A stratified sampling design was 

applied, which means that data was collected from randomly selected forest stands of the 

following categories: clear-cuts (20 stands), old managed forest (28 stands), set-asides (10 

stands) and nature reserves (10 stands), while beetle data were impossible to collect from 

young managed forests simply because there was too little dead wood with bark (and hence 

breeding substrate) to sample. Briefly, the presence/absence of D. undulatus larvae was 

assessed by peeling bark from dead wood objects (diameter > 10 cm, both downed and 

standing and belonging to different tree species), sieving the material, and extracting larvae 

(if present) in Tullgren funnels. Use of this method ensures that any detected members of 

the species must have originated from reproduction in the stand. If available, 1 m2 of bark 

from 10 dead wood objects were sampled per stand, otherwise as many as possible. We 

assessed presence/absence at one time for each stand; the species was present in 15 stands 

out of 68. 
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2.3 Modelling stand development and optimizing stand management 

We modelled forest development and management using tree growth, regeneration and 

mortality functions implemented in the forest planning tool Heureka PlanWise (Wikström 

et al. 2011), where the simulation and optimization settings can be modified to represent a 

multitude of different goals in forestry. Here we optimized NPV for each forest stand by 

comparing the outcomes for a range of management programs, each consisting of a 

sequence of treatments (planting, pre-commercial thinning, thinning and clearcutting, or no 

treatment) applied over 200 years divided into five-year time periods, and choosing the 

management programs for each stand that would maximize its NPV. With no requirement 

for landscape-scale sustainable yield or additional constraints applied, this represents the 

situation where forest owners maximize solely the profit for forest management. 

The current forest conditions in the study landscape (average values for tree age, 

basal area, stem density, site index, and tree species distributions) were obtained from 

stand-level databases maintained by the industrial landowners. In all cases, even-aged 

management was simulated, as this is the prevailing management practice in the area. We 

assumed in all management programs that 5% of each stand would be retained at 

clearcutting to meet FSC certification requirements for tree retention (Forest Stewardship 

Council 2010). The regeneration settings for the current and subsequent generations of a 

stand were the same, since the dominating tree species generally depends on the soil 

characteristics. 

The harvest revenues from timber and pulpwood were calculated using theoretical 

bucking of trees (Näsberg 1985) and stumpage prices drawn from the prevailing industry 

price list for the region (Mellanskog 2013). Drawing on the classical Faustmann model 

(Faustmann 1849), the NPV for a given management program was computed as the sum of 

discounted net revenues for an infinite time horizon (approximated by assuming that the 

same management regime would be repeated in perpetuity after two rotations), with a 

discount rate of 3%, which is the commonly used rate in the region. 

Thinning guides were used to determine timing and intensity of thinning for a 

baseline management program, and the timing was subsequently varied by the Heureka 

system when generating management program alternatives. Clearcutting age was also 
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allowed to vary. To make it possible to increase the length of the rotations (see section 

2.5), we related the optimal clearcutting age to the minimum clearcutting age according to 

the Swedish Forestry Act. This minimum clearcutting age is set as a function of site index 

and main tree species (Anon. 1994), and varies for most stands addressed in this study 

between 60 and 90 years. We found that, on average, the optimal clearcutting age was 19.9 

years higher than that. Therefore, when the rotations were not prolonged, for all stands the 

clearcutting age was set to the minimum cleatcutting age + 20 years.  

