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ABSTRACT

This paper studies the reference point approach of Wierzbicki
for multiobjective optimization. The method does not necessarily
aim at finding an optimum under any utility function but rather
it is used to generate a sequence of efficient solutions which
are interesting from the decision maker's point of view. The
user can interfere via suggestions of reference values for the
vector of objectives. The optimization system is used to find
(in a certain sense) the nearest pPareto solution to each reference
objective.

The approach is expanded for adaptation of information which
may accumulate on the decision maker's preferences in the course
of the interactive process. In this case any Pareto point is
excluded from consideration if it is not optimal under any linear
utility function consistent with the information obtained. Thus,
the pareto points being generated are the "nearest" ones among
the rest of the pareto points.

Wierzbicki's approach is implemented on an interactive
mathematical programming system called SESAME and developed by
Orchard-Hays. It is now capable of handling large practical
multicriteria linear programs with up to 99 objectives and
1000 to 2000 constraints. The method is tested using a forest
sector model which is a moderate sized dynamic linear program
with twenty criteria (two for each of the ten time periods).
The approach is generally found very satisfactory. This is
partly due to the simplicity of the basic idea which makes it
easy to implement and use.

--




AN IMPLEMENTATION OF THE REFERENCE POINT
APPROACH FOR MULTIOBJECTIVE OPTIMIZATION

M. Kallio, A. Lewandowski, and W. Orchard-Hays

1. INTRQDUCTION

In many practical decision situations there is a need to
find a compromise between a number of conflicting objectives.
Furthermore, the decision may involve several decision makers in
partly conflicting, partly cooperative situations. Mathematically
such decision problems can often be formulated as a multiobjective
optimization problem or in the framework of game theory. 1In this
paper we concentrate on the former approach for developing deci-
sion aid techniques for the problem. For an overview on various
approaches, see, for instance Bell et al. (1977), Starr and
Zeleny (1977), and Wierzbicki (forthcoming).

In our opinion, the reference point optimization method with
penalty function scalarization (Wierzbicki 1979) is an appropriate
tool for studying such problems. This approach has several

desirable properties:

-- it applies to convex and nonconvex cases

-- it can easily check Pareto-optimality of a given decision

-- 1t can be easily supplemented by an a posteriori computa-
tion of weighting coefficients for the objectives

-- it is numerically well-conditioned and easy for imple-

mentation




-- the concept of reference point optimization makes it
possible to take into account the opinions of a decision
maker directly, without necessarily asking him gquestions

about his preferences.

In this paper we will focus on the interactive use of ref-
erence point optimization for multiobjective linear programming
with a single decision maker. However, we believe that the same
approach proves to be useful for group decision problems as well.
The reference point optimization will be reviewed first and some
preliminary results will be given. Thereafter, we develop an
approach for employing information which may be revealed on the
decision maker's preferences in the course of the interactive
process. The multiobjective method has been computerized in the
SESAME-system, a large interactive mathematical programming
system designed for IBM 370 under VM/CMS (Orchard-Hays 1978).

A sample of numerical experiments will be reported at the end

of the paper.

2. REFERENCE POINT OPTIMIZATION

mxn

Let A be in R , C in Ran, and b in R® and consider the

multicriteria linear program (MCLP):

(MCLP. 1) Cx = gq
(MCLP. 3) x >0 ,

where the decision problem is to determine an n-vector x of
decision variables satisfying (MCLP.2-3) and taking into account
the p-vector g of objectives defined by (MCLP.1). We will assume

that each component of g is desired to be as large as possible.

An objective vector value q = q is attainable if there is a
. . — * .
feasible x for which Cx = g. Let q; for 1 =1,2,..., p, be the
largest attainable value for i.e., qz = sup {qi|q attainablel.

q.
€T . . x
)" 1is the utopia point. If q 1is

The point q* = (q:, q;,--.,




attainable, it is a solution for the decision problem. However,
usually q* is not attainable. A point q is scrictly parero
inferior if there is an attainable point g for which q > g. 1If
there is an attainable g for which q > g and the inequality is
strict at least in one component, then g is pareto inferior.

An attainable point g is weakly pareto-optimal if it is not
strictly pareto inferior and it is pareto-optimal if there is
no attainable point g such that q > q with a strict inequality
for at least one component. Thus a pareto optimal point is also
weakly pareto optimal, and a weakly pareto optimal point may be
pareto inferior. For brevity, we shall call a pareto optimal
point sometimes a pareto point and the set of all such points

the pareto set.