 

2.4 Modelling species persistence 

The findings of Schroeder et al. (2007) based on snapshot data alone (see above) suggest 

that D. undulatus occurs in a habitat-tracking metapopulation, with each forest stand 

constituting a habitat patch. Studies of other saproxylic beetles based on repeated surveys 

have confirmed that saproxylic beetles are indeed colonizing and going extinct from forest 

stands, where successional habitat changes is an important factor (Ranius et al. 2014; 

Rubene et al. 2014). Thus, we based our modelling on the assumption that in each year, 

colonizations may occur in suitable forest stands where the species is absent and 

extinctions from stands where the species is present. Here, local colonizations and 

extinctions of the focal species (i.e. the metapopulation dynamics) were predicted using 

equations with parameter estimates obtained from Monte Carlo simulations using 

presence/absence data from the study area as described in the Appendix A. The equations 

are based on metapopulation theory, assuming that the patch-level rate of colonization is 

related with the connectivity to dispersal sources and the rate of local extinction with the 

patch-level amount of habitat (Hanski 1994). The assumptions behind the equations are 

similar to the incidence function model (Hanski 1994), but we assumed that our system is 

not in an equilibrium since the amount of habitat has recently decreased in the study 

landscape (Schroeder et al. 2007). Since both colonisations and local extinctions are 

stochastic events, we expect discrepancies between field data and model predictions 

regarding individual stands. However, the  parameterized model predicted current 

presence/absence patterns per stand better than a null model (with 50 replicates, presence 

was predicted for 39% of those occupied, and for 21% of those unoccupied, while 

randomly 25% would have been occupied in both categories; p < 0.001, χ2 test).  
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We obtained information about the future habitat quality of forest stands from the 

predicted future forest conditions. The productive forest stands in the study landscape were 

divided into three types: i) unmanaged forests, which are assumed to be always suitable for 

D. undulatus; ii) stands managed with clearcutting, which are suitable for D. undulatus 

when they are < 10 years and ≥ 60 years old and unsuitable at all other ages; and iii) stands 

planted with the nonnative tree species lodgepole pine (Pinus contorta), which are never 

suitable for D. undulatus. We modelled habitat quality in suitable stands as described in 

Appendix B, assuming that it increases with increases in abundance of the species’ 

substrate (dead wood with bark) and reductions in altitude (Schroeder et al. 2007). 

The size of the simulated area was adjusted to 50 km2 to obtain extinction risks 

allowing comparisons between scenarios; in considerably smaller or larger areas the 

extinction risks over 200 years are always close to 100% and 0%, respectively, in line with 

other metapopulation studies showing a strong relationship between size of the habitat 

network and extinction risks (Léon-Cortés et al. 2003). This means that with an 

inappropriate size of the simulated area, between-scenario differences would be masked. 

We assumed that rates of immigration of individuals from adjacent landscapes were equal 

to the emigration rates. To ensure this equivalence in the simulations, we wrapped around 

the edges of the landscape so stands situated at the left and upper margins were bounded to 

those at the right and lower margins, respectively, as if they were located on a donut-

shaped surface. 

 

2.5 Forest management scenarios 

First, we applied a “No conservation effort” scenario, where no forest land was set aside at 

the scale of whole stands and the rotations were not prolonged. Second, we tested a 

scenario close to the current management regime. In this scenario, 5% of the forest land 

was set aside, the oldest stands being selected as set-asides. The cost of this scenario, in 

terms of the loss of NVP relative to the NPV in the “No conservation efforts” scenario was 

used to set the budget for conservation. This cost equals the sum of the NPV of the set-

asides, which in our analyzed 50 km2 area was 9.14 million SEK. We compared this with 

other scenarios where conservation efforts were conducted with the same budget 

constraint. The fixed budget set for the long simulation period is not that meaningful from 
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a practical viewpoint, but it enables an assessment of the cost effectiveness of the 

scenarios. Initially, we tested scenarios where a varying proportion of the budget was 

allocated for setting aside the youngest stands. In these scenarios, 100, 80, 60, 40, 20 and 

0% of the budget was assigned to setting aside old stands and the rest to setting aside 

young stands. Finally, we tested scenarios with rotations prolonged by 20 and 40 years, 

while we found it impossible to use the whole budget if they were prolonged by only 5 or 

10 years. The mean rotation period with no prolongation was 88 years (range: 70 to 145 

years). The prolongation was obtained by calculating the optimal harvest age for each 

stand as the minimum legal clear-cutting age plus 20 years (which was the average 

difference in our scenario with no conservation effort). For instance, to obtain a 

prolongation of 40 years, 60 years were added to the minimum legal clear-cutting age but 

we did not change anything else in the management regime. In each case the prolongation 

was applied to as many randomly selected stands as possible under the budget constraint. 

Below, we only present the outcome from the prolongation that resulted in the lowest 

extinction risk (i.e. 20 years). 

All scenarios implicitly assumed that for each stand a management regime (counting 

“No management” as one regime) is defined at the beginning and maintained during the 

whole simulation period (200 years). When selecting the youngest and oldest stands for 

setting aside, stands with the lowest and highest initial ages, respectively, were selected 

until the maximum cost allowed by the budget was reached. The stands with prolonged 

rotations were selected randomly, regardless of their initial age. 

We made a set of 500 simulation replicates for each scenario. The variation in 

predicted extinction risks among sets of replicates generally varies with the extinction risk, 

with a maximum at a 50% extinction risk. For that extinction risk level, the 95% CI is 

±4.4% (unpubl. data). Thus, all presented differences in extinction risk among scenarios 

exceeding 4.4% were statistically significant. Predictions of habitat availability, set-aside 

area, and harvested volumes were made with equations which do not involve stochasticity, 

and therefore they have no variation in the output data. 
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3. Results 

All tested conservation efforts – setting aside young or old forest, or prolonging rotations – 

had clearly positive effects on species persistence in comparison to conducting no 

conservation efforts (Fig. 1). During the first century, setting aside mainly old stands was 

the most efficient strategy to decrease the extinction risk. However, during the second 

century, the extinction risk was much lower when at least some young forest was set aside 

(Fig. 1), because habitat availability was considerably higher during that period when 

setting aside young forest stands instead of old ones (Fig. 2a). Over the whole period, the 

extinction risk was lowest when about 80% of the budget was spent on setting aside the 

oldest stands and the remaining 20% on setting aside the youngest ones (Fig. 1). 

When the rotation period was prolonged by 20 years throughout the 200-year period 

under the set budget constraint, 79% of the forest area was subjected to prolonged 

rotations. During the first century this resulted in similar extinction risks to those obtained 

in the best set-aside scenarios, but during the second century the extinction risk was higher 

than for any scenario involving set-asides (Fig. 1). 

Because the youngest stands were much cheaper to set aside than the oldest, with a 

constant conservation budget the total set-aside area increased with the proportion of 

young forest (Fig. 3). Thus, the harvested volume decreased more when young forest was 

set aside than when old forest was set aside. This difference was slightly more pronounced 

during the second century (Fig. 4). Prolonged rotations had a clearly negative effect on the 

harvested volume only during the first century (Fig. 4). 

 

4. Discussion 

4.1 Young vs. old set asides 

Traditionally, old stands have been prioritized when selecting set-asides for biodiversity 

conservation (Gustafsson and Perhans 2010), mainly because they harbor structures and 

species that are rare in forest landscapes dominated by managed forest. The present study 

shows, in accordance with previous findings (Lundström et al. 2016; Mazziotta et al. 

2016), that it may be favorable to set aside some proportion of young stands too. This is 

due to the fact that they are cheaper to protect, meaning that larger areas can be set aside 

with a given conservation budget. However, it is only when combining with a large 
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proportion of old stands, setting aside young stands can be favourable (Fig. 1). This is 

because species dependent on structures that mainly occur in old forest will experience a 

long delay before setting aside young forest results in increased habitat amounts. This is 

important to consider because the total amount of habitat was a key factor affecting 

differences in extinction risks over time and between landscape scenarios in the present 

study. Bottlenecks in habitat availability can therefore threaten long-term population 

viability. Such bottlenecks occurred in the prediction for our study area (i.e. the habitat 

availability was lower at 0-50 years than both earlier and later; Fig. 2a), and have been 

observed in other managed forest landscapes in Sweden (Roberge et al. 2015). We found 

that extinction risk was most strongly reduced when about 20% of the budget was spent on 

young set-asides and the rest on old ones. These proportions combine the advantages of 

including very young forests that are cheapest to set aside and old forests which limit 

bottleneck effects. The optimal proportions probably depend on the target species and 

landscapes (cf. Mazziotta et al. 2016). However, we conclude that with a long planning 

horizon, allocating a proportion of conservation resources for setting aside young stands 

may be advantageous, as long as old stands are also set aside. 