What we call a reference point or reference objective 1is
a suggestion g by the decision maker (or the group of them) re-
flecting in some sense a "desired level” for the objectives.
According to Wierzbicki (1979), we consider for a reference point
g a penalty scalarizing function s(g-gq) defined over the set of
objective vectors g. Characterization of functions s, which
result in pareto optimal (or weakly pareto optimal) minimizers
of s over attainable points g is given by Wierzbicki (1979).

If we regard the function s(g-g) as the "distance" between
the points g and g, then, intuitively, the problem of finding
such a minimum point means finding among the Pareto set the
nearest point § to the reference point g. (However, as it will
be clear later, our function s is not necessarily related to the
usual notion of distance). Having this interpretation in mind,
the use of reference points optimization may be viewed as a
way of guiding a sequence {Qk} of pareto points generated from
the seguence {EK} of reference objectives. These sequences will
be generated in an interactive process and such interference
should result in an interesting set of attainable points @k.
If the sequence {ﬁk} converges, the limit point may be seen as a

solution to the decision problem.

Initial information to the decision maker may be_provided

by maximizing all objectives separately. Let ql = (q?) be the




vector of objectives obtained when the ith

objective is maxi-
mized for all i. Then the matrix (q;), i,j, = 1,..., p, yields
information on the range of ngmerical values of objective func-
tions, and the vector q* = (qi) is the utopia point. It should
be stressed, however, that such initial information is not a
necessary part of the procedure and in no sense limits the free-

dom of the decision maker.

We denote w = q - g, for brevity. Then, a practical form
of the penalty scalarizing function s(w), where minimization

results in a linear programming formulation, is given as follows:

s(w) = -min{p min w

L ) wilo-oew . (1)

il

Here p 1s an arbitrary penalty coefficient which is greater than

or equal to p and € = (51,52,..., ep) is a nonnegative vector of
parameters. In the special case of p = p, (1) reduces to
s(w) = =-p min wi - ew . (2)
i

So far in our experience, form (1) of the penalty scalarizing
function has proven to be most suitable. Other practical forms

have been given in Wierzbicki (1979a).

Eor any scalar & the set Sg(a) = {q|s(w) > §, w=gqg - q}
is called a level set. Such sets have been illustrated for
function (1) in Figure 1 for p = p, for p > p and for a very
large value for p. 1In each case, if w i 0, then s(w) is given
by (2); i.e., the functional value is proportional to the worst
component of w. If p = p, the same is true for w > 0 as well.
If w > 0, then for large enough p (see the case p>>p) s(w) is
given by Z W In the general case, when p > p, the situation
is shown in the middle of Figure 1. When w > 0 and its components
are close enough to each other (that 1is, (p—1)w1 > v, and
(p=T)w, > Wi for p = 2), then s(w) is given by )} w.. Otherwise,
formula (2) applies again.

For € = 0, scalarizing function (1) guarantees only weak
pareto optimality for its minimizer. However, as will be shown

in Lemma 1 below, if ¢ > 0, then pareto optimality will be guar-
anteed.
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Figure 1. Level sets for penalty scalarizing functions (1) and

(2) for e = 0.

The problem of minimizing s(g-q) defined by (1) over the
attainable points g, can be formulated as a linear programming
problem. 1In particular, if we again denote w = q - g = Cx - q
and introduce an auxiliary decision variable y, this minimization

problem can be stated as the following problem (P):

find y, w, and x to

(P.1) min y - €W

(P.2) s.t. Ey + Dw <0
(P.3) -w + Cx = q
(P.4) Ax = Db

(P.5) x>0 ,




where E and D are appropriate vectors and matrices. Further-
more, D < 0, and if w = ® and y = § are optimal for (P), then

§ = ¢ - eW is the minimum value attained for the penalty function
s. The detailed formulation of (P) is given in the Appendix.