Given a certain conservation budget, setting aside a larger area of young forest rather 

than old forest implies a decrease in the total production forest area and hence in the future 

volumes of timber potentially harvested in the forest landscape (Fig. 3-4). The estimated 

cost of setting aside young forest is comparatively low, despite the consequent reductions 

in future timber harvest, because the income loss is discounted and in the far future. The 

higher the assumed discount rate, the more favorable is the net income in the near future 

relative to later incomes. Therefore, the discount rate may have a large influence when 

comparing the cost-effectiveness of conservation scenarios (Mazziotta et al. 2016). This 

rate is highly dependent on the decision-maker’s preferences and may vary over time.   

Therefore, a whole range of assumptions about discount rates is possible, including also 

time-declining discount rates (Weitzman 2010). There is no consensus regarding the 

correct value of discount rate (e.g. Hepburn and Kondouri 2007) but the 3% interest rate 

used in this study is typical for forest management calculations in Sweden, reflecting 

moderate risk and profit expectations (e.g. Brealey et al. 2012). 
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Both young and old forest may harbor structures that are important for biodiversity. 

Our study species occurs in old forest and also in dead wood on clear-cuts for a few years 

following cutting (Schroeder et al. 2007). Other species may strongly prefer either old 

forest or clear-cuts, since these habitats offer strongly diverging environmental conditions 

(Kaila et al. 1997). For species dependent on old-growth forest conditions, setting aside old 

forests is an adequate conservation measure, but the present study suggests that combining 

that with setting aside young forest could also be an efficient measure in the long term. 

However, at least some forest species (although not our study species) seem to require 

habitat continuity (Siitonen and Saaristo 2000) and for them it may be necessary to retain 

older forests which have never been clear-cut. Habitats of high conservation value that 

occur after clearcutting and forest fires may be legacies from the previous stand, such as 

dead wood (Kaila et al. 1997; Rubene et al. 2014) or created by the disturbances, such as 

flower-rich sites (Rubene et al. 2015) and artificially created high stumps (Djupström et al. 

2012). Many of these structures and associated species will be lost during the succession, 

regardless of whether the stand is set aside or not. Therefore, measures other than setting 

aside stands may be needed to sustain these species, such as applying more conservation-

oriented practices during forestry operations, maintaining more gaps, and delaying the 

densification of young forest (Rubene et al. 2014). In conclusion, the main value of setting 

aside old forests is that it maintains current conservation values, while the main rationale 

of permanently setting aside young forests is to secure high conservation values in the 

future, rather than to maintain present values. 

 

4.2. Prolongation of the rotation periods 

Landscape-level extinction risks were lower when rotations were prolonged by 20 years 

than in the scenario with no conservation efforts. This was at least partly due to increases 

in total habitat availability at the landscape scale (cf. Mönkkönen et al. 2014), but 

prolonging rotations may also extend the period when stands provide suitable habitats, and 

thus increase probabilities of their colonization (cf. Keymer et al. 2000). However, the best 

scenario for prolonging rotations still resulted in a higher extinction risk than the best 

scenario of set-asides. Thus, our results suggest that prolonging rotations is a less efficient 

measure than setting aside stands in the long term. This is a likely outcome especially for 
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species with low colonization ability (such as some epiphytes; Löbel et al. 2006), because 

such species are favored by the occurrence of sites where they can persist over long 

periods but cannot readily recolonize managed forest stands, which change over time 

(Ranius and Roberge 2011). However, for stronger colonizers site persistence has weaker 

effects, since they are better at tracking the changing habitat in managed forests. 