The optimal solution for (P) will be characterized by the fol-

lowing result:

LEMMA 1. Let (y,w,x) = (§,0,&) be an optimal solution and
8§, u, and T the corresponding dual vectors related to constraints
(p.2), (P.3), and (P.4), respectively. Denote by q = CI the
corresponding objective vector, and by 8§ = § - €l the optimal
value for the penalty function, and by @ the attainable set of
objective vectors g. Then g € @ N S§(§) and the hyperplane
H = {qlu(g-q) = 0} separates @ and Sg(g). Furthermore, u > ¢
and q = @ maximizes uqg over q € §; 1.e., § 18 pareto optimal

tf e > 0, and § is weakly pareto optimal if € > 0.

Remark. As illustrated in Figure 2, the hyperplane H
approximates the pareto set in the neighborhood of §. Thus the
dual vector uy may be viewed as a vector of trade-off coefficients
which tells roughly how much we have to give up in one objective

in order to gain (a given small amount) in another objective.

Proof. Clearly ¢ is attainable (i.e., § € Q) and by defini-
tion § € Sg(a). In order to prove the separability assertion
we show that (i) § minimizes ug over Sg(a) and that (ii) §
maximizes ug over Q. Noting that q = w + g = Cx, these two
problems may be stated as follows:
minimize uw + ug
st.

>

P(1) Yy - €w >
Ey + Dw < o ,
and
maximize uCx
st.
P(ii) Ax = b

X

| v
(]




Figure 2. An illustration of Lemma 1.

Letting the dual multipliers for the first constraint of P (i)

be equal to -1, we can readily check, based on the optimality

conditions for (P), that ¢, W, %, §, u, and -m satisfy the
optimality conditions for P(i) and P(ii). Based on dual feasi-
bility, we have y = & - 8D and § < 0. Because D < 0, we have
TR Thus, if ¢ > 0 (¢ > 0), then § is (weakly) pareto optimal.

3. EMPLOYING INFORMATION ON PREFERENCES

While applying the reference point optimization a sequence
{ak} of reference points and the corresponding segquence {@k}
pareto points will be generated. Usually these seguences reveal
partially the decision makers preferences. For instance, after

. . ~k=1 . —k
obtaining a pareto point § , a4 new reference point g may be

chosen so that §k is preferred to @k—1.

In the following we
intend to exploit such information. In such a procedure we
shall not necessarily generate the nearest pareto point to a
reference point. We will restrict the pareto points being
generated to those which are consistent (in the sense defined

below) with the information gained from the interactive process.

x
Initially, we will assume a linear utility function A g,
x . :
where A 1s a vector such that g is preferred to q' if and only if
* * *
A4 > x qg', for all g and g'. The vector A 1is not known ex-

plicitly. However, because each objective q; is to be maximized,
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* ] ) . i
we have A* > 0; i.e., A dl > 0 for each unit vector d°. Further-
B - * . .
more, other information concerning A may be obtained during the

interactive procedure. As above, if the decision maker

— - ) — ~k-1
prefers yk to 9k 1, then, denoting d = yk - yk , we have Ad > 0.
In general let at, for i = 1,2,..., Ik’ be the vectors of pre-

ferred directions (including the unit vectors) being revealed
by iteration k of the procedure. This implies that

Venkz aaat >0, fori=1,2,..., I}, (3)

i.e., A* is in the dual cone of the cone spanned by the vectors

di. (Actually, A*¥ is in the interior of Ak.) See also Zionts and

Wallenius (1976).

Let Qk be the set of pareto points which are consistent
with respect to Ak in the sense that § € Qk if and only if
there is X € Ak such that A§ > \g, for all attainable g € Q.
We shall now discuss an approach to provide a pareto point
g € Qk related to a reference point g. For this purpose we
rewrite (P.3) as

e .
(P.3) -w + Cx -} dlzi =q ,

i=1
where the scalars z, are nonnegative decision variables. This
revised problem will be referred to as problem (P). An inter-
pretation of this problem is to find the nearest pareto point
(among all pareto points) to the cone, which is spanned by the
vectors d' of preferred directions and whose vertex 1s at the
reference point g. Another characterization of the revised

problem (P) is given as follows:

LEMMA 2. If e > 0, w = © is optimal for the revised problem
k

(P), and § = q + ©, then § € Q°; i.e., § is a pareto point which
18 consistent with respect to the information obtained in Ak.
Proof. Let (y,w,x,zi) = (9,@,2,2i) be optimal for (P) and,
as before, §, py, and 1 the optimal dual solution. Define
a =q+ ) d*z. Then the above also solves (P) with the reference
i

point a. Thus, by Lemma 1, y >¢ > 0 and 4 maximizes pg over




attainable points g. By the optimality condition for Zi' we have
udl > 0, for all i. Thus u € Ak, and therefore, § is a pareto

. . . k
point consistent with A™. ||

In practice, the decision makers utility function normally
is not linear. However, in the neighborhood of his most desired
solution the utility function normally has a satisfactory linear
approximation and, therefore, the above proceduge may still be
useful. Because of nonlinearity, the vectors at of preferred
directions may appear conflicting to a linear utility function;
i.e., the set Ak reduces to a single point (the origin) and the
vectors di span the whole space. O0Of course, this may occur
also for reasons other than the nonlinearity. For instance,
lack of training in using the approach may easily result in
conflicting statements on preferences. 1In either case, such
conflict results in an unbounded optimal solution for the re-
vised problem (P). 1In such a case, we suggest that the oldest
vectors di (the ones generated first) will be deleted as long
as boundedness for (P) is obtained. This approach seems appealing
in accounting both for the learning process of the user (decision

maker) and for his possible nonlinear utility function.

4, COMPUTER IMPLEMENTATION

A package of SESAME/DATAMAT programs has been prepared for
automating the use of the multicriteria optimization technique
utilizing user-specified reference points. The scalarizing func-
tion defined in (1) with ¢ = 0 was adopted for this implementation.
A model revision into the formof (P) is carried out and a neutral
solution corresponding to a reference point g = 0 is computed
and recorded first. Each time a new reference point g is given,
the optimal solution for (P) is found starting with the neutral
solution and using parametric programming, that is, parametrizing
the reference point as 9q with 6 increasing from 0 to 1. Although
the exploitation of preferences (as described in Section 3) has
not yet been implemented, we are already able to design experi-
ments fof studying the influence of employing such cumulative
information. Some opticnal algorithmic devises have been imple-

mented to force the sequence of pareto points to converge. As
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it will be clear later, such a procedure does not guarantee an
optimal solution (under any utility function) but often it is

expected to be useful for generating interesting pareto points.

There is no explicit limit to the size of model which can
be handled except that the number of objectives cannot exceed
99. The limiting factor is likely to be disk space since a

model is effectively duplicated on the user's disk.

The package of programs is referred to as the MOCRIT
Package, or simply MOCRIT. The standard package consists of
three files: a SESAME RUN file, a DATAMAT program file, and a
dummy data file which exists merely for technical reasons.
There are essentially four programs in MOCRIT: (1) REVISION,
which reformulates the model into the form of (P) and creates
the neutral solution, (2) START, which initializes the system
for a interactive session, (3) SESSION, which utilizes the
standard technique of reference point optimization, and (4)
CONVERGE, which forces the sequence of parato points to converge.
The use of REVISION and SESSION is mandatory. START 1s a con-
venience to obviate the need to enter various SESAME parameters
for each session. CONVERGE is an option; it cannot be used
meaningfully before SESSION has been executed at least once.
CONVERGE is actually a prologue to SESSION which it activates

as a terminal step.

These "programs" are really RUN decks consisting of appro-
priate SESAME commands. There are corresponding decks (DATAMAT
programs) which are executed automatically by the RUN decks.
All four MOCRIT programs terminate by returning to the SESAME
environment in manual mode. Regqular SESAME commands and pro-
cedures can be interspersed manually from the terminal at such

times. (For details, see Orchard-Hays 1977).

4.1 The REVISION Program

The purpose of this program is to revise an existing linear
programming model containing two or more functional rows into
a form suitable for multiobjective optimization. The existing

model file must have been previously created with DATAMAT (or
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CONVERT) in standard fashion. This file is not altered; a new

file containing the revised model is created instead.

After creating the new model, REVISION further solves the
model with a reference point of all zero, and obtains thereby
the neutral solution. This initial solution must be obtained
only once and the optimal basis is recorded on a disk file for

further use.

REVISION also creates another file containing two tables.
One is used to record selected results form the neutral solution.
The other is used by the START program to set the various SESAME
parameters for the revised model, i.e., model name, model file
name, RHS name, name of RANGE set if any, and name of BOUND set.

Thus it is unnecessary to set these for subsequent sessions.