Prolonging the rotation had a clear negative effect on the landscape-level harvested 

volumes only during the first century, mainly because the harvest occasions become 

delayed. Thus, the main cost of prolonging the rotation is delaying income from forest 

harvesting, which decreases the value of income due to discounting. Thus, prolonged 

rotations caused quite moderate costs per unit forest area (on average 9 % decrease in 

NPV). For that reason, prolonging rotations may still be an attractive option for forest 

owners. For instance, some may prefer to postpone harvesting, to keep possibilities open 

and decide later whether to set aside a stand or cut it. This feature has been utilized in 

forest conservation programs based on temporal contracts agreed between private 

landowners and the government (e.g. Juutinen et al. 2008). There are also other advantages 

associated with prolonged rotations, such as generally positive effects on e.g. aesthetics, 

water quality, soil nutrients, and berry production (Roberge et al. 2016). Nevertheless, 

given the low long-term effect of prolonged rotations observed in this study, and its limited 

value for species with low dispersal ability, prolongation of rotations should be combined 

with setting aside forests in the same landscape if the aim is to conserve wider biodiversity. 

 

4.3 Spatial and temporal scales 

The outcome from this kind of analyses is highly scale-dependent, in terms of both 

economic returns and species persistence. If the scenarios are applied at the spatial scale 

considered in our analyses (50 km2) market-level effects do not have to be taken into 

account (cf. Nalle et al. 2014), and  thus, timber prices was assumed to be the same in all 

scenarios. However, if applied over larger regions the scenarios would have different 

effects on future industrial timber supplies, thus potentially affecting forest owners and 

forest industry through changed prices (Johansson and Löfgren 1985). Predicted levels of 

extinction risks are also inversely dependent on the size of the simulated landscape, since a 

larger landscape size means that there are more local populations with a partly independent 
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dynamics (cf. Léon-Cortés et al. 2003). Therefore, although useful for comparing relative 

effects of various scenarios, our analyses provide no indications of extinction risks of D. 

undulatus at national or other larger scales. 

The outcome is also highly dependent on the considered time horizon. Some 

uncertainties obviously increase with the time scale of the predictions, since over a longer 

time the conditions potentially can drift away further from the current conditions. This is 

the case for, for instance, societal values, economic evaluations, and climatic conditions. 

On the other hand, less change is expected regarding the biology of species or the relative 

amount of harvested volume given different scenarios. A time horizon of up to 100 years is 

commonly used for long-term forest planning (e.g. Öhman and Eriksson 2010). However, 

we found that the outcome, in terms of relative extinction risks, may be substantially 

different if it is extended with another 100 years. Two reasons for the differences in risks 

between the first and second centuries are that habitat amounts vary over time (Fig. 2), and 

populations of the focal organisms were larger at the starting point than after 100 years. In 

this study, reductions in extinction risks were not discounted, i.e. we assumed that the 

society’s values of ecological benefits would remain constant throughout the study period. 

There is no consensus regarding methodology for defining likely interest rates regarding 

environmental benefits that may accrue far in the future (e.g. Nordhaus 2007; Weitzman 

2010). However, it is widely assumed that discount rates for environmental benefits from 

nature conservation should be well below rates applied for economic benefits (Gollier 

2010; Kula and Evans 2011), which is consistent with our analyses. This is because 

ecological and biodiversity values are at least partially non-substitutable by economic 

growth or consumption. Nature conservation is intended to ensure intergenerational equity 

and provide an adequate basis for long-term persistence of biodiversity, which suggests 

that biodiversity will be equally or even more valuable in the future than at present.  