The reference point g as well as the model parameters de-
pendent on the penalty coefficient p are specified initially in
the revised model as symbolic names. When their values are
decided on, they are specified numerically at run time without
generating the whole model over agian. For instance, to obtain
the neutral solution, REVISION requires penalty coefficient p.
Its value is obtained via an interactive response. If it 1is
subsequently changed (see the SESSION program) the neutral
solution will, in general, no longer be feasible. This may not
be done normally but, if necessary, a new neutral solution can

be obtained as shown in Orchard-Hays (1979).

4.2 The START and SESSION Programs

After a model has been revised and the neutral solution
obtained and recorded, the model is ready for use with the inter-
active multiobjective procedure. Such use is referred to as a
gegssion. A session is 1initiated by executing the START pro-
gram. All this does is define the necessary SESAME parameters

unigque to the model.

After executing START but before executing SESSION, the
reference point must be defined. This is done with the SESAME
procedure VALUES which is guite flexible with respect to formats

and functions. If necessary, also the value of the penalty
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coefficient p may be changed at this point. After the reference
point has been defined, execution of SESSION results in the

following sequence of events:

(1) Any existing solution file is erased.

(ii) The problem set-up procedure is called and the existing
reference point is incorporated for use in parametric
programming.

(iii) The basis of the neutral solution is recalled.

(iv) The simplex procedure is cdalled. After a basis inver-
sion and check of the solution, the neutral solution
is recovered.

(v) The parametric programming procedure is called to para-
metrize the reference point 68q over the parameter
values 6 € [0,1].

(vi) A SESAME procedure is called to record selected por-
tions of the solution.

(vii) DATAMAT is called to execute a program to display
results at the terminal (and to print off-line) and
also to record necessary information for possible
subsequent use by CONVERGE.

(viii) The control is returned to SESAME in manual mode.

If it is desired to try another reference point, we call
the procedure VALUES again and then rerun SESSION. This may be
done repeatedly.

If it is desired to get a print-out of the full solution
(or selected portions) in standard LP solution format after re-
turn from SESSION, it can be obtained using the SESAME procedures
in the usual way (see Orchard-Hays 1977). An example of part of
the results displayed at the terminal is given in Figure 4. Each
row carrying user-defined labels F1 to I10 refers to an objective.
The column REFER.PT defines the reference point g, column SUB.FN
yields the pareto point § obtained, and column W is just the
difference § - q of the above two columns. Column DUAL is the
(negative of the) vector p of trade off coefficients defined

in Lemma 1.
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REFER.PT SUB.FN W DUAL
F1 = 20u8 2670 622 -.99
F2 = 1398 2020 622 -.56
F3 = 688 1310 622 -.63
Fu = 508 1130 622 -.65
F5 = 358 980 622 -.65
F6 = -161 u61 622 -.63
F7 = 1489 2111 622 -.57
F8 = 2599 3221 622 -.49
F9 = 4709 5331 622 -1.12
F10 = 5849 6471 622 -.67
I1 = 2035 2657 622 -1.33
I2 = 2889 3511 622 -.40
I3 = 2328 2950 622 -.76
I4 = 3348 3970 622 -.98
I5 = 4368 4990 622 -1.17
16 = 4328 4950 622 -1.28
17 = 5349 5971 622 -1.29
I8 = 5859 6481 622 -1.24
I9 = 7339 7961 622 -2.81
I10 = 7849 gu71 622 -1.68
Figure 3. An example of results displayed in a session. (The

reference point is g% of Section 5.2).

4.3 The COVERGE Program

The CONVERGE program may be used instead of SESSION after
the latter has been executed at least once. The VALUES procedure
must be executed first, as usual, to define a new reference

point. However, this reference point, denoted by E, is not

k

actually used. Let §  be the last pareto point obtained (by

either SESSION or CONVERGE). A new reference point is computed
from E in two stages as follows. First a is projected on the
hyperplane H defined in Lemma 1, passing through @k and orthogonal

to the dual vector u. This projection g* is given by

k

¥ =3+ [u§ -C=1)/uuT]uT . (4)

The new reference point §k+1 is then chosen from the line seg-

ment [q*,@k]; i.e., a point §k+1 = q* + e(@k—q*) is chosen for

some 6 € [0,1]. The following options have been considered:

(i) choose 6 = 0 (i.e., choose §k+1 as the projection q*), or
(ii) choose the smallest 6 € [0,1] so that max(§k+1—@k) < yk

i 7
1
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where yk is a user-specified tolerance. The value for y may either
be entered directly or it may be specified as a percentage of
the "distance" between the previous reference point ak and the
pareto point Qk; i.e., yk = Bk mgx(&t—@?), where Bk is a coeffi-

i
cient entered by the user. This latter option may be used
meaningfully only if the reference point Ek is not a pareto
inferior point, for instance, a point obtained by CONVERGE in
the preceeding session. For an illustration of the modified

reference point, see Figure 4.

Figure 4. Modification of the reference point in CONVERGE.
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Note that

yk > max(§?+1— QE) > max(§k+1—§k+1) >0 . (5)

1 1

Thus, if yk > 0 and the sequence {yk} converges to zero, then the

sequence of optimal values for (P) converges to zero.

N

Remark. A limit point of {@k; is not necessarily a solution
to the multicriteria optimization problem, because the convergence
is mechanically forced without taking the decision maker's
preferences properly into account. The only purpose of the
CONVERGENCE routine is to provide some algorithmic help to con-

verge to a, hopefully, interesting pareto point.

5. COMPUTATIONAL EXPERIENCE

For testing purposes we used a ten period dynamic linear
programming model developed for studying long-range development
alternatives of forestry and forest based industries in Finland
(Kallio et al. 1978). This model comprises two subsystems,
the forestry and the industrial subsystem, which are linked to
each other through raw wood supply. The forestry submodel
describes the development of the volume of different types of
wood and the age distribution of different types of trees in
the forests within the nation. In the industrial submodel
various production activities, such as saw mill, panels pro-
duction, pulp and paper mills, as well as further processing
of primary wood products, are considered. For a single product,
alternative technologies may be employed so that the production
process 1is described by a small Leontief model with substitu-
tion. Besides supply of raw wood and demand for wood products,
production is restricted through labor avaiiability, production
capacity, and financial resources. All production activities
are grouped into one financial unit and the investments are
made within the financial resources of this unit. Similarly,

the forestry is considered as a single financial unit.
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A key issue between forestry and industry is the income
distribution which is determined through raw wood price. Conse-
quently, we have chosen two criteria: (1) the profit of the wood
processing industries, and (ii) the income of forestry from
selling the raw wood to industry. These objectives are con-
sidered separately for each time period of the model. Thus,

the problem in consideration has 20 criteria altogether.

Of course, both the average raw wood price and quantity
of wood sold must be implicit in such a model. 1In order to
handle this in a linear programming framework, we use inter-
polation. We consider two exogeneously given wood prices for
each type of raw wood and for each period. The quantities sold
at each price are endogeneous and the average wood price results
from the ratio of these quantities. The complete model after
REVISION consists of 712 rows and 913 columns.

We experiment first with different values for the penalty
coefficient p. Then, fixing p = p (the number of objectives)
we generate a sequence {ak} of reference points and compute the
corresponding sequence {Qk} of pareto points as solutions to (P).
The influence of accumulated information on preferences will be
experimented with thereafter. Finally, we try out the procedures
of forcing convergence.

5.1 Influence of the Penalty Coefficient

Using the scalarizing function (1) we experimented with
different values of the penalty coefficient p and with different
reference points g. As pointed out in Section 2, unless the
reference point q is pareto inferior, the pareto point § obtained
as a solution of (P) is independent of p, namely the one corre-
sponding to the max min criterion of the scalarizing function (2) .
On the other hand, if g is pareto inferior, then § in general
depends on p. In the extreme case of p = p, we again obtain the

max min solution.

In the first runs, we set the reference point g to zero,
and applied the values 20(= p), 25, 50, and 100 for p. The
results have been plotted in Figure 5, As g = 0 appears to be
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Figure 5. Experiment with different penalty coefficients p and

with reference point g = 0.

pareto inferior, the pareto optimal trajectories obtained are
dependent on p. For p = p a constant deviation Qi = @i - ai =
= 2.7 1s obtaineud for each objective i. When p is increased
the minimum guaranteed for each W decreases, being 1.2 for

o = 100. Simultaneously as p increases, the behavior of the §
trajectories gets worse. Even for p = 25, there is a very
high spike at the end of the trajectory of the forestry income.