 

5. Conclusions 

Since old stands are generally expensive to protect, given the financial resources 

commonly available for conservation, set-aside areas will likely remain small. Thus losses 

of timber harvest are also expected to remain limited when prioritizing old stands for 

protection. Much more extensive areas of younger stands can be set aside within given 
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budgetary constraints, because they are cheaper. In the long run this would increase 

amounts of habitats that are scarce in production forests, and decrease potential future 

timber harvests. Prolonging rotations reduced extinction risks of our focal organism, but 

was less cost-efficient than setting aside forest. Thus, the most cost-efficient strategy to 

preserve the study species over 200 years was to set aside a mixture of old and young 

forest. However, setting aside young stands rather than prolonging rotations or setting 

aside old stands delays both landscape-level costs (losses of harvested volumes) and 

benefits (reductions in extinction risks), so the optimal strategy depends on the assumed 

societal values and hence discount rates. 

Because model parameters are based on scant data, and considering that we only 

studied a single species in a certain landscape, the outcome should not be generalized 

incautiously, but considered an example of a possible outcome. However, our results may 

well apply to numerous forest species associated with large-diameter dead wood. This 

substrate harbors a species-rich community of conservation concern, since the amount of 

large-diameter dead wood has severely declined in regions with intensive forest 

management (Jonsson et al. 2005). Moreover, our study area is largely representative of 

managed boreal landscapes of northern Europe, where management has been intensive in 

recent decades. Hence, our results are likely relevant to numerous landscapes facing 

similar conservation challenges. 
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Fig. 1. Predicted accumulated extinction risk for a beetle, Diacanthous undulatus, in a 50 
km2 managed forest landscape during a 200-year period, under seven scenarios with the 
same conservation budget and one scenario with no conservation efforts. Black = during 
the first century from now (0-100 yrs), white = during the second century (100-200 yrs). In 
the first six scenarios, forest stands are selected for setting aside based on their age; the 
numbers (0, 20, …, 100) indicate the percentage of the budget allocated to setting aside the 
youngest stands, while the rest is spent on the oldest stands. "Prol" is a scenario with the 
same conservation budget in which the rotation period of randomly chosen stands is 
prolonged by 20 years. In all scenarios, some trees were retained in stands at clearcutting 
in accordance with FSC rules.  
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a) 

  
b) 

 
Fig. 2. Predicted habitat availability (a) and accumulated extinction risk (b) for the beetle 
Diacanthous undulatus in a 50 km2 managed forest landscape, in scenarios where only the 
youngest (black squares) or only oldest (open diamonds) stands are set aside, with the 
same conservation constraints. Predicted habitat availability refers to mean amounts, over 
50-year periods, measured as described in the Appenedix A.  
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Fig. 3. Areas (%) of forest set aside when percentages of a given conservation budget from 
0 to 100 (x axis) are allocated to setting aside the youngest stands and the rest to setting 
aside the oldest stands. Filled part of the bars = old forest. Open parts of the bars = young 
forest. No forest is set aside if the same budget is used to prolong rotations (Prol.). In the 
Prol. scenario the rotation period of randomly chosen stands covering 79% of the forest 
area is prolonged by 20 years.  
 
 