Figure 6 shows a similar experiment where the reference
point is moved from zero towards the pareto set. Actually in
this case, g is about 90 percent of a pareto-optimal solution.
Again, the case p = p results in a constant deviation of wi = 0.4,
for all i. For larger values of p, the same behavior of the
trajectories was obtained as in the previous case g = 0. How-

ever, as one might expect, the behavior of the trajectories does
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Figure 6. Experiments with different penalty coefficients and
with the reference point about 90 percent of a pareto
point.
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Figure 7. A nonattainable reference point g and its nearest

pareto point.




-19-

not get as bad as in the previous case. As the reference point
is closer to the pareto set, the variation in deviation Qi is

smaller, yet still intolerable for very large op.

In the next case, a nonattainable point was chosen as a
reference trajectory. The resulting trajectories (corresponding
to the nearest pareto point) § have been illustrated in Figure 8.
As § now corresponds to the max min criterion (2), we may expect
the deviations Qi to be rather constant; in fact, W, is equal
to -0.8 except for the industrial profit at the first period

(in which case the deviation is slightly more favorable).

5.2 Experiments with a Sample of Reference Points

For further tests we set p = p, generated a sequence of
eight reference points and the corresponding pareto solutions.
The results have been illustrated in Figures 8 and 9 , where
the continuous trajectories refer to the reference point, and
those drawn in broken lines refer to the pareto point. As an
overall observation we may conclude, as expected, that the
trajectory of the pareto solution tends to be the reference
trajectory shifted up or down. (See also Figures 5 and 6, for
p = 20, and Figure 7.) However, this is not always the case.
For extreme cases, see Figure 8 (b) and 8 (¢), where the pareto
trajectories have a very large spike. Such undesirable unsmooth-
ness may be due to a multiplicity of optimal solution which are
very different from each other. In our dynamic case, for in-
stance, the first periods may totally determine the optimal
objective function value for (P) and the multiple optimal
solutions result from the variety of alternatives left for the
later periods.

Next, the influence of the accumulated information on
preferences was experimented. Let 50, and qo be the reference
point and the pareto point, respectively, in Figure 7, and let
3 and g%, for k = 1,2,..., 8, be those defined in Figures 8
and 9. For the purpose of our numerical tests we assume that
the differences dk = §k - @k_1 reveal the decision makers pref-
erences in a way that dk is a preferred direction, for k = 1,2,

..., 8. All vectors a5, for i < k, will be made available when
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applying the reference point Ek in the revised problem (P).
Thus, all information gained on preferences is being used. The
pareto points resulting as optimal solutions for (P) have been
illustrated in dotted lines in Figures 8 and 9. For k = 1,2,
and 3, the additional information did not have any influence

on the pareto point; i.e., the same solutions @k were obtained
as before. However, thereafter a significant change was ob-
served in most cases, and in addition, the obtained revised
pareto point seems to be better than the one obtained from
problem (P) (see Figures 8 (d), 9(f), and 9(g), for instance).
On the other hand, we may observe that the revised trajectories
usually resemble the shape of the reference trajectory to a
lesser degree than do the trajectories obtained form problem
(P). These observations suggest that perhaps in practice both

pareto trajectories ought to be computed in each session.

5.3 Forcing Convergence

In Section 4 we developed procedures for modifying the users
suggested sequence of reference points in such a way that the
pareto points obtained are forced to converge. One of these
procedures was controllgd by a sequence {Bk} of percentages,

and another by a seguence {yk} of tolerances. Both of them
8

were tested using the above sequece {ak}k=0

as a sequence ref-
erence points suggested by the user.

First we discuss the case of using the B-factors. After
obtaining the initial solution @O, the CONVERGE program was
applied for each suggestion Ek. The results obtained, when a
constant value Bk = .5 (for all k) was used, are illustrated
in Figure 10. It also describes the results when the experiment
was repeated for Bk = .9. 1In both cases, practically no change
in qk was obtained after k > 2. Thus the convergence proved to
be extremely fast; in fact, for many applications probably un-
desirably fast. An explanation for this phenomenon may be
found from the fact that the hyperplane (on which the reference
points are projected) is close to the pareto set in the neighbor-
hood of the last pareto point obtained. This in turn is likely
to result in a sequence of objective function values for (P),

which converges fast to zero.
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For the other procedure we chose the bounds yk as
yk = 10/2k. The results are described in Figure 11. The
convergence is now reasonably fast, and therefore, the user
has a fair chance to control the sequence of pareto points

being generated.
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Figure 11. Experiments with CONVERGE: y = 10/2k.
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6. SUMMARY AND CONCLUSIONS