 
Fig. 4. Percentage of the harvest volume lost, relative to the volume in a scenario with no 
retained stands and no prolonged rotations. Filled bars = during the first century from now 
. Open bars = during the second century. In the first six scenarios forest stands are selected 
for setting aside based on their age; the numbers (0, 20, …, 100) indicate the percentage of 
the budget allocated to setting aside the youngest stands, while the rest is spent on the 
oldest stands. "Prol" is a scenario with the same conservation budget in which the rotation 
period of randomly chosen stands is prolonged by 20 years.   
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Appendix A 
Fitting a metapopulation model 
We fitted a metapopulation model using stand-level presence/absence data and Monte 
Carlo simulations. We assumed a dynamic landscape, as described in the Methods section 
and Appendix B, and that colonizations and extinctions are not currently in equilibrium in 
the study landscape, because the landscape-level amount of habitat has decreased in recent 
decades. In the Monte Carlo simulations, we started with a wide range of values for each of 
the seven unknown parameters in the model (Table A.1). These ranges are collectively 
referred to as a parameter space. By repeated simulations, the parameter space was 
successively narrowed in the following way. In each simulation, we ran a set of 1000 
replicates with parameter values randomly chosen within the parameter space. Each 
replicate resulted in a prediction of presence/absence for every forest stand in the study 
landscape, which was compared with field data. When a replicate resulted in an occupancy 
of 12–32% (field data: 22%) and a significantly (p < 0.05, χ²) positive correlation between 
predicted and observed presence/absence, the combination of parameter values was 
identified as a “probable combination”. However, for the first 10 simulations, we only 
considered the occupancy, since significant correlations in presence/absence data were 
very rare. For each set of 1,000 replicates, we analyzed the effect of one parameter at a 
time by dividing the parameter value interval into four equally large sections. We 
identified one or two parameters that had the biggest difference in proportion of probable 
combinations between sections. Then we decreased the parameter space by 50%, by 
delimiting the interval for the parameters with the biggest difference so only the sections 
with the highest proportion of probable combinations remained. When this had been done 
50 times, there were only small differences between the parameter value interval sections. 
The mean value in each parameter interval in the final parameter space was used as a 
parameter value in the simulation of future development (Table A.1). Two variables, α and 
u, had strong effects on the occupancy in opposite directions. To increase the probability of 
obtaining “probable combinations”, we substituted the u parameter by a function with two 
parameters, a and b:  
 
u = a – b α eq. (A.1)  
 
The a and b parameters were treated in the same manner as the other parameters, as 
described above. With this approach, we obtained a parameter combination consistent with 
field data.  

The starting point for each Monte Carlo simulation was 1950 and the output was 
compared with field data from 50 years later. In the simulations, species occurrences in 
1950 were placed randomly among the forest stands. The initial incidence per patch, I, was 
varied between 22% (= the current occupancy) and 100%. The probabilities of local 
colonizations and extinctions were estimated in every stand and every year using eqs. A2-
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A4, similar to those in Hanski (1994). Based on an assumed Allee effect, the colonization 
probability, C, was a sigmoid function of connectivity, S: 

 

Error! Bookmark not defined. )/( 222 ySSC iii +=  eq. (A.2) 
 

The connectivity of stand i was defined as: 

jj

n

j
ijii ApdES ∑

=

−=
1

) αexp(  eq. (A.3) 

where p = 0 for empty and p = 1 for occupied stands, A is the patch size according to eq. 
(B.1), n is the total number of stands in the study, dij is the distance between stands i and j, 
and 1/α is the average migration distance. The patch area Ei was included in the equation, 
as the probability of reaching a habitat patch is likely to be proportional to the square root 
of its area (Hambäck and Englund 2005). For each year, the probability of extinction (U) in 
an unsuitable patch is 1, and the probability of extinction in a suitable patch is 
 

{ }x
iii ACuU /)1( ,1min  −=  eq. (A.4) 

 
where u is a parameter governing the extinction risk, x is a parameter governing the effect 
of patch size, A is the patch size according to eq. (1), and (1 – C) represents the rescue 
effect. When no suitable habitat is available, the larvae of D. undulatus do not survive, so 
we assumed that the local population immediately goes extinct when a habitat patch 
becomes unsuitable. 
 
Cited literature 
Hambäck, P.A., Englund, G. 2005. Patch area, population density and the scaling of 

migration rates: the resource concentration hypothesis revisited. Ecology Letters 8, 
1057-1065. 

Hanski, I. 1994. A practical model of metapopulation dynamics. Journal of Animal 
Ecology 63, 151–162.  
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Table A.1. Parameters in the colonization-extinction modelling. When the parameter 

values were estimated, we initially tested the whole range of values within the “Interval”. 

“Used value” is the parameter estimate used in the simulations. 

 

Name Variable Interval Used value 

I Initial incidence 0.22 - 1 0.25 

y Constant reflecting the probability of a population 

establishing in a focal empty patch, given a certain 

connectivity with source populations 

1 – 1000 1.16 

α Dispersal decay (reflecting inverted mean dispersal 

distance) 

0.0002 – 0.01¹ 0.00915 

u Local extinction risk 0 – 1 0.0535 

x Constant reflecting how extinction risk varies with 

patch area  

0.1 – 1 0.1 

 Regional stochasticitity 0 – 1 0.303 

 Spatial scale of regional stochasticity 1, all scales; 2, only 

largest scale; 3, 

only smallest scale 

2 

 

¹ the limits were based on the spatial scale of the study landscape. 
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Appendix B 
Modelling habitat dynamics 
For each forest stand, we predicted the temporal development of habitat quality. Habitat 
quality, A, was assumed to be proportional to the size of inhabiting D. undulatus 
populations and estimated with the following function: 

 
A = E × H × D eq. (B.1) 
 

where E is the size of the stand (in ha), H an index related to altitude, and D an index 
reflecting the amount of dead wood (in m³/ha). The value of H was obtained using a 
logistic regression model, fitted with data on the presence/absence per sieved dead wood 
item against altitude, L: 

 
H = exp(6.413 – 0.026L)/(1 + exp(6.413 – 0.026L)) eq. (B.2) 
 

The dead wood index, D, was estimated by the following equation: 
 

D = F × T × P  eq. (B.3) 
 
where F is a forestry factor, T is a tree species factor, and P is a stand productivity 

factor. We assumed that before 1950, F = 1 for all stands. Large-scale clearcutting forestry 
started in 1950, and we assumed after that F = 0 for all forests < 60 years old, while for 
older forests F = 1. Since the late 1990s, the forestry has been FSC-certified, so more dead 
wood has been retained during forestry operations. Thus, we assume that after 1998, F = 1 
during the first 10 years after clearcutting. These assumptions are consistent with observed 
amounts of dead wood in the study landscape (Ekbom et al. 2006) and results from 
simulations of dead wood dynamics (Ranius et al. 2003). After a stand is set aside, F 
increases at a constant rate during the first 100 years from 1 to 3, and remains 3 thereafter. 
In the study landscape, the amount of dead wood with bark is currently about twice as high 
in set-asides as in managed forests (Schroeder et al. 2007). The tree species factor, T, was 
set to 1, 1.2 and 0.75 for stands dominated by Norway spruce, deciduous trees and Scots 
pine, respectively. This reflects differences in tree mortality observed in mature managed 
forests in Sweden (Jonsson et al. 2010), and if everything else is equal the amount of dead 
wood is proportional to the tree mortality rate. The productivity factor, P, was included in 
the function because the volume of dead wood is approximately proportional to the site 
index (Ranius et al. 2003). The stand productivity was estimated as a site index 
corresponding to the tree height when the forest stand is 100 years old. Since the site index 
was on average 22, we obtained a mean value of 1 for P, by defining it as the site index 
divided by 22. 
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In forest stands that are close to each other, habitat quality is likely to fluctuate over 
time in a correlated manner. We considered this by constructing a spatially explicit 
correlation structure in a similar manner to Gu et al. (2002), with modification of their 
algorithm because we used forest stands as spatial units, while Gu et al. (2002) used grids. 
The spatial correlation was represented hierarchically as follows. The study area was 
divided into four rectangles by randomly placing two lines. Each rectangle was further 
divided into four parts. This subdivision was done seven times. Each rectangle was given a 
random factor, Rijk, taken from a normal distribution with mean zero and variance δ². The 
effective quality Aij

*(t), of forest stands with their midpoints within the grid cell (i,j) at 
time t was given by: 








∑
=

7

1
exp 

k
ijkk

*
ij Rc(t) = AA  eq. (B.4) 

where ck is a weight chosen to represent the strength of regional stochasticity at scale k 
(from small to large scales). As input in the Monte Carlo simulations, we used three 
different sets of weights: i) regional stochasticity at all spatial scales, {1,1,1,1,1,1,1}; ii) at 
the largest scale only, {0,0,0,0,0,0,1}; and iii) at the smallest scale only, {1,0,0,0,0,0,0}. 
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