In this paper we have investigated the reference point ap-
proach for linear multiobjective optimization (Wierzbicki 1979a,
b). In our opinion, the basic concept proves to be very useful,
in particular, because of its simplicity. The method does not
necessarily aim at finding an optimum under any utility function,
but rather it is used to generate a sequence of interesting
pareto points. 1In order to guarantee usefulness of the infor-
mation being generated, we let the decision maker interfere with
the model system. In the course of such an interactive process
he suggests reference objectives which normally reflect his de-
sired levels of various objectives. The optimization system is
used to find, in some sense, the nearest pareto point to each

reference objective.

As a measure of "distance" between the reference points
and the pareto set we use the penalty scalarizing function (1)
which in our experience has very favorable properties: first,
the problem of finding the nearest pareto point to a reference
point amounts to a linear programming problem, and second, it
allows the user a reasonable control over the sequence of pareto
points generated (given that the penalty coefficient p is close
to the number of objectives). To clarify the latter point we
have observed that some scalarizing functions have an undesirable
property of favoring arbitrarily one or a few components of the
objective vector. In such a case, the objective levels at the
pareto point and at the reference objective may be close to each
other in all except one component where the pareto point is far
superior to the reference objective. 1In dynamic cases this
phenomenon usually causes spikes in trajectories of the objectives

(see Figure 5 for large values of the penalty coefficient p).

We expand the reference point approach for the adaptation
of information which accumulates on the decision maker's pre-
ferences in the course of the interactive process. 1In this case
we exclude from consideration every pareto point which is not
optimal under any linear utility function consistent with the
information obtained so far. Thus the pareto point being gen-
erated is the nearest one among the rest of the pareto points.
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We nave implemented the reference point approach using the
interactive mathematical programming system, called SESAME
(Orchard-Hays 1978). The package of programs consists of essen-
tially two parts: first, a DATAMAT program which reformulates
a linear programming model in the form (P) of reference point
optimization, and second, a routine to carry out an interactive
iteration (i.e., to insert a reference objective, and to compute
and display the pareto point). The current implementation em-
ploys the scalarizing function (1) with the parameter vector ¢
being equal to zero. The system is now capable of handling
large practical multicriteria linear programs with up to 99
objectives and one or two thousand constraints.

For computational experimentation we used a dynamic LP
model of a forest sector with about 700 rows and 900 columns.
There are two objectives defined for each of the ten time periods
of the model, i.e., there are twenty objectives in total. We
experimented first with different values of the penalty coeffi-
cient p. The results suggest that for p one should use a value
which is equal to or slightly larger than p, the number of ob-
jectives. Based on this observation, we set p = p = 20 for
further numerical test runs. A sample of reference points is
tried out and the overall performance of the method is found
satisfactory. In a few cases, however, we observed some un-

desirable unsmoothness in the computed trajectroeis of the two

objectives (see Figures 8b and 8c). This may be due to the
fact that only weak pareto optimality is guaranteed, for € = 0
(see Lemma 1). Thus, we expect the problem to disappear when

the scalarizing function is implemented for € > 0 in the next

stage.

A general observation is that the pareto trajectories tend
to agree with the reference objectives shifted up or down. This
property was found not to be valid when experimenting with the
extension of employing cumulative information on preferences.
However, after this information began to influence the solution
the pareto trajectories generally seemed likely to be better
than those obtained disregarding this information(see Figures
9f and 9g). '




APPENDIX

Derivation of Problem (P)

Denote by W = {w|-w+Cx=q, Ax=b, x>0} the feasible set for
vector w. Then the reference point optimization problem, when

the scalarizing function (1) is applied, is as follows:

min{-min{p min W, g wi} -cw}

wEW i

= min{max{max(-pwi) ) wi} - ew}
WwEW i i

= min{max{max(-pwi-ew) ) w, - ew}}
wEW i i

= min{z]zz—pwi—ew, for all i, z > -} w, - ew}
wEW it
Z€R

= min{y-ew|-y-pw, < 0, for all i, -y-}) w, < 0} ,

i= RS
WwEW i
YER
where we have substituted y = z + ew.
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